Skip to main content
Log in

The Effects of Excipients on Freeze-dried Monoclonal Antibody Formulation Degradation and Sub-Visible Particle Formation during Shaking

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purposes

We previously reported an unexpected phenomenon that shaking stress could cause more protein degradation in freeze-dried monoclonal antibody (mAb) formulations than liquid ones (J Pharm Sci, 2022, 2134). The main purposes of the present study were to investigate the effects of shaking stress on protein degradation and sub-visible particle (SbVP) formation in freeze-dried mAb formulations, and to analyze the factors influencing protein degradation during production and transportation.

Methods

The aggregation behavior of mAb-X formulations during production and transportation was simulated by shaking at a rate of 300 rpm at 25°C for 24 h. The contents of particles and monomers were analyzed by micro-flow imaging, dynamic light scattering, size exclusion chromatography, and ultraviolet − visible (UV–Vis) spectroscopy to compare the protective effects of excipients on the aggregation of mAb-X.

Results

Shaking stress could cause protein degradation in freeze-dried mAb-X formulations, while surfactant, appropriate pH, polyol mannitol, and high protein concentration could impact SbVP generation. Water content had little effect on freeze-dried protein degradation during shaking, as far as the water content was controlled in the acceptable range as recommended by mainstream pharmacopoeias (i.e., less than 3%).

Conclusions

Shaking stress can reduce the physical stability of freeze-dried mAb formulations, and the addition of surfactants, polyol mannitol, and a high protein concentration have protective effects against the degradation of model mAb formulations induced by shaking stress. The experimental results provide new insight for the development of freeze-dried mAb formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data will be available upon request.

Abbreviations

DLS:

Dynamic light scattering

HES:

Hydroxyethyl starch

His-HCl:

Histidine-HCl

kD :

Diffusion interaction parameter

mAb:

Monoclonal antibody

MFI:

Micro-flow imaging

NMPA:

National Medicinal Products Administration of China

PDI:

Distribution coefficient

PES:

Polyethersulfone

PS:

Polysorbate

SbVP:

Sub-visible particle

SE − HPLC:

Size exclusion high-performance liquid chromatography

UV − Vis:

Ultraviolet − visible spectroscopy

References

  1. Carter PJ, Lazar GA. Next generation antibody drugs: pursuit of the “high-hanging fruit.” Nat Rev Drug Discov. 2018;17(3):197–223.

    Article  CAS  PubMed  Google Scholar 

  2. Wang Z, Wang G, Lu H, Li H, Tang M, Tong A. Development of therapeutic antibodies for the treatment of diseases. Mol Biomed. 2022;3(1):35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kollár É, Balázs B, Tari T, Siró I. Development challenges of high concentration monoclonal antibody formulations. Drug Discov Today Technol. 2020;37:31–40.

    Article  PubMed  Google Scholar 

  4. Krämer I, Thiesen J, Astier A. Formulation and administration of biological medicinal products. Pharm Res. 2020;37(8):159.

    Article  PubMed  Google Scholar 

  5. Kozlowski S, Swann P. Current and future issues in the manufacturing and development of monoclonal antibodies. Adv Drug Deliv Rev. 2006;58(5–6):707–22.

    Article  CAS  PubMed  Google Scholar 

  6. Akbarian M, Chen SH. Instability challenges and stabilization strategies of pharmaceutical proteins. Pharmaceutics. 2022;14(11):2533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Movafaghi S, Daniels AL, Kelly MD, Witeof AE, Calderon CP, Randolph TW, Goodwin AP. Hydrogel coatings on container surfaces reduce protein aggregation caused by mechanical stress and cavitation. ACS Appl Bio Mater. 2021;4(9):6946–53.

    Article  CAS  PubMed  Google Scholar 

  8. Movafaghi S, Wu H, Francino Urdániz IM, Bull DS, Kelly MD, Randolph TW, Goodwin AP. The effect of container surface passivation on aggregation of intravenous immunoglobulin induced by mechanical shock. Biotechnol J. 2020;15(9):e2000096.

    Article  PubMed  PubMed Central  Google Scholar 

  9. van Beers MM, Sauerborn M, Gilli F, Brinks V, Schellekens H, Jiskoot W. Oxidized and aggregated recombinant human interferon beta is immunogenic in human interferon beta transgenic mice. Pharm Res. 2011;28(10):2393–402.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rosenberg AS. Effects of protein aggregates: an immunologic perspective. AAPS J. 2006;8(3):E501–7.

