Skip to main content

Advertisement

Log in

Dissolution Profiles of Poorly Soluble Drug Salts in Bicarbonate Buffer

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the present study was to investigate the effect of buffer species on the dissolution profiles of poorly soluble drug salts, focusing on bicarbonate buffer (BCB).

Methods

Pioglitazone HCl (PIO HCl) and dantrolene sodium (DNT Na) were used as model drugs. Non-sink dissolution tests were performed using phosphate buffer (PB) and BCB (pH 6.5, buffer capacity: 4.4 mM/pH, ionic strength: 0.14 M, with/ without bile micelles). The pH value of BCB was maintained using a floating lid that avoided the loss of CO2. The particles collected at the early stage of dissolution (< 5 min) were analyzed by powder X-ray diffraction, polarized light microscopy, and scanning electron microscopy. A bulk-phase pH shift precipitation test was also performed.

Results

The dissolution of PIO HCl was slower in BCB than in PB, whereas that of DNT Na was faster in BCB than in PB. The same trend was observed in the presence of bile micelles. Free-form precipitation on the surface of salt particles was observed early in their dissolution in both BCB and PB. However, the surface textures in BCB and PB were different. The bulk-phase precipitation of PIO was little affected by buffer species, whereas that of DNT was affected, but oppositely to the dissolution profile.

Conclusion

The dissolution profiles of PIO HCl and DNT Na in BCB were markedly different from those in PB. Free-form precipitation on the particle surface, rather than in the bulk phase, was affected by buffer species in the dissolution test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zaborenko N, Shi Z, Corredor CC, Smith-Goettler BM, Zhang L, Hermans A, et al. First-principles and empirical approaches to predicting in vitro dissolution for pharmaceutical formulation and process development and for product release testing. AAPS J. 2019;21:1–20.

    Article  Google Scholar 

  2. Mudie DM, Samiei N, Marshall DJ, Amidon GE, Bergström CAS. Selection of in vivo predictive dissolution media using drug substance and physiological properties. AAPS J. 2020;22:34.

    Article  CAS  PubMed  Google Scholar 

  3. Lennernäs H, Lindahl A, van Peer A, Ollier C, Flanagan T, Lionberger R, et al. In vivo predictive dissolution (IPD) and biopharmaceutical modeling and simulation: future use of modern approaches and methodologies in a regulatory context. Mol Pharm. 2017;14:1307–14.

    Article  PubMed  Google Scholar 

  4. McAllister M. Dynamic dissolution: a step closer to predictive dissolution testing? Mol Pharm. 2010;7:1374–87.

    Article  CAS  PubMed  Google Scholar 

  5. Fadda HM, Merchant HA, Arafat BT, Basit AW. Physiological bicarbonate buffers: stabilisation and use as dissolution media for modified release systems. Int J Pharm. 2009;382:56–60.

    Article  CAS  PubMed  Google Scholar 

  6. McNamara DP, Whitney KM, Goss SL. Use of a physiologic bicarbonate buffer system for dissolution characterization of ionizable drugs. Pharm Res. 2003;20:1641–6.

    Article  CAS  PubMed  Google Scholar 

  7. Shibata H, Yoshida H, Izutsu K-I, Goda Y. Use of bicarbonate buffer systems for dissolution characterization of enteric-coated proton pump inhibitor tablets. J Pharm Pharmacol. 2016;68:467–74.

    Article  CAS  PubMed  Google Scholar 

  8. Liu F, Merchant HA, Kulkarni RP, Alkademi M, Basit AW. Evolution of a physiological pH 6.8 bicarbonate buffer system: application to the dissolution testing of enteric coated products. Eur J Pharm Biopharm. 2011;78:151–7.

    Article  CAS  PubMed  Google Scholar 

  9. Amaral Silva D, Al-Gousous J, Davies NM, Bou Chacra N, Webster GK, Lipka E, et al. Simulated, biorelevant, clinically relevant or physiologically relevant dissolution media: The hidden role of bicarbonate buffer. Eur J Pharm Biopharm. 2019;142:8–19.

