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Abstract
Endothelial cells play critical roles in circulatory homeostasis and are also the gateway to the major organs of the body. 
Dysfunction, injury, and gene expression profiles of these cells can cause, or are caused by, prevalent chronic diseases such 
as diabetes, cardiovascular disease, and cancer. Modulation of gene expression within endothelial cells could therefore be 
therapeutically strategic in treating longstanding disease challenges. Lipid nanoparticles (LNP) have emerged as potent, 
scalable, and tunable carrier systems for delivering nucleic acids, making them attractive vehicles for gene delivery to 
endothelial cells. Here, we discuss the functions of endothelial cells and highlight some receptors that are upregulated dur-
ing health and disease. Examples and applications of DNA, mRNA, circRNA, saRNA, siRNA, shRNA, miRNA, and ASO 
delivery to endothelial cells and their targets are reviewed, as well as LNP composition and morphology, formulation strate-
gies, target proteins, and biomechanical factors that modulate endothelial cell targeting. Finally, we discuss FDA-approved 
LNPs as well as LNPs that have been tested in clinical trials and their challenges, and provide some perspectives as to how 
to surmount those challenges.
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Endothelial Cell Physiology in Health 
and Disease

Endothelial cells line the inner surface of blood vessels, with 
biological functions that are essential in maintaining a nor-
mal physiology. By controlling blood clotting, vessel size, 
and immune function, endothelial cells facilitate blood fluid-
ity, oxygen distribution, cell transport, and nutrient supply 
to any tissue that is vascularized. This is primarily because 
endothelial cells are constantly producing anticoagulant 

proteins that prevent clotting inside vascular beds, which 
enables hemostasis and produces the appropriate blood flow 
and pressure needed to supply oxygen, nutrients, and cells to 
tissues [1–5]. Thrombomodulin, TFPI, EPCR, and heparin-
like proteoglycans are examples of the major anticoagulants 
produced by endothelial cells whose primary function are 
to prevent platelet aggregation and fibrin formation inside 
blood vessels [3–7] (Fig. 1A). Endothelial cells also play 
critical roles during immune responses [8]. When an infec-
tion or injury occurs, endothelial cells release vasoactive 
mediators that locally increase the diameter of blood vessels 
to facilitate the passage of immune cells, and express adhe-
sion molecules to allow leukocyte extravasation [9]. PGI2, 
nitric oxide (NO), and hydrogen sulfide are examples of 
vasodilators released by endothelial cells that increase ves-
sel size by relaxing smooth muscle cells, while selectins and 
intercellular adhesion molecules (ICAMs) are examples of 
surface proteins that facilitate extravasation of immune cells 
out of the blood circulation and into the surrounding tis-
sue [9–21] (Fig. 1A). Because endothelial cells are in direct 
contact with numerous blood components such as protein, 
sugars, and lipids, endothelial cells also serve as a gateway 
for molecules to travel out of the circulation. By expressing 
receptors that activate transcytosis, such as CD36, transfer-
rin receptors (TFr), and insulin receptors, or by producing 
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fenestrations along selective blood vessels, endothelial cells 
enable the selective transport of molecules from the circula-
tion into the surrounding tissue [22–26]. For example, cave-
olae are membrane invaginations predominantly abundant 
on the surface of endothelial cells that enable the transport 
of a wide range of molecules across the endothelium via 
active transcytosis, while endothelial cells from specific vas-
cular beds contain fenestrations that enable the passive trans-
port of nanoscale molecules out of the circulation (Fig. 1A) 
[27, 28]. The liver and kidneys are organs known for having 
fenestrated endothelial cells, while the brain is characterized 
for its non-fenestrated and tightly packed endothelial cells 
[28–33].

Given the important and multiple biological functions of 
endothelial cells, coupled with their wide spread distribu-
tion in the body, endothelial cells contribute to a wide range 
of diseases and life-threating conditions [34–45]. Account-
ing for about 2–7% of the total number of cells in humans, 

endothelial cells can be found in any tissue that is vascular-
ized. The average human has approximately 0.6–60 ×  1012 
endothelial cells, and given that the average surface area of 
a single endothelial cell is 20 × 60 µm, if endothelial cells 
were to be placed one next to the other, they could cover 
at minimum 720  m2, which is about the size of 4 average 
houses in the U.S. [1, 46–49]! Endothelial cells, of course, 
are not located in a single location in the body, but are pre-
sent in every tissue that is vascularized, particularly in the 
lung where the largest capillary network is found [50]. As 
such, due to their wide distribution and essential physiologi-
cal functions, endothelial cells can significantly contribute 
to numerous diseases. In cancer, for example, endothelial 
cells promote vessel formation and growth for oxygen and 
nutrient transport to support the proliferation of cancer 
cells, resulting in tumor growth and ultimately damage to 
the surrounding tissue [37–39]. In patients with diabetes, 
hyperglycemia causes a decrease in nitric oxide production 

Fig. 1  Endothelial cells in healthy and diseased environments. (A) Endothelial cells line the inner surface of blood vessels, controlling blood 
clotting, vessel size, immune function, and the passage of cells or molecules out of the circulation. By producing anticoagulant proteins such as 
thrombomodulin, TFPI, and EPCR, endothelial cells prevent clot formation inside blood vessels to enable proper oxygen and nutrient delivery 
to vascularized tissues in the body [3–6]. Endothelial cells also sense blood fluidity and produce gasses such as nitric oxide and hydrogen sulfide 
to regulate vascular flow [12, 19, 51]. Additionally, because endothelial cells are in direct contact with numerous blood components such as pro-
tein, sugars, and lipids, endothelial cells serve as a gateway for molecules to travel in-and-out of the circulation. CD36, transferrin, and insulin 
receptors along with caveolae on endothelial cells allow the passage of selective molecules out of the circulation, while fenestrations on endothe-
lial cells enable the passage of low molecular weight solutes across the endothelium [22–28]. (B) When endothelial cells become dysfunctional, 
numerous physiological functions become altered, resulting in cardiovascular dysfunction that could lead to serious medical complications. For 
example, decreased production of anticoagulant proteins by endothelial cells could promote blood clots to form inside of blood vessels, altering 
blood fluidity and potentially inducing thrombosis [46, 52–54]. Decreased production of nitric oxide or hydrogen sulfide leads to inflammation 
and increases in blood pressure, conditions that could lead to atherosclerosis if they become chronic [12, 19, 55–57]. Systemic overexpression of 
adhesion molecules associated with inflammation, including P-selectin, E-selectin, ICAM-1, and VCAM-1, on endothelial cells can cause car-
diac dysfunction [58–61].
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and activity, which causes endothelial dysfunction that leads 
to atherosclerosis [40–42]. Chronic inflammation is another 
condition that damages endothelial cells and results in cardi-
ovascular dysfunction [43–45]. In essence, endothelial cells 
will associate and contribute to a wide range of diseases 
since they are part of the cardiovascular system and essential 
for numerous physiological functions in the body (Fig. 1B). 
As such, therapies targeted to endothelial cells could prevent 
or treat numerous diseases.

Nucleic Acid Therapeutics for Endothelial 
Cell Dysfunction

Delivery of nucleic acids, which have the capacity to modu-
late gene expression, to endothelial cells could be strate-
gic in treating a broad range of diseases. The goal of gene 
therapy is to modulate gene expression of specific cells in 
the body to prevent, mitigate, or treat disease. Current tech-
nologies can alter gene expression at the DNA or mRNA 
level. Genome editing can render long-term gene correction 
that persists with the lifespan of the edited cell [62, 63]. 
Regardless of the strategy employed, gene therapy requires 
intracellular delivery of anionic and macromolecular nucleic 
acids, which do not readily traverse the hydrophobic cell 
membrane lipid bilayer. While various nucleic acid delivery 
technologies have been developed, this review focuses on 
the application of lipid nanoparticles (LNPs) for delivery to 
endothelial cells.