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  11. De Groot AS, Scott DW. Immunogenicity of protein therapeutics. Trends Immunol. 2007;28(11):482–90.

    Article  PubMed  Google Scholar 

  12. Swanson MD, Rios S, Mittal S, Soder G, Jawa V. Immunogenicity risk assessment of spontaneously occurring therapeutic monoclonal antibody aggregates. Front Immunol. 2022;27(13):915412.

    Article  Google Scholar 

  13. Butreddy A, Janga KY, Ajjarapu S, Sarabu S, Dudhipala N. Instability of therapeutic proteins - an overview of stresses, stabilization mechanisms and analytical techniques involved in lyophilized proteins. Int J Biol Macromol. 2021;15(167):309–25.

    Article  Google Scholar 

  14. Izutsu KI. Applications of freezing and freeze-drying in pharmaceutical formulations. Adv Exp Med Biol. 2018;1081:371–83.

    Article  CAS  PubMed  Google Scholar 

  15. Nejadnik MR, Randolph TW, Volkin DB, Schöneich C, Carpenter JF, Crommelin DJA, Jiskoot W. Postproduction handling and administration of protein pharmaceuticals and potential instability issues. J Pharm Sci. 2018;107(8):2013–9.

    Article  CAS  PubMed  Google Scholar 

  16. Ueda T, Nakamura K, Abe Y, Carpenter JF. Effects of product handling parameters on particle levels in a commercial factor VIII product: impacts and mitigation. J Pharm Sci. 2019;108(1):775–86.

    Article  CAS  PubMed  Google Scholar 

  17. Rathore N, Rajan RS. Current perspectives on stability of protein drug products during formulation, fill and finish operations. Biotechnol Prog. 2008;24(3):504–14.

    Article  CAS  PubMed  Google Scholar 

  18. Li J, Krause ME, Chen X, Cheng Y, Dai W, Hill JJ, Huang M, Jordan S, LaCasse D, Narhi L, Shalaev E, Shieh IC, Thomas JC, Tu R, Zheng S, Zhu L. Interfacial stress in the development of biologics: fundamental understanding, current practice, and future perspective. AAPS J. 2019;21(3):44.

    Article  PubMed  Google Scholar 

  19. Telikepalli S, Kumru OS, Kim JH, Joshi SB, O’Berry KB, Blake-Haskins AW, Perkins MD, Middaugh CR, Volkin DB. Characterization of the physical stability of a lyophilized IgG1 mAb after accelerated shipping-like stress. J Pharm Sci. 2015;104(2):495–507.

    Article  CAS  PubMed  Google Scholar 

  20. Fang WJ, Ingle RG, Liu JW, Ge XZ, Wang H. Freeze-dried monoclonal antibody formulations are unexpectedly more prone to degradation than liquid formulations under shaking stress. J Pharm Sci. 2022;111(7):2134–8.

    Article  CAS  PubMed  Google Scholar 

  21. Le Basle Y, Chennell P, Tokhadze N, Astier A, Sautou V. Physicochemical stability of monoclonal antibodies: a review. J Pharm Sci. 2020;109(1):169–90.

    Article  PubMed  Google Scholar 

  22. Zbacnik TJ, Holcomb RE, Katayama DS, Murphy BM, Payne RW, Coccaro RC, Evans GJ, Matsuura JE, Henry CS, Manning MC. Role of buffers in protein formulations. J Pharm Sci. 2017;106(3):713–33.

    Article  CAS  PubMed  Google Scholar 

  23. Pandey LM. Physicochemical factors of bioprocessing impact the stability of therapeutic proteins. Biotechnol Adv. 2022;55:107909.

    Article  CAS  PubMed  Google Scholar 

  24. Rao VA, Kim JJ, Patel DS, Rains K, Estoll CR. A comprehensive scientific survey of excipients used in currently marketed, therapeutic biological drug products. Pharm Res. 2020;37(10):200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Holm TP, Meng-Lund H, Rantanen J, Jorgensen L, Grohganz H. Screening of novel excipients for freeze-dried protein formulations. Eur J Pharm Biopharm. 2021;160:55–64.

