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Abstract
Objective Particle shape can have a significant impact on the bulk properties of materials. This study describes the development 
and application of machine-learning models to predict the crystal shape of mefenamic acid recrystallized from organic solvents.
Methods Crystals were grown in 30 different solvents to establish a dataset comprising solvent molecular descriptors, process 
conditions and crystal shape. Random forest classification models were trained on this data and assessed for prediction accuracy.
Results The highest prediction accuracy of crystal shape was 93.5% assessed by fourfold cross-validation. When solvents 
were sequentially excluded from the training data, 32 out of 84 models predicted the shape of mefenamic acid crystals for 
the excluded solvent with 100% accuracy and a further 21 models had prediction accuracies from 50–100%. Reducing the 
feature set to only solvent physical property descriptors and supersaturations resulted in higher overall prediction accuracies 
than the models trained using all available or another selected subset of molecular descriptors. For the 8 solvents on which 
the models performed poorly (< 50% accuracy), further characterisation of crystals grown in these solvents resulted in the 
discovery of a new mefenamic acid solvate whereas all other crystals were the previously known form I.
Conclusions Random forest classification models using solvent physical property descriptors can reliably predict crystal 
morphologies for mefenamic acid crystals grown in 20 out of the 28 solvents included in this work. Poor prediction accura-
cies for the remaining 8 solvents indicate that further factors will be required in the feature set to provide a more generalized 
predictive morphology model.
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Introduction

There is a considerable drive across the pharmaceutical 
industry to enhance the agility and productivity of activities 
involved in the development and manufacture of medicines 
[1]. Central interests focus on enabling faster, cost-effective 
drug production whilst improving sustainability and deliv-
ering improved security of supply whilst still assuring the 
quality and safety of medicines to patients [2, 3]. Advanced 
particle formation and control is an area to address as this can 
also enable the disruptive benefits from more closely asso-
ciated knowledge across drug substance and drug product 

manufacturing [4]. Cyber-Physical Systems embed Industry 
4.0 principles and industrial digital technologies and realise 
benefits from digital design [5], advanced process technol-
ogy [6], and data-driven manufacturing and control such as 
Digital Twins [7] or medicines development and manufac-
ture that encompass the data, models, and knowledge that 
describe the inter-relationships between materials, products, 
processes, and performance.

Crystal shape is one of the important attributes dictat-
ing the physicochemical and bulk properties of a crystal-
line material, which can have an impact on the process-
related characteristics as well as the quality attributes 
of the final formulated products [8] Certain shapes of 
crystals are problematic during the key unit process used 
in the production of raw materials and downstream for-
mulated product manufacturing. For example, needles 
can cause poor flowability of particulate solids and result 
in problems during various processes including powder 
flow [9], filtering [10], and tableting [11]. Therefore, the 
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ability to routinely predict the crystal shape yielded from 
a given solvent could improve efficiencies in process 
development and medicine manufacturing and reduce the 
costs of research and development.

Several theoretical models are already available for 
crystal shape i.e. geometrical morphology based on Bra-
vais-Friedel-Donnay-Harker (BFDH) theory [12], growth 
morphology based on an attachment energy calculation, 
the theory of Hartman-Perdok [13] or periodic bond chain 
(PBC) [14]. Experimental results often vary from theoretical 
predictions due to the influence of solvent [15, 16], impuri-
ties [17], and additives [8] in the crystallisation medium, 
and although progress has been made in the prediction of 
morphologies [18, 19], there is a need for new models that 
can provide practically useful, rapid prediction across a wide 
range of potential crystallisation environments.

In the field of crystallisation, data-driven approaches using 
machine learning can be powerful tools for finding relevant pat-
terns in high-dimensional data. During the past few years, sev-
eral machine learning studies showed great promise and lead to 
the successful discovery of novel crystal forms [20] and the suc-
cessful prediction of the small molecule crystallisability [21], 
crystal packing [22], polymorphism, and co-crystallisation [23].