FDA approval of the LNP nucleic acid therapeutic 
patisiran (2018) and COVID-19 vaccines BNT162b2 and 
mRNA-1273 (2021, 2022) have paved the way in under-
standing baseline LNP pharmacokinetics and pharmacody-
namics in humans [64]. Many studies have found LNPs to 
be effective, generally safe, and well-tolerated [65–67], mak-
ing LNPs an attractive delivery platform. In general, LNPs 
comprise four key elements: an ionizable lipid, helper lipid, 
cholesterol, and poly(ethylene glycol) (PEG)-functionalized 
lipids. Ionizable lipids typically exhibit a pKa < 7 and are 
therefore deprotonated (neutral) during circulation, which 
enhances the safety profile of lipids compared to perma-
nently cationic lipids [68]. Accordingly, LNPs are formu-
lated in acidic conditions (pH < 5) such that the ionizable 
lipid is protonated (cationic) and able to complex and con-
dense anionic nucleic acids. Inclusion of helper lipids, cho-
lesterol, and PEG-lipids at optimized ratios promotes LNP 
delivery efficiency, stability, and circulation time, as dis-
cussed in other reviews [69–71].

Given the broad capacity of LNPs to package, transport, 
and deliver nucleic acids, this section examines the types 
of nucleic acid developed for treating diseases involving 
the endothelium, with a focus on reports where an in vivo, 

disease-ameliorative effect was observed. An overview of 
therapeutic nucleic acids is provided in Table I.

DNA

DNA vectors perhaps wield the broadest flexibility in cargo 
and gene modulation, with the capacity to overexpress and/
or silence genes of interest (e.g., encoding for short hairpin 
RNA or CRISPR/Cas9). Moreover, specific promoters can 
be included to restrict gene expression to certain tissues. In 
the case of LNP-mediated delivery, the DNA cargo typi-
cally takes the form of a plasmid. However, a major obstacle 
to non-viral, LNP-mediated DNA delivery is that nuclear 
localization of plasmid is required for protein expression 
(72), which does not efficiently occur in post-mitotic cells. 
While peptide nuclear localization sequences can augment 
plasmid gene delivery in quiescent cells [73, 74], endothelial 
cells can proliferate during disease and inflammation [75, 
76], providing an avenue for non-viral gene delivery to these 
cells. Here, examples of DNA gene delivery to the in vivo 
endothelium are reviewed.

Intravenous delivery of plasmids encoding human 
indoleamine-2,3-dioxygenase (hIDO), gated under an 
endothelial-specific endothelin-1 promoter, resulted in hIDO 
expression in pulmonary endothelial cells. In a model of 
lung transplant ischemia–reperfusion injury, hIDO treatment 
reduced lung permeability and inflammation and protected 
function of the transplanted lungs [77]. Ex vivo transduc-
tion of the corneal vasculature with Bcl-xL improved graft 
survival in a corneal transplantation model [78].

In a model of hypertension, HO-1 gene delivery under 
control of the endothelial-specific VE-cadherin promoter 
mitigated increases in blood pressure and blood markers of 
inflammation [79].

Delivery of plasmid encoding VEGF to vascular endothe-
lial cells in a model of carotid artery injury enhanced recov-
ery and inhibited neointimal hyperplasia [80]. Similarly, 
VEGF plasmid delivery to the endothelium in a rabbit model 
of balloon angioplasty-induced injury attenuated intimal 
thickening [81]. Delivery of eNOS plasmid directly to iliac 
artery endothelial cells via a stent promoted re-endotheli-
alization and mitigated neointimal hyperplasia in a rabbit 
model of restenosis [82]. In another application, viral deliv-
ery of eNOS to the thoracic aorta endothelium and small 
renal arteries mitigated hypertension and renal scarring in a 
model of renal failure [83].

In addition to overexpression of therapeutic genes, DNA 
vectors have also been used to knockout pathogenic genes 
by encoding for CRISPR/Cas9. A missense mutation of 
collagen 8A2 leads to Fuch’s endothelial corneal dystrophy 
(FECD). In a genetic mouse model of early-onset FECD, 
CRISPR/Cas9-mediated disruption of the Col8a2 start 
codon in the corneal endothelium mitigated disease burden 



6 Pharmaceutical Research (2023) 40:3–25

1 3

[84]. Deactivated Cas9 (dCas9) can be used to “ferry” 
gene activators or repressors proximal to the gene of inter-
est, modulating gene expression without altering the host 
genome [85]. Delivery of a Sox2-activating dCas9 construct 
to the corneal endothelium improved wound healing and 
endothelial regeneration in a model of corneal endothelial 
injury [86].

DNA encoding of CRISPR/Cas9 to install base edits has 
been described in other applications. Chen et al. intratumor-
ally delivered NPs carrying plasmids encoding for a base 
editor and sgRNA into tumors in vivo, which expressed 
eGFP only when a stop codon is correctly edited [87]. More-
over, hydrodynamic injection of plasmids encoding for Cas9 
and sgRNAs, as well as template DNA, was able to facilitate 
GFP hepatocyte knockin in vivo [88].

Messenger RNA (mRNA)

Similar to DNA, mRNA can also achieve different modes 
of gene modulation. Some examples include: therapeutic 
protein overexpression by encoding the protein of interest, or 
gene knockout by encoding for CRISPR/Cas9. In non-viral 
gene delivery, a major advantage of mRNA compared to 
DNA cargoes is that mRNA does not require delivery into 
the cell nucleus. As a result, mRNA can achieve robust gene 
delivery even in challenging cell types [89–91]. Moreover, 
advances in synthetic bases, mRNA manufacturing capac-
ity, and codon optimization have made clinical-scale mRNA 
production feasible [92].

While new formulations of LNPs have enabled mRNA 
delivery to liver sinusoidal [93], splenic [94], and lung [91, 

Table I  Summary of Nucleic Acid Cargo Classes

Class Description Example Applications

DNA • broad capacity to overexpress and/or silence genes of interest 
due to versatility

• requires nuclear delivery
• viral delivery enables long-term expression; non-viral delivery 

enables transient delivery but is not efficient in quiescent cells

• delivery of genes that rescue/mitigate endothelial dysfunction
• knockout/correct pathogenic genes by encoding for CRISPR/

Cas9
• modulate transcription by encoding for deactivated Cas9

mRNA • similar to DNA, also exhibits versatile capacity to overexpress 
and/or silence genes of interest

• does not require delivery into the cell nucleus
• transient protein expression

• similar application as DNA, but gene expression is more tran-
sient

• transient and local growth factor expression

saRNA • encodes protein of interest and replicase, which replicates the 
saRNA

• applications have focused on vaccines due to immunogenicity

circRNA • synthetic circRNAs exhibit greater stability against exonucle-
ases compared to linear mRNA

• endogenous circRNA act as miRNA sponges and modulate gene 
dynamics

• can also interact with proteins and modulate cell viability

siRNA • triggers RNA interference (RNAi)
• highly specific for cognate RNA strand

• silencing of endothelial cell pathways to reduce tumor burden
• silencing of inflammation-associated pathways to attenuate 

fibrosis/tissue injury
• attenuation of atherosclerosis

shRNA • triggers RNAi
• can be encoded in a DNA vector; thus, can be transient or 

long-term (viral delivery) and multiplexed

• tissue-specific promoters for tissue-specific RNAi
• similar applications as siRNA

miRNA • triggers RNAi
• requires only partial complementarity to mRNA; thus can 

modulate multiple mRNAs

• delivery of hypoxia-upregulated miRNA to induce angiogenesis
• delivery of anti-inflammatory miRNA to attenuate atheroscle-

rosis

ASO • can trigger RNAi or alternative splicing of mRNA
• can achieve similar in vivo RNAi as siRNA
• because ASOs are single-stranded, may be simpler and less 

costly than siRNA (double-stranded)

• similar applications as siRNA
• alternative splicing; e.g., re-inclusion of normally excluded 

exons to rescue deficient protein expression
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95, 96] endothelial cells, these reports have primarily uti-
lized reporter mRNAs (e.g., luciferase, Cre recombinase) 
and not therapeutic mRNAs in disease models. This may be 
due to several reasons, including: the field of LNP-mediated 
mRNA delivery to endothelial cells is still being developed, 
the need for sustained transgene expression in chronic dis-
eases that affect the endothelium necessitates alternative 
vectors, and the current challenge of delivering mRNA to 
non-hepatic tissues. Another recognized challenge is the 
limited tropism of current LNPs that may limit the capac-
ity to deliver mRNA to endothelial cells within multiple or 
specific organs (e.g., heart, aorta), which may be required to 
combat systemic diseases. While mRNA results in transient 
protein expression (~ 1 wk), there are still applications that 
may benefit from an acute intervention that engenders long-
term, therapeutic effects [97]. Due to the lack of reports of 
direct therapeutic mRNA delivery to endothelial cells, this 
section will focus on applications in which endothelial cell 
behavior is modulated by mRNA delivery to treat disease 
in vivo.