    Article  CAS  PubMed  Google Scholar 

  26. Koepf E, Eisele S, Schroeder R, Brezesinski G, Friess W. Notorious but not understood: how liquid-air interfacial stress triggers protein aggregation. Int J Pharm. 2018;537(1–2):202–12.

    Article  CAS  PubMed  Google Scholar 

  27. Vaclaw C, Merritt K, Pringle V, Whitaker N, Gokhale M, Carvalho T, Pan D, Liu Z, Bindra D, Khossravi M, Bolgar M, Volkin DB, Ogunyankin MO, Dhar P. Impact of polysorbate 80 grade on the interfacial properties and interfacial stress induced subvisible particle formation in monoclonal antibodies. J Pharm Sci. 2021;110(2):746–59.

    Article  CAS  PubMed  Google Scholar 

  28. Kiese S, Papppenberger A, Friess W, Mahler HC. Shaken, not stirred: mechanical stress testing of an IgG1 antibody. J Pharm Sci. 2008;97(10):4347–66.

    Article  CAS  PubMed  Google Scholar 

  29. Usami A, Ohtsu A, Takahama S, Fujii T. The effect of pH, hydrogen peroxide and temperature on the stability of human monoclonal antibody. J Pharm Biomed Anal. 1996;14(8–10):1133–40.

    Article  CAS  PubMed  Google Scholar 

  30. Zheng S, Qiu D, Adams M, Li J, Mantri RV, Gandhi R. Investigating the degradation behaviors of a therapeutic monoclonal antibody associated with pH and buffer species. AAPS PharmSciTech. 2017;18(1):42–8.

    Article  CAS  PubMed  Google Scholar 

  31. Mahler HC, Friess W, Grauschopf U, Kiese S. Protein aggregation: pathways, induction factors and analysis. J Pharm Sci. 2009;98(9):2909–34.

    Article  CAS  PubMed  Google Scholar 

  32. Sudrik CM, Cloutier T, Mody N, Sathish HA, Trout BL. Understanding the role of preferential exclusion of sugars and polyols from native state IgG1 monoclonal antibodies and its effect on aggregation and reversible self-association. Pharm Res. 2019;36(8):109.

    Article  PubMed  Google Scholar 

  33. Kamerzell TJ, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB. Protein-excipient interactions: mechanisms and biophysical characterization applied to protein formulation development. Adv Drug Deliv Rev. 2011;63(13):1118–59.

    Article  CAS  PubMed  Google Scholar 

  34. Wang W. Protein aggregation and its inhibition in biopharmaceutics. Int J Pharm. 2005;289(1–2):1–30.

    Article  CAS  PubMed  Google Scholar 

  35. Wang W, Nema S, Teagarden D. Protein aggregation–pathways and influencing factors. Int J Pharm. 2010;390(2):89–99.

    Article  CAS  PubMed  Google Scholar 

  36. Hauptmann A, Podgoršek K, Kuzman D, Srčič S, Hoelzl G, Loerting T. Impact of buffer, protein concentration and sucrose addition on the aggregation and particle formation during freezing and thawing. Pharm Res. 2018;35(5):101.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang C, Bye JW, Lui LH, Zhang H, Hales J, Brocchini S, Curtis RA, Dalby PA. Enhanced thermal stability and reduced aggregation in an antibody Fab fragment at elevated concentrations. Mol Pharm. 2023;20(5):2650–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schersch K, Betz O, Garidel P, Muehlau S, Bassarab S, Winter G. Systematic investigation of the effect of lyophilizate collapse on pharmaceutically relevant proteins, part 2: stability during storage at elevated temperatures. J Pharm Sci. 2012;101(7):2288–306.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Nature Science Foundation of China (Grant No. 81741144) and the Huadong Medicine Joint Funds of the Zhejiang Provincial Natural Science Foundation of China (Grant No. LHDMZ24H300003). We thank Ms. Haihong Hu for laboratory management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Jie Fang.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest, financial or otherwise.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, MJ., Ge, XZ., Huang, Q. et al. The Effects of Excipients on Freeze-dried Monoclonal Antibody Formulation Degradation and Sub-Visible Particle Formation during Shaking. Pharm Res 41, 321–334 (2024). https://doi.org/10.1007/s11095-024-03657-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-024-03657-7

Keywords

Navigation