In this work, the crystal shape prediction of mefenamic 
acid in different solvents was investigated. Mefenamic acid 
(2-[(2,3-Dimethylphenyl)amino]benzoic acid,  C15H15NO2, 

Fig. 1) is a high-dose analgesic drug in the non-steroidal 
anti-inflammatory (NSAIDs) group. It is widely used for the 
treatment of mild to moderate pain due to menstruation (pri-
mary dysmenorrhea) [24–26]. It is classified as a compound 
in class II based on the biopharmaceutical classification 
system (BCS) which indicates low aqueous solubility with 
high permeability [27, 28]. Apart from the solvated form, 
mefenamic acid has 3 different solid-state forms, which are 
forms I, II, and III [29]. During manufacturing, mefenamic 
acid often causes problems in processes such as granulation 
and tabletting because of its hydrophobicity and tendency to 
stick to surfaces that result from the specific crystal surface 
chemistry expressed. Mefenamic acid is therefore a useful 
example to illustrate the impact of crystal shape during drug 
manufacturing [30, 31] and to explore the prediction of sol-
vent effects on crystal shape to inform subsequent process 
development and engineer the bulk properties of active phar-
maceutical ingredients. Control of shape through appropriate 
particle engineering strategies can also allow the avoidance 
of additional downstream processing steps such as milling.

A variety of crystal shapes have been reported from prior 
experimental studies for mefenamic acid, ranging from 
plate-like to needle-like crystals [32–34]. Plates or elongated 
crystals of mefenamic acid were observed when crystallised 
from tetrahydrofuran [33], ethanol [35], ethyl acetate [30, 
33], dimethylacetamide (DMA) [30, 34], and isopropanol 

Fig. 1  Different structures of mefenamic acid (MFA). (a) the molecular structure of MFA, (b) MFA carboxylic dimer, (c) the overlay of MFA 
molecular conformation in Form I (red, dihedral angle equal 120.0°, CCDC refcode XYANAC), Form II (blue, dihedral angle equal to 68.2°, 
CCDC refcode XYANAC07) and Form III (green, dihedral angle equal to 80.82°, CCDC refcode XYANAC03), the crystal structure of MFA (d) 
form I, (e) Form II, (f) Form III.
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[35], while needle-like crystals were often observed when 
mefenamic acid was crystallised from acetone[34, 35]. How-
ever, many studies of the crystallisation of mefenamic acid 
have yielded different results for crystal shape despite using the 
same crystallisation solvent. For example, the crystallisation 
of mefenamic acid from ethyl acetate carried out by Mudalip 
et al. produced needle-like crystals [34], while the SEM pic-
tures of mefenamic acid crystallised from ethyl acetate showed 
plate-like crystals in the study of Panchagnula et al. [33] The 
latter study has also shown that the shape of mefenamic acid 
crystal grown from tetrahydrofuran and ethyl acetate changed 
as supersaturation levels changed [33]. Here, we’ve focused 
on polyhedral and needle crystal with a broad interpretation 
of polyhedral classification for the practical implications for 
downstream pharmaceutical manufacturing processes as 
needle-shaped crystals are more likely to cause issues during 
manufacturing than crystal shapes with aspect ratios closer to 
1, and so are generally undesirable.

Previously, a random forest (RF) algorithm has been applied 
to predict the crystallisation outcomes [36, 37]. From these stud-
ies, RF performed as well as or better than other algorithms, 
such as support vector machines (SVM) [36, 37], deep learning 
multilayer perceptron networks [37], and neural networks [36].

RF has advantages over other algorithms including SVM 
or k-nearest neighbours which generally are more sensitive 
to data outliers. On the other hand, RF is robust to the outli-
ers since its prediction relies on the averaged output from 
multiple independent decision trees [38]. This attribute of RF 
algorithm also provides a low risk of over-fitting to training 
data [39]. Additionally, RF also provides us with the relative 
ranking of variable importance which can be used to guide 
a feature selection and support model interpretability [40]. 
Therefore, in this work, we applied RF classification to predict 
the crystal shape of mefenamic acid as a function of recrystal-
lisation solvent. MOE molecular descriptors were used for 30 
solvents and three different sets of variables (one set that con-
tained all available 2D descriptors, a second set that focused 
on molecular structure and a third set that focused on physical 
properties) were tested to optimise model performance. To 
identify which solvent descriptors were associated with RF 
model performance, logistic regression was applied, and vari-
able coefficients, as well as recursive feature elimination, were 
considered. Powder X-ray Diffraction (PXRD) for solid-state 
determination and Differential Scanning Calorimetry (DSC) 
for thermal analysis was carried out for crystallisation from 
solvents which resulted in poor model performance.