Szőke et al. developed an mRNA-LNP for the treatment 
of lymphedema, which may arise due to injury to the lym-
phatic vessels. A single intradermal injection of VEGF-C 
mRNA-LNPs induced proliferation of lymphatic endothe-
lial cells and reduced limb swelling in a genetic model of 
lymphedema [98]. While the initial transfection was not spe-
cific to lymphatic endothelial cells, local transfection likely 
led to VEGF-C secretion that acted on proximal lymphatics. 
Intradermal delivery of VEGF-A mRNA enhanced oxygena-
tion and accelerated wound healing in a mouse model of 
diabetic wounds [99].

Aging can lead to blindness due to abnormal growth of 
new blood vessels. An important source of VEGF in the eye 
are retinal pigment epithelial cells. Ling et al. subretinally 
injected CRISPR/Cas9 mRNA, packaged inside lentivirus, 
against Vegfa, which led to knockout of Vegfa in the retinal 
pigment epithelium and reduced the burden of laser-induced 
choroidal neovascularization [100].

Direct injection of mRNA into murine hearts led to 
robust transfection of endothelial cells, cardiomyocytes, 
and smooth muscle cells. Interestingly, mRNA encoding 
VEGF-A improved survival in a mouse model of myocardial 
infarction more efficiently than DNA. This was attributed 
to sustained, DNA-mediated VEGF-A expression leading 
to greater vascular leakage and highlights the advantage of 
acute transgene expression afforded by mRNA in certain 
applications [101].

In addition to gene knockout, mRNA delivery of base 
editors could be deployed to install single-nucleotide edits. 
Base editor delivery to endothelial cells have yet to be 
described, but have been applied to other organ systems. 
Villiger et al. delivered the SaKKH-CBE3 base editor in 
mRNA form using LNPs, which installs a therapeutic C-to-T 

genetic change to correct a pathogenic mutation in Pahenu2 
mice hepatocytes [102]. LNPs can also facilitate homology-
directed repair for genetic editing of longer DNA sequences. 
Farbiak et al. delivered Cas9 mRNA, sgRNA, and template 
DNA intratumorally and observed in vivo editing of tumor 
fluorophore expression (103).

Self‑Amplifying RNA (saRNA)

As their name suggests, saRNA are able to propagate 
through encoding of a viral replicase. Within the saRNA 
are sequences that encode for replicase components, a sub-
genomic promoter, and a gene of interest downstream of 
the promoter. When saRNA (positive strand) is delivered, 
replicase is translated that makes complementary saRNA 
(negative strand), which then acts as a template for replicase 
to synthesize either more positive strand saRNA or gene of 
interest RNA [104]. Amplification of both positive strand 
saRNA and gene of interest RNA therefore enables greater 
protein expression at significantly reduced doses compared 
to normal mRNA [105].

The inherent immunogenicity of saRNA has led to their 
predominant application in vaccines. saRNA is considered 
a self-adjuvant due to activation of interferon responses 
[106, 107]. Indeed, lower doses of saRNA are able to elicit 
greater antibody titers compared to higher doses of DNA 
[108]. There is currently considerable interest in developing 
saRNA for COVID, rabies, and cancer vaccines, with many 
active clinical trials [109, 110]. Non-vaccine applications 
remain to be developed, although alternative vectors with 
reduced immunogenicity may be preferred over saRNAs.

Circular RNAs (circRNAs)

Endogenous circRNAs play various roles in regulating gene 
expression, which may motivate new therapeutic applica-
tions. circRNAs can act as miRNA “sponges,” and by acting 
as decoy binding sites to miRNA, they can enable greater 
expression of miRNA targets that are otherwise degraded. 
For example, ciRS-7 (cirRNA sponge for miRNA-7) is 
highly expressed in human and mouse brains and contains 
multiple sites for miRNA-7 binding, which does not cause 
ciRS-7 degradation. Cells expressing ciRS-7 exhibited 
reduced knockdown of known targets of miRNA-7, SNCA, 
EGFR, and IRS2, compared to empty vector cells [111]. 
Another circRNA that also binds to miRNA-7, CDR1as, 
is highly expressed in the brain along with miRNA-7. In 
cultured cells, knockdown of CDR1as resulted in increased 
knockdown of miRNA-7 targets [112].

circRNA can also regulate gene expression through 
interactions with proteins. As an example, circANRIL (cir-
cular antisense non-coding RNA in the INK4 locus) binds 
to PES1, a protein which impairs ribosome formation and 



8 Pharmaceutical Research (2023) 40:3–25

1 3

triggers apoptosis and reduces proliferation. This particular 
pathway may be important in protection against atheroscle-
rosis [113].

Recently, synthetic circRNAs have been developed to 
enhance stability against exonucleases and prolong expres-
sion of delivered genes. In vitro, circRNA exhibited greater 
and longer luciferase activity compared to modified and 
unmodified linear mRNA [114], providing evidence for 
the enhanced stability of circRNA. Moreover, unmodified 
circRNA exhibits reduced immunogenicity compared to 
unmodified linear mRNA; in vivo, local injection of LNPs 
delivering hEpo-encoding circRNA resulted in a greater pro-
portion of serum hEpo (~ 50%) at 42 h relative to levels at 
6 h compared to linear, modified mRNA (~ 20%) [115]. A 
recent report designing and optimizing circRNAs observed 
durable hEpo expression in mice up to 96 h using circRNA, 
whereas hEpo expression decreased after 24 h using mRNA 
[116]. Engineering and delivery of circRNA is a develop-
ing research area; ostensibly, strategies described to deliver 
DNA and mRNA to endothelial cells could be deployed 
using circRNAs in which stable expression is required.

Small Interfering RNA (siRNA)

siRNA has enabled tailorable and precise gene silencing 
of target mRNA. Synthetic siRNA is typically delivered 
as a duplex comprising a sense and antisense strand. Once 
in the cytoplasm, siRNA complexes with RNA interfer-
ence (RNAi) enzymes, during which the passenger strand 
is degraded and the mature RNA-induced silencing com-
plex (RISC) forms. This RISC is now capable of degrading 
mRNA that is recognized by the guide strand [117–119]. 
Gene knockdown can be long-term, persisting for approxi-
mately a month in humans [64, 120]. Endothelial gene 
targets for siRNA therapy in various disease contexts are 
reviewed here.

Delivery of siRNA against VEGFR-1, DLL4, or CD31 
to pulmonary endothelium reduced tumor and metastases 
burden in a model of lung cancer [121–123]. Silencing of 
angiopoietin-2 in lung endothelium improved lung function 
and survival, and had distal renoprotective effects in mouse 
models of sepsis [124]. Broad delivery of CD31, but not 
Tie2, siRNA to endothelial cells reduced tumor burden in 
an orthotopic prostate cancer model [125]. Systemic deliv-
ery of VEGFR-2 and PLXDC1 siRNA to tumor endothe-
lium reduced tumor burden [126, 127], and STAT3 siRNA 
directed to bone marrow endothelium in a model of bone 
metastasis prolonged survival in tumor-bearing mice [128].

In an acute, LPS-induced mouse model of inflamma-
tion, broad delivery to endothelial cells of siRNA against 
NF-κB p65 (RelA) reduced inflammation in kidney tissue 
[129]. During ventilator-induced lung inflammation, deliv-
ery of calpain-1 siRNA to pulmonary endothelium reduced 

polymorphonuclear neutrophil infiltration into bronchoalve-
olar lavage fluid, an indicator of inflammation [130]. siRNA 
knockdown of ICAM-1 in cardiac microvascular endothe-
lial cells attenuated cardiac infarct size and fibrosis, and 
improved cardiac function after myocardial ischemia–rep-
erfusion injury [131]. Similarly, simultaneous delivery of 
siRNA against ICAM-1, ICAM-2, VCAM-1, E-selection, 
and P-selectin to endothelial cells attenuated inflammation, 
immune cell infiltration, and aortic plaque development in 
an accelerated inflammation model [132].