    Article  CAS  PubMed  Google Scholar 

  10. Krieg BJ, Taghavi SM, Amidon GL, Amidon GE. In vivo predictive dissolution: comparing the effect of bicarbonate and phosphate buffer on the dissolution of weak acids and weak bases. J Pharm Sci. 2015;104:2894–904.

    Article  CAS  PubMed  Google Scholar 

  11. Al-Gousous J, Ruan H, Blechar JA, Sun KX, Salehi N, Langguth P, et al. Mechanistic analysis and experimental verification of bicarbonate-controlled enteric coat dissolution: potential in vivo implications. Eur J Pharm Biopharm. 2019;139:47–58.

    Article  CAS  PubMed  Google Scholar 

  12. Krieg BJ, Taghavi SM, Amidon GL, Amidon GE. In vivo predictive dissolution: transport analysis of the CO2, bicarbonate in vivo buffer system. J Pharm Sci. 2014;103:3473–90.

    Article  CAS  PubMed  Google Scholar 

  13. Sheng JJ, McNamara DP, Amidon GL. Toward an In Vivo dissolution methodology: a comparison of phosphate and bicarbonate buffers. Mol Pharm. 2009;6:29–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Scott N, Patel K, Sithole T, Xenofontos K, Mohylyuk V, Liu F. Regulating the pH of bicarbonate solutions without purging gases: application to dissolution testing of enteric coated tablets, pellets and microparticles. Int J Pharm. 2020;585:119562.

  15. Sakamoto A, Izutsu K ichi, Yoshida H, Abe Y, Inoue D, Sugano K. Simple bicarbonate buffer system for dissolution testing: floating lid method and its application to colonic drug delivery system. J Drug Deliv Sci Technol. 2021;63:102447.

  16. Ikuta S, Nakagawa H, Kai T, Sugano K. Development of bicarbonate buffer flow-through cell dissolution test and its application in prediction of in vivo performance of colon targeting tablets. Eur J Pharm Sci. 2023;180: 106326.

    Article  CAS  PubMed  Google Scholar 

  17. Sakamoto A, Sugano K. Dissolution kinetics of nifedipine—ionizable polymer amorphous solid dispersion: comparison between bicarbonate and phosphate buffers. Pharm Res. 2021;38:2119–27.

    Article  CAS  PubMed  Google Scholar 

  18. Schönherr D, Wollatz U, Haznar-Garbacz D, Hanke U, Box KJ, Taylor R, et al. Characterisation of selected active agents regarding pKa values, solubility concentrations and pH profiles by SiriusT3. Eur J Pharm Biopharm. 2015;92:155–70. https://doi.org/10.1016/j.ejpb.2015.02.028.

    Article  CAS  PubMed  Google Scholar 

  19. Livertoux MH, Jayyosi Z, Batt AM. Study of the physicochemical properties of aqueous dantrolene solutions by differential pulse polarography. Talanta. 1988;35:613–9.

    Article  CAS  PubMed  Google Scholar 

  20. Seedher N, Kanojia M. Co-solvent solubilization of some poorly-soluble antidiabetic drugs. Pharm Dev Technol. 2009;14:185–92.

    Article  CAS  PubMed  Google Scholar 

  21. Wuis EW, Grutters ACLM, Vree TB, Van Der Kleyn E. Simultaneous determination of dantrolene and its metabolites, 5-hydroxydantrolene and nitro-reduced acetylated dantrolene (F 490), in plasma and urine of man and dog by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl. 1982;231:401–9.

    Article  CAS  Google Scholar 

  22. Uekusa T, Sugano K. Precipitation behavior of pioglitazone on the particle surface of hydrochloride salt in biorelevant media. J Pharm Biomed Anal. 2018;161:45–50.

    Article  CAS  PubMed  Google Scholar 

  23. Uekusa T, Oki J, Omori M, Watanabe D, Inoue D, Sugano K. Effect of buffer capacity on dissolution and supersaturation profiles of pioglitazone hydrochloride. J Drug Deliv Sci Technol. 2020;55:101492.