Materials and Methods

Materials Mefenamic acid (> 98% purity) was purchased 
from Merck (UK). All solvents were purchased from Fisher 
Scientific (UK).

Solubility Measurements

A known amount of each type of crystalline material was 
added to a 1.5 ml high-performance liquid chromatography 
(HPLC) vial. 1 ml of a given solvent was pipetted into the 
pre-weighed vial containing the solid material and stirrer bar. 
The vial was then reweighed to determine the exact mass of 
solvent added and therefore the exact molar composition of 
the sample. Each vial was capped tightly and the cap wrapped 
in parafilm tape to prevent solvent loss at high temperatures. 
The overall weight (mg) of the sealed vial containing the 
solvent, stirrer, and solid material was recorded to check for 
weight loss after the solubility measurements in the Crystal16 
Multiple Reactor (Technobis Crystallization Systems, The 
Netherlands). This Crystal 16 method uses the transmission 
of light through the vial as an indication of complete dissolu-
tion (100%) or precipitation of the crystals (less than 100%). 
To dissolve the particles in the stirred (700 rpm) suspen-
sion, a heating rate of 0.2 K/min was applied until a pre-set 
temperature was reached. For recrystallisation, the solution 
was cooled to a second pre-set temperature at a rate of 0.4 K/
min). The temperature was kept constant for 30 min at both 
the pre-set low and high temperatures to ensure adequate dis-
solution and recrystallization. The average of the clear-point 
temperatures was taken as the saturation temperature for the 
composition in the vial. Reported solubility was calculated 
from the Van’t Hoff equation acquired from the Van't Hoff 
coordinate plot of lnC vs 1/T(K−1); where C is the concentra-
tion of mefenamic acid solution and T is the saturation tem-
perature (see Table S1 in ESI for the solubility of mefenamic 
acid in all tested solvents.)

Crystallisation

Small-scale crystallisation was carried out in 20 ml scin-
tillating vials. Appropriate amounts of mefenamic acid 
powder and organic solvent, as determined by the solubility 
experiments, were transferred into the vials. The vials were 
capped and covered with parafilm to avoid solvent evapora-
tion. Vials were heated using a hot plate until all solid had 
visibly dissolved. To ensure no solid remained, the solution 
was then filtered through 0.45 µl PTFE filter discs into a 
clean vial. The vials were capped and placed in an incubator 
at  25○C without disturbance for 5 days. All samples were 
prepared in different solvents at various supersaturations 
for comparison and key process conditions and associated 
experimental outcomes recorded to provide the training set 
for model development and assessment (Fig. 2).

Optical Microscopy

An optical microscope (Leica M165C, supplied by 
Leica Microsystems (UK) Ltd.) was used for capturing 

3101Pharmaceutical Research (2022) 39:3099–3111



1 3

two-dimensional images of the resulting crystals. The crystal 
shapes were manually classified into two classes: polyhedral 
and needle. Polyhedral crystals were comprised of any crys-
tals with regular bounding facets including shapes such as 
prisms, plates and elongated crystals. Needles were defined 
by any sample with elongated crystals with no discernable 
edges or faces. Any spherulitic crystals were classed as nee-
dle crystals as they were a form of needle crystal aggregates 
[41]. Example images of different crystal shapes from our 
dataset can be seen in Fig. 3.

Face Indexing

Single crystal X-ray diffraction (SC-XRD) was per-
formed using D8 Venture (Bruker UK Limited), equipped 
with Photon III CCD detector and Cu (Copper) Kα X-ray 
energy source which corresponds to an x-ray wavelength 
of 1.5406 Å. A single crystal was prepared and fixed onto 
a low diffraction loop connected to a three-circle fixed Chi 

goniometer. The data were collected from 4° to 35° 2-theta 
(step size 0.017°) for all samples at ambient temperature. 
XRD on triethylamine samples was repeated in a capillary 
set up and the data was collected from 3° to 40° 2-theta. Face 
indexing was carried out using APEX3 Software to specify 
crystal faces.