Delivery of VEGFR-2 siRNA to endothelial cells in a 
model of portal hypertension reduced the severity of patho-
logical angiogenesis, portosystemic collateralization, and 
collateral blood flow [133]. In a similar application, COX-1 
siRNA, delivered to liver sinusoidal endothelial cells, also 
reduced portal pressure in  CCl4-induced cirrhotic mice [134].

During a mouse model of high-cholesterol diet-induced 
atherosclerosis, delivery of siRNA against LOX-1 to the 
aortic endothelium attenuated plaque development and 
macrophage infiltration [135].

In a dexamethasone-induced murine model of ocular 
hypertension, an intracameral injection of siRNA against 
tricellulin led to reduced tricellulin and ZO-1 expression 
in Schlemm’s canal endothelial cells and reduced intraocu-
lar pressure [136].

Short Hairpin RNA (shRNA)

shRNA, also used for RNAi therapy, comprises a duplexed 
passenger and guide strand “stem” region connected via 
a short linker “loop” and causes degradation of target 
mRNA. Similar to siRNA, shRNA complexes with RNAi 
enzymes during which the passenger strand and loop 
region are removed, forming the RISC [117]. An advan-
tage of shRNA over siRNA is its ability to be encoded 
in a DNA vector, enabling “all-in-one” simultaneous 
knockdown(s) and transgene expression in a single vector 
[137, 138]. DNA encoding also enables viral transduction 
of shRNA for durable knockdown and engineered pro-
moters for tissue-specific shRNA expression (138–141). 
Here, reports delivering shRNA to the endothelium with 
an observed in vivo effect are described.

In a mouse model of atherosclerosis, delivery of DNA 
encoding RAGE-shRNA to activated endothelial cells 
reduced the burden of atherosclerotic plaques and circulat-
ing inflammatory cytokines [142]. Similarly, viral delivery 
of PTP1B or METTL3 shRNA to aortic endothelium miti-
gated the development of atherosclerotic lesions in models 
of atherosclerosis [143, 144]. Knockdown with PDGF-A 
shRNA in the aortic endothelium of diabetic mice overex-
pressing BMP4 (an inflammatory cytokine upregulated in 
atherosclerotic plaques) improved endothelial-dependent 
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relaxation [145]. Viral transduction of TPRM2 shRNA in 
aortic endothelial cells improved aortic vasorelaxation in 
obese mice [146].

In an interesting study, Stimac et al. compared the tumor-
killing efficiency of endoglin shRNA with either a constitu-
tive or endothelial cell-specific promoter. While both vari-
ants dampened tumor growth and induced significant tumor 
necrosis in vivo, there were no statistically significant differ-
ences in performance between the two variants [141].

Viral transduction of ATG7 shRNA, with expression con-
strained to retinal vasculature, protected against endothelial 
dysfunction in a model of diabetic retinopathy [140].

Knockdown with salusin-β shRNA in the coronary, pul-
monary, and mesenteric arteries of a rat model of chronic 
heart failure improved cardiac function and vascular 
remodeling [147].

MicroRNA (miRNA)

miRNA presents another strategy for RNAi, and is processed 
within the cell nucleus from a larger, stem-loop structure 
(primary miRNA) into a smaller structure (pre-miRNA) 
that is exported into the cytoplasm [148, 149]. There, the 
pre-miRNA is further processed into double-stranded 
miRNA, and during loading onto the miRNA-induced RISC 
(miRISC), the passenger strand is discarded [148, 149]. The 
miRISC is now capable of repressing translation of mRNA 
recognized by the guide strand. A key feature of miRNA 
over siRNA is that miRNA needs only partial complemen-
tarity to mRNA to facilitate RNAi. Indeed, a single miRNA 
sequence can modulate multiple mRNAs [150]. Here, some 
applications of therapeutic miRNA delivery to the endothe-
lium are reviewed.

Delivery of miRNA-210, a miRNA that is physiologically 
upregulated during hypoxia and induces angiogenesis, to 
cerebral vascular endothelial cells led to increased VEGF 
mRNA levels, angiogenesis, and animal survival in a mid-
dle cerebral artery occlusion mouse model [151, 152]. In 
another therapeutic application of ischemia injury, delivery 
of miRNA-126-3p to endothelial cells in ischemic muscle 
augmented blood flow and vessel density in a model of 
chronic ischemia [153]. Mechanistically, miRNA-126-3p 
represses negative regulators of VEGF signaling.

miRNA-146a and miRNA-181b were hypothesized to be 
protective in a model of high-fat diet-induced atherosclero-
sis, due to their anti-inflammatory effects. While miRNA 
delivery was shown in ex vivo, and not in in vivo aortas, the 
report utilized a thioaptamer that had been described to rec-
ognize E-selectin that is expressed on inflamed endothelium 
after intravenous administration [128]. In vivo treatment 
with either miRNA-146a or -181b reduced plaque forma-
tion and macrophage infiltration [154].

In a wound-healing application, outgrowth endothelial 
cells (OECs) were first loaded with miRNA-155-5p and 
miRNA-302a-3p, which promote endothelial survival dur-
ing hypoxia and cell proliferation, and then transplanted 
into wounds. The miRNAs were immobilized onto gold 
nanorods, and release of each miRNA was triggered by 
laser irradiation at different settings. Interestingly, release 
of miRNA-302a-3p first, followed by release of miRNA-
155-5p, accelerated healing compared to unloaded cells and 
the reverse miRNA release order [155].

During asthma, miRNA-1 dampens eosinophil recruit-
ment by suppressing the expression of inflammation- and 
adhesion-related receptors. Here, miRNA-1 delivery was 
achieved using a lentivirus, and a VE-cadherin promoter 
was used for endothelial-specific miRNA-1 expression. In 
a model of asthma, intranasal delivery of this lentivirus 
reduced eosinophil infiltration, airway inflammation, and 
airway resistance [156].

miR-20a modulates multiple pathways including angio-
genesis and DNA synthesis and replication, and is signifi-
cantly downregulated in liver sinusoidal endothelial cells 
(LSECs) during liver cancer. Targeted delivery of miR-20a 
to LSECs significantly reduced liver tumor burden in a 
model of colorectal cancer liver metastasis [157]. During 
certain forms of liver injury, miRNA-30c, which modulates 
LSEC proliferation, migration, and angiogenesis, is down-
regulated. Delivery of miRNA-30c to LSECs significantly 
attenuated liver fibrosis [158].

Antisense Oligonucleotides (ASOs)

ASOs are synthetic, single-stranded oligomers capable of 
gene suppression or mRNA transcript modulation [159]. 
To suppress gene expression, “gapmer” ASOs are generally 
designed to contain a DNA segment flanked by RNA-based 
segments that are complementary to the mRNA target of 
interest. RNASEH1, which recognizes RNA–DNA heter-
oduplexes, catalyzes the degradation of the cognate mRNA 
after ASO hybridization [159, 160]. To facilitate transcript 
modulation, ASOs are engineered to recognize specific 
exons but not trigger the RNASEH1 response. Rather, 
the hybridized ASO acts as a steric “block” that causes 
alternative splicing of mRNA to exclude or include exons 
[159, 161]. Clinically approved ASOs include inotersen 
and nusinersen; notably, these ASOs are injected without 
the use of nanoparticle delivery systems.

In terms of gene inhibition, both siRNAs and ASOs can 
have similar in vivo efficiency when optimized [162]. Clini-
cal production of ASOs, which are single-stranded, may 
be simpler and less costly compared to double-stranded 
siRNAs. The capacity to incorporate synthetic bases may 
also augment the stability and half-life of ASOs [159, 163]. 
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Here, ASOs with a therapeutic effect via modulating genes 
in endothelial cells are reviewed.

ICAM-1 is upregulated during inflammation on endothe-
lial cells and utilized by immune cells to interact with and 
extravasate from the endothelium [164]. Intravenous infu-
sion of ASOs against ICAM-1 reduced ICAM-1 expres-
sion in kidney endothelium and protected renal function 
subjected to ischemia injury alone or in combination with 
transplantation [165, 166]. Similarly, administration of 
an ICAM-1 ASO alone and in combination with an anti-
LFA monoclonal antibody prolonged allograft survival in a 
mouse model of heart transplantation [167]. Ex vivo knock-
down of endothelin-1, which is expressed in endothelial 
cells, reduced the burden of graft coronary artery disease in 
a rat model of allograft [168].