  24. Kambayashi A, Dressman JB. Forecasting gastrointestinal precipitation and oral pharmacokinetics of dantrolene in dogs using an in vitro precipitation testing coupled with in silico modeling and simulation. Eur J Pharm Biopharm. 2017;119:107–13. https://doi.org/10.1016/j.ejpb.2017.06.012.

    Article  CAS  PubMed  Google Scholar 

  25. Kambayashi A, Dressman JB. An in vitro-in silico-in vivo approach to predicting the oral pharmacokinetic profile of salts of weak acids: Case example dantrolene. Eur J Pharm Biopharm. 2013;84:200–7. https://doi.org/10.1016/j.ejpb.2012.12.001.

    Article  CAS  PubMed  Google Scholar 

  26. Galia E, Nicolaides E, Hörter D, Löbenberg R, Reppas C, Dressman JB. Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs. Pharm Res Springer. 1998;15:698–705.

    Article  CAS  Google Scholar 

  27. Fuchs A, Leigh M, Kloefer B, Dressman JB. Advances in the design of fasted state simulating intestinal fluids: FaSSIF-V3. Eur J Pharm Biopharm. 2015;94:229–40. https://doi.org/10.1016/j.ejpb.2015.05.015.

    Article  CAS  PubMed  Google Scholar 

  28. Hsieh YL, Merritt JM, Yu W, Taylor LS. Salt stability - the effect of pH max on salt to free base conversion. Pharm Res. 2015;32:3110–8.

    Article  CAS  PubMed  Google Scholar 

  29. Avdeef A. Disproportionation of pharmaceutical salts: pHmaxand phase-solubility/pH variance. Mol Pharm. 2021;18:2724–43.

    Article  CAS  PubMed  Google Scholar 

  30. Avdeef A. Solubility of sparingly-soluble ionizable drugs. Adv Drug Deliv Rev. 2007;59:568–90.

    Article  CAS  PubMed  Google Scholar 

  31. Almoazen H, Joshi YM, Li S, Wong S, Sethia S, Serajuddin ATM. Investigation of solubility and dissolution of a free base and two different salt forms as a function of pH. Pharm Res. 2005;22:628–35.

    Article  PubMed  Google Scholar 

  32. Serajuddin ATM. Salt formation to improve drug solubility. Adv Drug Deliv Rev. 2007;59:603–16.

    Article  CAS  PubMed  Google Scholar 

  33. Greco K, Bogner R. Solution-mediated phase transformation: Significance during dissolution and implications for bioavailability. J Pharm Sci. 2012;101:2996–3018. https://doi.org/10.1002/jps.23025.

    Article  CAS  PubMed  Google Scholar 

  34. Hsieh Y-L, Merritt JM, Yu W, Taylor LS. Salt stability – the effect of pHmax on salt to free base conversion. Pharm Res. 2015;32:3110–8.

    Article  CAS  PubMed  Google Scholar 

  35. Sugano K, Okazaki A, Sugimoto S, Tavornvipas S, Omura A, Mano T. Solubility and dissolution profile assessment in drug discovery. Drug Metab Pharmacokinet. 2007;22:225–54.

    Article  CAS  PubMed  Google Scholar 

  36. Kons A, Mishnev A, Mukhametzyanov TA, Buzyurov AV, Lapuk SE, Bērziņš A. Hexamorphism of Dantrolene: insight into the Crystal structures, stability, and phase transformations. Cryst Growth Des. 2021;21:1190–201.

    Article  CAS  Google Scholar 

  37. Some physical-chemical properties of dantrolene and two of its analogues. Int J Pharm. 1991;75:193–9.

  38. Hisada N, Takano R, Takata N, Shiraki K, Ueto T, Tanida S, et al. Characterizing the dissolution profiles of supersaturable salts, cocrystals, and solvates to enhance in vivo oral absorption. Eur J Pharm Biopharm. 2016;103:192–9. https://doi.org/10.1016/j.ejpb.2016.04.004.