Experimental solubility of mefenamic acid at 25°C, 
supersaturation levels, 2D MOE [42] solvent molecu-
lar descriptors, solvent boiling point and melting point, 
and solvent density were included in the dataset as input 
for training predictive models. Each experiment in the 
dataset was labelled with the crystal shape outcome. 
MOE descriptors used in this work were calculated from 
molecular structures using SMILE codes. The data was 
cleaned by removing the descriptors with NaN values (Not 
a Number, i.e. missing data) and the descriptors which 
contained the same value for all solvents. 206 descriptors 
were left in the dataset (see Table S2). From these descrip-
tors, three different feature sets were investigated in the 

Fig. 2  Diagram showing the dataset, variable and accuracies of all models.
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remaining 84 models to investigate if these different sets 
of solvent molecular descriptors (one set that contained all 
206 available 2D descriptors, a second set of 26 descrip-
tors that focused on molecular structure and a third set of 
13 descriptors that focused on physical properties) would 
affect model performance. The details of the selected 
descriptors were listed in table S3.

Random Forest Predictions

RF classification (Random Forest Classifier in Scikit-learn 
1.0.2, Python 3.10) was applied to all models as RF have 
been shown to be effective for the prediction of crystallisa-
tion outcomes in previous works [21, 43, 44]. The number of 
decision trees was set at 100 by setting parameter n_estima-
tors = 100 and the random state was set at 0. Other param-
eters were used as default values (bootstrap = True, max_
depth = None, max_features = auto, max_leaf_nodes = None, 
min_samples_leaf = 1, min_samples_split = 2).

Building Models

Experimental solubility of mefenamic acid at 25°C, super-
saturation levels, 2D MOE solvent molecular descriptors, 
solvent boiling point and melting point, and solvent density 
were included in the dataset as input for training predictive 
models. Each experiment in the dataset was labelled with the 
crystal shape outcome. MOE descriptors used in this work 
were calculated from molecular structures using SMILE 
codes. After data cleaning by removing the descriptors with 
NaN value (missing data) and the descriptors which contain 
the same value for all solvents, 206 descriptors were left in 
the dataset (see Table S2 for details of descriptors). From 
this dataset, 87 models were built to assess the optimum 
performance for predicting crystal shape. The different con-
siderations and test criteria used for these models are shown 
in Fig. 2.

Model 1 used the entire dataset for 3-class prediction as 
follows: polyhedral (134 observations), needle (83 observa-
tions), and no crystal (44 observations). The class of no crystal 

Fig. 3  Examples of crystal 
shapes (a) plates, (b) elongated 
plates, (c) needles, and (d) 
spherulites. Plate and elongated 
plate crystals were assigned 
to the polyhedral class while 
needle and spherulitic crystals 
were both assigned to needle 
crystals.
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was then removed from the datasets for all remaining models 
due to the relatively low occurrence of this outcome. As class 
imbalance was present in the dataset used for Model 2, some 
observations in the polyhedral class were removed from the 
dataset used in Model 3 to remove class imbalance. To remove 
class imbalance, observations were removed to maintain the 
spread of original data (i.e. data points for solvents with low 
numbers of observations were kept in the dataset while some 
data points for the solvents with higher numbers of observa-
tions were removed) rather than random selection.

From 206 descriptors, feature selection was applied 
to the final 84 models to investigate if different sets of 
solvent molecular descriptors (one set that contained all 
available 2D descriptors, a second set that focused on 
molecular structures and a third set that focused on phys-
ical properties) would affect model performance. Atom 
counts & bond counts and pharmacophore feature MOE 
subsets were grouped as these descriptors directly reflect 
the structure and connectivity of the solvent molecules. 
By comparison, the physical properties MOE subset com-
prises of descriptors that describe the way the solvent 
interacts with surrounding molecules (such as molecular 
weight, polarizability, refractivity, mass density, and aque-
ous solubility). Further information on the MOE descrip-
tor subsets available can be found in the ESI. The details 
of the selected descriptors were listed in Table S3.

Model Evaluation

Train-test split and n-fold cross-validation [45] were used 
to evaluate the prediction accuracy of the RF classification 
models. Table I shows the prediction accuracy of the mod-
els evaluated with different ratios of training and test data. 
Ratios of 75:25, 80:20, and 90:10 were used in the train-test 
split method, comparable to fourfold, fivefold, and tenfold 
cross-validation, respectively.