Direct injection into the anterior chamber of the eye 
of siRNA or ASOs against Cx43 resulted in reduced 
Cx43 expression in the corneal endothelium and accel-
erated healing after scrape injury [169]. Notably, both 
siRNA and ASO molecules performed equally well in 
this model.

In an interesting approach, direct delivery of PDGF 
ASO to the coronary endothelium using ASO-coated stents 
significantly inhibited restenosis in a porcine model [170].

While ASOs have been extensively developed to 
silence gene targets in endothelial cells, their use for 
alternative splicing in these cells has not been as widely 

described. As such, we will highlight the FDA-approved 
ASO nusinersen, which mediates therapeutic RNA 
splicing to treat spinal muscular atrophy; other splice-
inducing ASOs are discussed in greater depth in these 
reviews [171, 172]. During normal conditions, SMN1 is 
the principal source of SMN protein. While there is a 
second SMN2 gene, it contains a C > T mutation in exon 
7 that leads to exclusion of this exon and an unstable 
protein product [173]. Mutations in SMN1 can disrupt 
survival motor neuron (SMN) protein expression, lead-
ing to spinal muscular atrophy. The therapeutic goal of 
nusinersen was to reinclude exon 7 in SMN2 transcripts, 
thereby leading to functional SMN protein translation. 
This was achieved by designing the ASO to hybridize 
with SMN2 at a site that blocks RNA-binding of hnRNP, 
which normally represses exon 7. Blocking this repres-
sor therefore promotes inclusion of exon 7 and rescue of 
SMN protein expression via SMN2 [174].

Strategies to Direct Lipid Nanoparticles 
to Endothelial Cells

Various chemical and non-chemical methods have been 
developed to deliver LNPs into endothelial cells of various 
organ systems. This section will review these strategies and 
a summary is presented in Table II.

Table II  Strategies and Compositions to Mediate Nucleic Acid Delivery to Endothelial Cells

Strategy Major Targeting Component Organ/Tissue Targeted Example Refs

formulating nanoparticles with cationic lipids or 
polymers

7C1 lipid-polymer lung, heart, kidney, liver, spleen [94, 121, 175]
poly(β-amino esters) lipid-polymer lung [91, 176]
poly(amido amine) or poly(propylenimine) 

lipid-dendrimers
lung, liver [177, 178]

AtuFECT01 lipid lung, heart, liver [122, 179]
DMAPAP lipid activated endothelium [142, 180]
DDAB lipid lung [130, 181]
EPC lipid lung [181]
DOTAP lipid lung [181, 182]

anchoring targeting ligands to nanoparticle surface GALA peptide lung [123]
mannose liver [93]
PECAM-1 antibody lung [96]
PV1 antibody lung [183]
VCAM-1 antibody activated endothelium [129]
P-selectin peptide activated endothelium [142, 180]
chondroitin sulfate liver [157]

incorporation of helper lipids or cholesterol to 
nanoparticle formulations

anionic DSPG liver [184]
oxidized cholesterol liver [185]

mechanically directing nanoparticles to vessel wall mechanical stent local delivery (iliac artery) [82]
ultrasound-targeted microbubble destruction DSTAP lipid hindlimb muscle [153]
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Cationic Lipids

Intravenous administration of lipid nanoparticles has been 
the most common route to deliver therapeutic genes to 
endothelial cells, as these cells are located in the inner sur-
face of blood vessels and are in direct contact with the blood. 
However, when nanoparticles enter the blood circulation, 
they are often eliminated by cells of the reticuloendothelial 
system or preferentially transfect hepatocytes, which pre-
vents nanoparticles from reaching and transfecting endothe-
lial cells [69, 94, 186–189]. As such, strategies have been 
developed to bypass hepatocytes in order to reach and trans-
fect endothelial cells. Among the strategies developed, the 
use of cationic lipids or polymers to generate nanoparticles 
that target endothelial cells has made considerable progress. 
Dorkin et al. showed that incorporation of the permanently 
cationic lipid, DOTAP, to LNPs that otherwise target the 
liver could be redirected to transfect pulmonary endothelial 
cells [182]. Dorkin et al. also found that liver-targeted lipid 
nanoparticles, which are nanoparticles that preferentially 
transfect hepatocytes on their own, specifically C12-200, 
cKK-E12, and 503O13 nanoparticles, could have a shift in 
their tropism and transfect pulmonary endothelial cells by 
incorporating the lipid DOTAP in their formulation [182]. 
This finding was later expanded by Cheng et al. to include 
additional cationic lipids, such as DDAB and EPC, to other 
liver-targeted nanoparticles like 5A2-SC8 and DLin-MC3-
DMA to enable transfection of pulmonary endothelial cells 
[181]. The mechanism by which these nanoparticles target 
and deliver nucleic acids to the lung may be due to asso-
ciation with a protein or group of proteins that binds to the 
surface of the nanoparticles and selectively delivers them to 
the pulmonary endothelium [95, 190]. For example, lipid 
compositions can shift the protein corona abundance away 
from ApoE, which is a recognized driver of hepatocyte LNP 
uptake and transfection [191].

Knowing that lipid nanoparticles can be directed to the 
pulmonary endothelium by introducing cationic lipids in 
their formulation established one of the first rational design 
strategies to target endothelial cells. This finding could 
accelerate the production of targeted nanoparticles to the 
endothelium, as most nanoparticles generated prior to this 
discovery were fabricated with lipids obtained from tedious 
library screens or novel chemical synthesis. Coincidentally, 
most lipids generated through those approaches turned out to 
be cationic. AtuFECT01, for example, is a cationic lipid that 
was derived from a novel chemical synthesis that was used 
to formulate nanoparticles with siRNA to knockdown genes 
of endothelial cells [179]. The nanoparticles made with the 
AtuFECT01 lipid were capable of transfecting endothelial 
cells in various organs, including the lung, heart, and liver 
[179]. These nanoparticles were later optimized to become 
selective to pulmonary endothelial cells by increasing the 

amount of AtuFECT01 lipid and introducing cholesterol in 
their formulation [122].

Another cationic lipid that was derived from a library 
screen and used in the formulation of siRNA containing 
nanoparticles to target endothelial cells is 7C1 [121, 175]. 
This lipid, which was obtained from the conjugation of alkyl 
chains to low molecular weight polyethylenimine (PEI), 
formed nanoparticles that were highly selective for endothe-
lial cells of mice and non-human primates, and was capable 
of transfecting the endothelium of various organs, including 
the lung where they had the highest transfection efficiency 
[121, 175]. These 7C1 nanoparticles were later optimized 
to deliver Cas9 mRNA and sgRNA to splenic endothelial 
cells [94]. Khan et al. and Kaczmarek et al. similarly derived 
cationic lipids from library screens that generated nanopar-
ticles capable of transfecting endothelial cells in vivo [91, 
176, 178]. Khan et al. derived a lipid from the conjugation 
of alkyl chain to branched PEI that delivered siRNA to pul-
monary endothelial cells, while Kaczmarek et al. derived 
a poly(β-amino ester)-based lipid that delivered mRNA to 
the lung endothelium [91, 176, 178]. Constantinescu et al. 
and Cao et al. also utilized DMAPAP and DSTAP cationic 
lipids for nucleic acid delivery to endothelial cells, and more 
recently, Qiu et al. synthesized a library of lipids to dem-
onstrate that lipids containing an amide bond linker formed 
nanoparticles that selectively delivered mRNA to the lung, 
as opposed to lipids containing an ester bond linker which 
formed nanoparticles that targeted the liver [95, 153, 180]. 
Lastly, lipofectin, which is a commercially available reagent 
containing cationic lipids, has been used to enhance delivery 
of ASOs to vascular cells in vivo [165, 166].