    Article  CAS  PubMed  Google Scholar 

  39. John CT, Xu W, Lupton LK, Harmon PA. Formulating weakly basic HCl salts: relative ability of common excipients to induce disproportionation and the unique deleterious effects of magnesium stearate. Pharm Res. 2013;30:1628–41.

    Article  CAS  PubMed  Google Scholar 

  40. Krollik K, Lehmann A, Wagner C, Kaidas J, Kubas H, Weitschies W. The effect of buffer species on biorelevant dissolution and precipitation assays – comparison of phosphate and bicarbonate buffer. Eur J Pharm Biopharm. 2022;171:90–101.

    Article  CAS  PubMed  Google Scholar 

  41. Boni JE, Brickl RS, Dressman J. Is bicarbonate buffer suitable as a dissolution medium? J Pharm Pharmacol. 2010;59:1375–82.

    Article  Google Scholar 

  42. Shigemura M, Omori M, Sugano K. Polymeric precipitation inhibitor differently affects cocrystal surface and bulk solution phase transformations. J Drug Deliv Sci Technol. 2021;103029.

  43. Omori M, Sugano K. Solution-mediated phase transformation on crystal facets of carbamazepine-saccharin cocrystals. Cryst Growth Des. 2021;21:6237–44.

    Article  CAS  Google Scholar 

  44. Oki J, Watanabe D, Uekusa T, Sugano K. Mechanism of supersaturation suppression in dissolution process of acidic drug salt. Mol Pharm. 2019;16:1669–77.

    Article  CAS  PubMed  Google Scholar 

  45. Serajuddin ATM, Jarowski CI. Effect of diffusion layer pH and solubility on the dissolution rate of pharmaceutical bases and their hydrochloride salts I: phenazopyridine. J Pharm Sci. 1985;74:142–7.

  46. Hawley M, Morozowich W. Modifying the diffusion layer of soluble salts of poorly soluble basic drugs to improve dissolution performance. Mol Pharm. 2010;7:1441–9.

  47. Al-Gousous J, Sun KX, McNamara DP, Hens B, Salehi N, Langguth P, et al. Mass transport analysis of the enhanced buffer capacity of the bicarbonate-CO2 buffer in a phase-heterogenous system: physiological and pharmaceutical significance. Mol Pharm. 2018;15:5291–301.

    Article  CAS  PubMed  Google Scholar 

  48. Al-Gousous J, Salehi N, Amidon GE, Ziff RM, Langguth P, Amidon GL. Mass transport analysis of bicarbonate buffer: effect of the CO2-H2CO3 hydration-dehydration kinetics in the fluid boundary layer and the apparent effective pKa controlling dissolution of acids and bases. Mol Pharm. 2019;16:2626–35.

  49. Chen J, Mosquera-Giraldo LI, Ormes JD, Higgins JD, Taylor LS. Bile salts as crystallization inhibitors of supersaturated solutions of poorly water-soluble compounds. Cryst Growth Des. 2015;15:2593–7.

    Article  CAS  Google Scholar 

  50. Blechar JA, Al-Gousous J, Wilhelmy C, Postina AM, Getto M, Langguth P. Toward mechanistic design of surrogate buffers for dissolution testing of pH-dependent drug delivery systems. Pharmaceutics. 2020;12:1197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hofmann M, García MA, Al-Gousous J, Ruiz-Picazo A, Thieringer F, Nguyen MA, et al. In vitro prediction of in vivo absorption of ibuprofen from suspensions through rational choice of dissolution conditions. Eur J Pharm Biopharm. 2020;149:229–37.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyohiko Sugano.

Ethics declarations

Conflict of Interest

The Author(s) declare(s) that they have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakamoto, A., Sugano, K. Dissolution Profiles of Poorly Soluble Drug Salts in Bicarbonate Buffer. Pharm Res 40, 989–998 (2023). https://doi.org/10.1007/s11095-023-03508-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-023-03508-x

Keywords

Navigation