Overall, the different accuracies as calculated by either 
train-test split or cross-validation varied by no more than 
3%. This consistency shows the RF approach to be robust to 

different methods of validation. The lowest ratio was used to 
save computational time and reduce standard deviation in the 
model [45]. Between the two evaluation methods, the vari-
ance of the accuracy calculated from n-fold cross-validation 
was lower than those from the train-test split. As a result, 
fourfold cross-validation was used for evaluating the model 
performance in this work.

Results and Discussion

Crystallisation

MFA was crystallised from 30 solvents over 5 days at 
a range of supersaturations (261 observations in total). 
Crystallisation was observed in all solvents except isobu-
tyl acetate and 1-butanol during the 5-day experimental 
period. Table II presents crystal shapes and correspond-
ing solvents. Four crystal morphologies were observed: 
plates, elongated plates, needles, and spherulites (Fig. 3). 
Plates (Fig. 3a) and elongated plates (Fig. 3b) were con-
sidered as polyhedral crystals while needle (Fig. 3c) and 
spherulitic (Fig. 3d) crystals were both considered as 
needle crystals. Based on face-indexing data, the big-
gest face which dominated the polyhedral crystal is [100] 
(Figure S1). This observed crystal shape corresponded to 
the BFDH morphology of mefenamic acid crystal form-I 
(Figure S2).

Polyhedral crystals were always found at all supersatura-
tion levels (in the range of 1.1 – 2.7) when using the follow-
ing solvents: 1,2 dichloroethane, 1-chlorobutane, 1-octanol, 
2-methoxyethanol, acetic acid, acetone, acetonitrile, chlo-
roform, ethanol, DMF, ethyl acetate, iodomethane, trieth-
ylamine, trichloroethylene. At a supersaturation range of 
1.1 – 3.0, the crystals of mefenamic acid exhibited needle 
shape when crystallised from the following solvents: 1-bro-
mobutane, 1-methylnaphtalene, aniline, anisole, methyl ace-
tate, nitromethane, toluene. As for crystals grown from 1,4 
dioxane, 2-butanol, 2-butanone, 2-propanol, butyl acetate, 

Table I  Model evaluation by train-test split and cross-validation of models 1, 2 and 3. SD = Standard Deviation

Prediction Accuracy by train-test split (train:test) Accuracy by cross-validation

75:25 80:20 90:10 fourfold fivefold tenfold

Model 1 (3 
classes)

84.4% (SD = 3.6%) 84.2% (SD = 4.5%) 85.0% (SD = 6.2%) 82.4% (SD = 3.1%) 84.7% (SD = 2.1%) 83.1% (SD = 4.6%)

Model 2 (2 classes 
w/ class-imbal-
ance)

91.8% (SD = 3.3%) 92.1% (SD = 3.6%) 93.7% (SD = 4.6%) 93.5% (SD = 2.1%) 94.4% (SD = 2.4%) 93.5% (SD = 4.7%)

Model 3 (2 classes 
w/o class-imbal-
ance)

93.8% (SD = 3.8%) 93.6% (SD = 4.3%) 95.5% (SD = 4.7%) 93.3% (SD = 5.3%) 92.6% (SD = 6.4%) 95.7% (SD = 4.7%)
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diethyl sulphide and methanol, the crystal shape was super-
saturation dependent. For these solvents, polyhedral crys-
tals were observed at low supersaturation and needles were 
observed at higher supersaturations.

At low supersaturation levels, mefenamic acid did not 
crystallised in some tested solvents within 5 days. These 
samples were labelled as ‘no crystal’. See the detail of the 
samples in ‘no crystal’ class in ESI, Table S2).

Model Performance Using Crystal Shape 
Observations from all Solvents in the Training Set

Three RF classification models were built initially to 
determine the efficacy of this method and understand the 
extent to which the class imbalance present in the data-
set would affect prediction accuracies. In Model 1 the 
full dataset was separated into the following 3 classes: 
polyhedral (134 data points), needle (83 data points), 
and ‘no crystal’ (44 data points). In Model 2, the ‘no 
crystal’ class was removed resulting in a 2-class pre-
diction model. The class-imbalance present in Model 2 
was removed for the dataset used in Model 3 by remov-
ing observations in the polyhedral class until the nee-
dle and polyhedral classes were equally populated. For 
fourfold cross-validation, Model 1 had the lowest per-
formance accuracy (82.4%) while Models 2 and 3 had 
performance accuracies of 93.5% and 93.3%, respec-
tively. Additionally, the values of accuracy, precision, 
recall, and F1-score of these three models also agreed 
with the model accuracies (Table III). As these results 
indicate that the class imbalance observed in Model 2 did 
not noticeably affect the model performance, the dataset 

used in Model 2 was used all for further models with the 
modifications discussed below.