Targeting Ligands

Lipid nanoparticles have also been modified with targeting 
motifs on their surface or through the addition of choles-
terol or non-cationic helper lipids in order to enable and 
improve selectivity for endothelial cells. Since endothelial 
cells express unique surface molecules such as sugars and 
proteins, lipid nanoparticles have been coated with mole-
cules that target endothelial surface molecules. For example, 
Kusumoto et al. developed a lipid nanoparticle coated with 
GALA peptides on their surface to selectively target pul-
monary endothelial cells [123]. The GALA peptides were 
capable of directing the nanoparticles to endothelial cells 
by targeting the sialic acid-terminated sugar chains on the 
pulmonary endothelium, which subsequently delivered the 
encapsulated nucleic acids to the endothelial cytosol via 
endosomal membrane fusion [123].

Similarly, Kim et al. reported that the addition of man-
nose to lipid nanoparticles enabled selective RNA delivery 
to liver sinusoidal endothelial cells, as mannose receptors 
are preferentially expressed in the liver endothelium and 
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therefore nanoparticles containing mannose on their surface 
would be scavenged by liver endothelial cells [93]. In the 
same form, Parhiz et al. and Marquez et al. demonstrated 
that the addition of PECAM-1 antibody or chondroitin sul-
fate allowed the selective delivery of LNPs to endothelial 
cells by targeting proteins ubiquitously expressed on the 
endothelium [96, 157].

Other reports have demonstrated that the addition of anti-
bodies or binding peptides that target adhesion proteins on 
an activated endothelium directs LNPs to endothelial cells 
from different organs. One example of such work was pro-
duced by Kowalski et al. who showed that addition of anti-
VCAM-1 antibodies to the surface of SAINT-O-Some lipid 
nanoparticles facilitated the delivery of siRNA to inflamed 
renal endothelial cells [129]. In the brain, nanocarriers func-
tionalized with antibodies that recognize VCAM-1 success-
fully delivered thrombomodulin (TM)-encoding mRNA 
and mitigated TNFα-induced cerebral edema in a rat model 
[192]. Uptake of anti-VCAM-1 immunoliposomes was fur-
ther evaluated in cultured ECs and reported to occur via 
clathrin-mediated endocytosis [193]. Li et al. leveraged the 
fact that endothelial cell membranes in lung capillaries are 
enriched for caveolae. Modification of LNPs with an anti-
body that recognizes PV1, a caveolae-associated protein, 
significantly augmented lung mRNA delivery and transgene 
expression (183).

For adenovirus, one strategy is to utilize bispecific anti-
bodies that recognize a virus domain for antibody attach-
ment (e.g., knob, capsid) and angiotensin-converting enzyme 
(ACE), which has been extensively for adenovirus vectors 
to deliver nucleic acids to pulmonary endothelial cells 
[194–198]. Using this scheme, Morecroft et al. observed 
50-fold higher pulmonary endothelial luciferase expression 
and an 87% reduction in liver expression of ACE-conjugated 
adenovirus compared to non-targeted vectors [194]. Simi-
larly, adenovirus delivery of ACE-targeted endothelial nitric 
oxide synthase (AdeNOS) to the carotid artery of stroke-
prone hypersensitive rats significantly reduced blood pres-
sure compared to untargeted virus, underscoring the biologi-
cal efficacy of retargeting of viruses to ACE [195].

Protein Considerations: Intra‑ versus Extracellular 
Delivery

When using targeting ligands to direct nanoparticles to the 
endothelium, it is important to recognize that endothelial 
cells have different internalization efficiencies depend-
ing on the type of molecule targeted and composition of 
the targeting ligand. For example, endothelial cells effi-
ciently internalize antibodies that recognize ACE [199] 
but poorly internalize single PECAM-1 antibodies [200, 
201]. The uptake of PECAM-1 antibodies, however, can 
be enhanced by conjugation of biotin with streptavidin and 

are transported intracellularly through an epitope-specific 
pathway [201–203]. Similarly, conjugates utilizing antibod-
ies that bind to ICAM-1 are endocytosed at higher levels 
than conjugates targeted to PECAM-1, and their internaliza-
tion efficiency can be tuned by adjusting conjugate size and 
shape. However, the conjugates must be multimeric because 
monomeric versions are not internalized by endothelial cells 
[204–206]. In general, while free antibodies targeted to 
adhesion molecules of endothelial cells are not readily inter-
nalized by the endothelium, functionalization with multiple 
antibodies (i.e., multivalency) improves endothelial targeting 
to the lung, particularly to nanoparticles with a diameter of 
100 nm and above [207].

The poor internalization of monovalent PECAM-1 anti-
bodies has been capitalized for other applications to anchor 
extracellular protein therapeutics within the endothelial 
lumen. TM fused with a monovalent single chain variable 
fragment (scFv) of PECAM-1 antibody and urokinase plas-
minogen activator (scFv/uPA) augments thrombin activity 
and biodistribution to pulmonary vasculature compared to 
soluble TM in a mouse model of acute lung injury [208]. 
This targeting capability was further improved in another 
study where endothelial targeting of scFv/TM to ICAM-1 
facilitated ∼15-fold greater activated protein C (APC) lev-
els than its PECAM-1-targeted counterpart. This increased 
activity may be due to the proximity of ICAM-1 to EPCR, 
which is exposed in the apical membrane and a key cofactor 
of TM/APC [209].

Biomechanical Factors

Biomechanical factors, such as blood flow, along with car-
rier physical properties and mode of internalization, can also 
influence targeting and uptake efficiencies by endothelial 
cells. It has been demonstrated that blood flow encourages 
the uptake of spherical antibody nanocarriers by endothe-
lial cells in the absence of stress fiber formation, but actin 
stress fiber development and endothelial alignment with flow 
reduces uptake of nanocarriers functionalized with anti-
bodies that recognize PECAM-1 and ICAM-1 [200, 210, 
211]. This phenomena should be considered when direct-
ing nanoparticles to selective blood vessels in the body, as 
endothelial cells in the arterial vasculature elongate during 
adaptation to high rates of unidirectional flow and capillary 
endothelial cells exposed to low or oscillating flow obtain 
morphology that is similar to cultured endothelial cells. This 
means that targeted nanocarriers will have lower levels of 
nanoparticle internalization in arterial relative to capillary 
vessels due to the cell structure [200].

Carrier geometry also influences endothelial targeting 
and the rate of endocytosis and lysosomal transport within 
endothelial cells. For example, elliptical disk-shaped carriers 
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have higher specificity in vivo than those with a spherical 
shape, but have lower endocytic efficiencies [212]. Avoid-
ance of the reticuloendothelial (RES) system can be achieved 
by rod-shaped particles containing anti-ICAM-1 antibodies 
by taking advantage of the cellular hitchhiking effect [213]. 
Similarly, circulation time is affected by the geometry of 
the carrier and its alignment with flow, as it has been dem-
onstrated that filomicelles that are long and flexible have 
longer circulation time periods than those that are small and 
rigid [214]. The size of the carrier and mode of internali-
zation also affects targeting and intracellular trafficking, as 
micron-size carriers have longer residency in pre-lysosomal 
compartments, while sub-micron carriers are transported to 
lysosomes more readily [212]. Nanoparticles coated with 
anti-ICAM-1 antibodies have been found to enter cells via 
endocytosis that bypasses the clathrin-dependent pathway to 
reach lysosomes, while PLVAP-targeted nanoparticles can 
be internalized by endothelial cells to reach caveola-derived 
endosomes through dissociation from caveolin-containing 
vesicles [215–217].

Endothelial State and Carrier Interactions

The location of the target protein (e.g., ICAM-1) within the 
cell membrane, coupled with the mechanical properties of 
the carrier and disease alterations, can contribute to dis-
tinct delivery efficiencies when targeting endothelial cells. 
For example, while rigid nanocarriers with a diameter of 
100 nm or greater can readily target adhesion molecules on 
endothelial cells such as ICAM-1, these same nanoparticles 
cannot target surface proteins in the endothelial caveolae, 
since the cutoff size to enter this area is about 50 nm [207, 
218, 219]. Flexible nanoparticles have been demonstrated to 
reach endothelial caveolae even if their diameter is greater 
than 50 nm due to their mechanical deformability [218]. 
Overexpression of adhesion molecules during diseases, par-
ticularly during inflammation, can improve the delivery of 
nanocarriers to endothelial cells. ICAM-1 expression, for 
example, has been shown to be enhanced during systemic 
inflammation and improve the delivery of ferritin and poly-
styrene nanocarriers to pulmonary endothelial cells in mice 
[211, 220, 221].

APN and TEM-1 are also endothelial proteins that are 
upregulated in tumor microenvironments and could be tar-
geted for the delivery of nanoparticles to endothelial cells 
for the treatment of cancer [221]. However, it is worth not-
ing that the targeting ligand used for directing nanoparticles 
to the endothelium should be carefully selected to ensure 
it will not interfere with important biological functions of 
endothelial cells and induce adverse side effects. For exam-
ple, the monoclonal antibody 273-34A enables liposomal 
delivery to the lung endothelium when conjugated to the 
surface of the particles by targeting thrombomodulin, which 

is a protein primarily expressed on the luminal surface of 
endothelial cells [221–225]. Similar antibodies have shown 
effective intracellular or surface delivery of nanoparticles 
to endothelial cells by targeting thrombomodulin [226]. 
However, thrombomodulin is a receptor of thrombin and, 
in combination with the plasma protein C, this protein con-
verts thrombin into an anticoagulant enzyme. Therefore, 
antibodies targeted to thrombomodulin may interfere with 
the coagulation cascade and pose a risk of inducing throm-
bosis, making those antibodies unattractive for nanoparticle 
targeting [217, 221].

Mechanical and Non‑Cationic Lipid Methods

Beyond the use of targeting ligands, additional techniques 
have been implemented to deliver lipid nanoparticles to 
endothelial cells, such as the incorporation of cholesterol 
or non-cationic helper lipids into the formulation of LNPs. 
Paunovaska et al. recently reported that replacement of 
unmodified cholesterol with oxidized cholesterol from the 
formulation of cKK-E12 nanoparticles produced a five-fold 
improvement in the delivery of mRNA to liver endothe-
lial cells [185]. Similarly, Pattipeiluhu et al. reported that 
replacement of neutral DSPC with anionic DSPG in the for-
mulation of patisiran nanoparticles significantly enhanced 
transfection of liver endothelial cells [184]. Other strate-
gies that have been reported to augment or facilitate trans-
fection of endothelial cells are the use of larger diameter 
nanoparticles to prevent nanoparticle elimination from the 
circulation or the use of mechanical stents to locally deliver 
nanoparticles to the surface of blood vessels. Kim et al. and 
Khan et al. reported that nanoparticles with larger diameter 
sizes preferentially transfected liver endothelial cells over 
hepatocytes, likely because the nanoparticles were not fil-
tered through the fenestrations of the liver vasculature, while 
Brito et al. reported that lipid nanoparticles immobilized on 
a stainless-steel stent achieved local transfection of endothe-
lial cells [82, 93, 177].

Navigating Intracellular Delivery

There are many extra- and intracellular barriers against 
nucleic acid delivery to endothelial cells; an overview is 
provided here and greater discussion is provided in these 
reviews [227, 228]. As discussed above, functionalization 
of LNPs with antibodies or specific lipids can mediate func-
tional mRNA delivery to the lung endothelium [96]. Size, 
shape, and ligand avidity also contribute: 200–250 nm, but 
not 600–700 nm, PECAM-1 antibody-functionalized mate-
rials successfully delivered functional enzymes into lung 
endothelium; ICAM-1 antibody functionalization enhanced 
greater selectivity for diseased lung endothelium; and uptake 



14 Pharmaceutical Research (2023) 40:3–25

1 3

of antibody-functionalized spheres was more efficient than 
polymorphous shapes [204, 205, 229].

After endocytosis, LNPs are then sequestered and traf-
ficked into early endosomes, which acidify and mature 
into endolysosomes where LNPs are either exocytosed or 
degraded. Endosomal escape before lysosomal maturation 
is thus essential for successful nucleic acid delivery and 
is a major obstacle against delivery: < 2% of administered 
LNPs containing siRNA achieves endosomal escape [230]. 
While the “proton sponge” effect is thought to mediate endo-
somal lysis (due to buffering and water flux) for cationic 
polymers such as PEI [231], Gilleron et al. posit that their 
findings do not support this hypothesis for LNP delivery of 
siRNA [230]. Another suggested mechanism is that endo-
somal acidification drives protonation of the ionizable lipid. 
Now cationic, these lipids can interact with the lipids of the 
endosomal bilayer, disrupting and destabilizing the bilayer 
and enabling nucleic acid release [230, 232, 233]. Choles-
terol may also contribute: replacement of cholesterol with 
β-sitosterol augments endosomal escape [234].

While most of the nucleic acids discussed earlier are 
active after cytoplasmic delivery, DNA further requires 
nuclear transport to be active. In addition to the peptide strat-
egies discussed earlier, inclusion of binding site sequences 
can facilitate recruitment of transcription factors, which 
contain nuclear localization signals for nuclear entry [72].

Clinical & Translational Perspectives

While LNPs encapsulating nucleic acids have successfully 
been translated into the clinic, many challenges remain in 
their implementation. Here we describe some of these chal-
lenges, highlighting some research efforts and drawing les-
sons from LNPs that are approved or have undergone clinical 
trials to answer them.

Infusion‑Related Reactions

LNP components can be recognized by the immune system 
and activate the complement cascade [235, 236], resulting 
in various infusion reactions. Complement activation-related 
pseudo-allergy (CARPA), which has been associated with 
nanoparticle administration, is thought of as a hypersensi-
tive “systemic stress response” against infused nanoparticles 
[237], and can trigger serious reactions such as hypotension, 
tachycardia, fever, and even death [236, 238]. Therefore, 
understanding and preventing these infusion reactions is 
critical to patient health.

In vivo models that exhibit similar responses as humans 
can enable safety testing of LNP formulations and infusion 
protocols. In particular, pigs are acutely sensitive to nano-
materials and have been a critical model to predict infusion 

reactions in humans [239]. Among other examples, a porcine 
CARPA model was utilized to establish safe infusion pro-
tocols and measure reactogenicity of PEGylated liposomal 
prednisolone [240], and methods are also described in U.S. 
Patent US10246708B2.

One potential strategy to mitigate these responses is 
through pre-dosing with a prophylactic drug cocktail. For 
example, patisiran requires patients to be pre-dosed with 
infusions of dexamethasone, oral acetaminophen/paraceta-
mol, an H2 blocker, and an H1 blocker to mitigate the risk 
of infusion-related reactions (241). Reduction of LNP dose 
as well as infusion rate also mitigates this risk [236]. In 
pigs, administration of complement-inhbiting anti-C5a anti-
body or soluble CR1, or the cyclooxygenase inhibitor indo-
methacin mitigated increases in pulmonary arterial pressure 
caused by liposomes [242].

In an alternative strategy to mitigate CARPA, Wang et 
al. directly conjugated Factor I, which inactivates com-
plement protein C3b, to the surface of liposomes [243]. 
This modification reduced phagocyte uptake of nanoparti-
cles and mitigated CARPA-associated side effects includ-
ing increased circulating leukocytes and hematocrit, and 
cerebral hypoperfusion in mice. In this report, Factor H 
conjugation was also attempted, but the authors reported 
that these liposomes tended to be unstable and aggregate.

Anti‑PEG Antibodies

PEGylated lipids are used in LNP formulation to confer 
steric stability, prevent opsonization, and increase systemic 
circulation time [69, 244]. However, up to 72% of healthy 
blood donors tested positive for anti-PEG antibodies, with 
the prevalence and levels of anti-PEG antibodies increas-
ing with time (compared to historical samples) and patient 
age [245, 246]. The high prevalence of these antibodies 
may be due to the extensive use of PEG in consumer prod-
ucts [247]. Repeat injections of LNPs may therefore result 
in accelerated blood clearance [248, 249]. Interestingly, 
this does not seem to be the case with patisiran, as repeat 
administrations have not resulted in significant differences 
in pharmacokinetics, pharmacodynamics, or efficacy [250, 
251]. This may be due to the pre-dose cocktail or the par-
ticular composition of patisiran. Nonetheless, the increas-
ing trends of anti-PEG antibody prevalence motivates the 
development of alternative materials.

Zwitterionic materials comprise both a cationic and ani-
onic charge, such that the net charge is zero. This endows 
zwitterionic materials with unique properties including 
strong hydration and mimicry of endogenous lipids, both 
of which may mitigate protein adsorption and promote 
immune evasion [252]. Cheng et al. tested the pharma-
cokinetics of native uricase and uricase modified with PEG 
or encapsulated within zwitterionic carboxybetaine-based 
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nanogels. While multiple injections of native or PEG-
modified uricase led to greater rates of clearance, uricase 
encapsulated within zwitterionic nanogels exhibited essen-
tially identical pharmacokinetic profiles compared to the 
first injection [253].

Lessons Learned from Atu027

Atu027 is a formulation of protein kinase 3 (PKN3) siRNA 
packaged inside liposomes that contain the cationic lipid 
AtuFECT01, which mediates nucleic acid delivery to 
endothelial cells [179]. This drug is being investigated for 
its efficacy against solid tumors, because PKN3 knockdown 
may prevent metastasis by reducing vascular leakiness and 
tumor cell migration and tumor lymphangiogenesis and 
hemangiogenesis. Preclinical studies found that Atu027 
reduced metastatic burden in the lung and delayed tumor 
growth in orthotopic models of prostate and pancreatic can-
cer [254, 255].

The first clinical trial (NCT00938574) tested the safety, 
tolerability, and pharmacokinetics/pharmacodynamics of 
Atu027. Patients with advanced solid tumors (n = 34) were 
administered 10 escalating doses ranging 0.001–0.336 mg/
kg without premedication, as a single dose followed by 8 
infusions, twice/week, for 4 weeks. Doses up to 0.336 mg/
kg were generally tolerated, although one patient experi-
enced dose-limiting toxicity (increased lipase). The preva-
lence of adverse events did not correlate with dose, and 
fatigue, increased lipase, and decreased hemoglobin were 
noted as the most common events. Efficacy wise, 41% 
of all treated patients exhibited stabilized disease, with 
one patient exhibited complete regression of a pulmonary 
lesion [256].

A phase Ib/IIa clinical trial (NCT01808638) evaluated 
co-administration of Atu027 with the chemotherapeutic 
gemcitabine; Atu027 was administered either at 0.253 mg/
kg once or twice weekly in patients with advanced or 
metastatic pancreatic adenocarcinoma. Notably, patients 
administered Atu027 twice/week exhibited greater median 
progression-free survival (5.3 months) compared to once/
week (1.8 months). Greater disease control and reduced 
numbers of new lesion formation was also observed in 
patients administered Atu027 twice/week. Grade 3 adverse 
events (82% and 92%, respectively) were reported for each 
arm, although it is unclear if these were due to Atu027 or 
gemcitabine [257].

While these findings are promising and provide a 
rich perspective on tolerated doses and side effects, 
the manufacturer Silence Therapeutics has decided to 
refocus efforts on other platforms due partly to clinical 
trial costs (Silence Therapeutics, 28 March 2017 Press 
Release). No information regarding phase III trials has 
been reported since.

Alternative Administration Routes

Various injection routes and strategies, compatible with 
clinically used catheters and access points, can be lever-
aged to augment nanoparticle concentration in certain tis-
sues and delivery efficiency compared to systemic intra-
venous routes. Combining the effect of local delivery and 
vascular targeting on cerebral delivery, Marcos-Contreras 
et al. found that injection of anti-ICAM-1 liposomes via 
a carotid artery catheter provided a five-fold elevation 
of accumulation in the brain (tracked by intravital real 
time microscopy via cranial window) compared to lev-
els obtained by intravenous injection in mice with acute 
brain inf lammation [258]. Another study compared 
accumulation of radiolabeled anti-PECAM-1 scFv fused 
with urokinase-type plasminogen activator delivered 
intra-arterially to the carotid artery, with data suggest-
ing increased cerebral accumulation of the fusion protein 
by 30% via the arterial route compared to intravenous in 
mice [259]. Scherpereel et al. evaluated local infusion 
of anti-PECAM-1 via a catheter placed in the right coro-
nary artery of pigs that resulted in a fourfold elevation 
of cardiac accumulation of anti-PECAM-1 compared to 
the intravenous route [260]. Therefore, synergizing vascu-
lar immunotargeting and catheter placement may enable 
organ-specific endothelial delivery beyond pulmonary 
endothelium. Further development of methods to prolong 
contact with target endothelial tissue and moving towards 
minimally invasive methods could expedite the translation 
of these strategies.

Summary & Outlook

Endothelial cells are the “gateway” to the organs of the body 
and are significantly involved in cardiovascular disease, dia-
betes, and cancer. Therefore, modulating endothelial gene 
expression could stand to impact and improve major chronic 
diseases. Substantial progress has been made in develop-
ing LNPs for nucleic acid delivery to endothelial cells. A 
major barrier to this field has been hepatic tropism, leading 
to nucleic acid delivery principally to the liver. Here, we 
reviewed major strategies to overcome this barrier: while 
modulation of lipid composition can drive nucleic acid deliv-
ery to pulmonary, splenic, and liver cells, these approaches 
are somewhat limited to these organs. Alternative methods 
have expanded nucleic acid delivery to other sites: incorpo-
ration of cationic lipids or antibodies can enable delivery to 
the endothelium.

The use of cationic lipids may present translational 
challenges due to their recognized toxicity [261]. This has 
motivated the development of ionizable lipids, which are 
conditionally cationic, as well as the use of antibodies and 
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peptides that bind to endothelial-specific receptors through 
molecular recognition rather than non-specific electrostatic 
interactions. Further elucidation of the relationship between 
the protein corona and tissue tropism [190], coupled with 
profiling of tissue endothelial cell surface receptors during 
health and disease, could significantly inform LNP design. 
Moreover, a recent report highlighted the importance of non-
intravenous routes in facilitating nucleic acid delivery to cells 
of the central nervous system [262], which is challenging to 
target from the blood space due to the blood–brain barrier. 
Creative application of alternative routes (e.g., stents, non-
intravenous) with materials chemistry and proteomics could 
further expand the set of targetable tissue vasculature.

Nucleic acid cargos can also offer a degree of spatial 
(which tissues) and temporal (duration) control of gene 
modulation. DNA can be programmed with tissue-specific 
promoters for selective expression; recently mRNA can 
also be endowed with tissue-specific translation [263]. 
Moreover, a combination of designed Cas9 mRNA and 
pre-delivery of a mRNA-inhibiting siRNA to the liver 
can decrease liver gene editing and augment splenic and 
lung endothelial editing [264]. The expression duration of 
mRNA is shorter than that of DNA [101], but both are 
capable of installing durable genetic edits through encod-
ing of CRISPR/Cas9. Other nucleic acid therapeutics, 
siRNA, miRNA, and ASOs exhibit transient modulation 
at the mRNA level; shRNA requires delivery in DNA form 
and therefore can be controlled in a tissue-specific manner 
via promoters. Thoughtful combination of LNP chemis-
try with encapsulated nucleic acids and transcriptional/
translational controls can therefore add multiple layers of 
spatiotemporal control of nucleic acid activity.

Clinical trials and FDA-approved nanoscale therapeu-
tics have informed a range of safe LNP/nucleic acid doses 
in humans. However, infusion-related reactions are not 
uncommon and can be life-threatening [236]. While these 
may be mitigated or obviated with the use of drugs prior 
to LNP administration (as in the case of patisiran), future 
efforts could incorporate zwitterionic materials to promote 
greater immune evasion or directly modify the materials 
with complement-modulating proteins. Screens of new 
lipids could equally consider nucleic acid delivery potency 
and immune activation. The use of porcine models and 
blood, which are particularly sensitive to nanomaterials, 
should be considered for screening and testing of LNP for-
mulations. Careful selection of patient populations can also 
empower statistical analyses of LNP efficacy, although costs 
may be a major factor as in the case of Atu027 development.

The COVID-19 pandemic has stress-tested the scalabil-
ity, safety, and efficacy of LNPs, and has engendered greater 
academic and pharmaceutical investment into this space. The 
high degree of LNP tailorability and the diversity of nucleic 
acid cargos position LNPs as a platform with great potential to 

solve urgent health problems. In particular, we look forward to 
the next-generation of LNPs capable of nucleic acid delivery 
to extra-hepatic tissues, particularly to endothelial cells.
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