Prediction of Crystal Shape From Solvents 
not Included in the Training Set

To determine the ability of this methodology to predict crys-
tal morphology from solvents for which no data was present 
in the training set, we built 84 additional models that each 
had all observations for a single solvent removed from the 
training data. The performance accuracy for each model was 
then assessed using the crystal morphologies for the solvent 
excluded from the training data. Additionally, three different 
feature sets were tested to determine if model performance 
accuracy was affected by the inclusion of different variables 
in the training sets (see Fig. 2 and Table IV for more details). 
The three feature sets were (i) solvent physical properties 

Table II  The list of organic 
solvents categorized by the 
shape of mefenamic acid 
crystals they can produce

Polyhedral Needle Supersaturation dependent (polyhedral 
supersaturation range, needle supersaturation 
range)

1,2 dichloroethane 1-bromobutane 1,4 dioxane (1.18 – 1.28, 1.39 – 1.91)
1-chlorobutane 1-methylnaphtalene 2-butanol (1.51 – 1.83, 1.94 – 2.03)
1-octanol aniline 2-butanone (1.10 – 1.50, 1.60 – 2.01)
2-methoxyethanol anisole 2-propanol (1.14 – 1.41, 1.49 – 1.99)
acetic acid methyl acetate butyl acetate (1.32, 1.42 – 2.00)
acetone nitromethane diethyl sulfide (1.06 – 1.57, 1.76 – 1.94)
acetonitrile toluene Methanol (1.13 – 1.22, 1.30 – 1.98)
chloroform
ethanol
DMF
ethyl acetate
iodomethane
triethylamine
trichloroethylene

Table III  The models’ precision, recall, and F1-score. The ‘support’ 
column indicates the number of test data in each crystal class

Model prediction Precision Recall F1-score Support

Model 1 (3 crystal outcomes with class imbalance)
Polyhedral 0.83 0.94 0.88 31
Needle 0.89 0.80 0.84 20
No crystal 0.85 0.73 0.79 15
Model 2 (2 crystal outcomes with class imbalance)
Polyhedral 0.91 1.00 0.95 31
Needle 1.00 0.87 0.93 23
Model 3 (2 crystal outcomes without class imbalance)
Polyhedral 1.00 0.84 0.91 19
Needle 0.88 1.00 0.94 22
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and supersaturations of crystallisation experiments (ii) atom 
count, bond count, pharmacophore descriptors for the solvents 
and supersaturations of the crystallisation experiments and 
(iii) all features present in the first two feature sets.

In total, 32 out of 84 models predicted the shape of 
mefenamic acid crystals with 100% accuracy, and the 
models trained with the first feature set resulted in the best 
overall prediction accuracy for morphologies across all sol-
vents. The results explained here are tabulated in Table IV 
for clarity. When including only physical property descrip-
tors and supersaturations in the model features, 12 solvent 
models had 100% prediction accuracy, 8 solvent models had 

accuracies from 50–100%, and the remaining 8 models had 
prediction accuracies below 50%. When using atom count, 
bond count, and pharmacophore descriptors as variables, 10 
models had 100% prediction accuracy, 7 models had accu-
racies from 50–100%, and 11 models had accuracies below 
50%. For the models using all solvent molecular descriptors 
as variables, 10 models had 100% prediction accuracy, 6 
models had accuracies from 50–100%, and 12 models had 
accuracies below 50%. Thus, using all descriptors in the fea-
ture set resulted in the lowest performance across all solvents 
while using only solvent physical properties and supersatura-
tions as the feature set had the highest accuracies across all 

Table IV  The prediction accuracy of the models testing the prediction of crystal shape from individual solvents

Poly, polyhedral crystals; nd, needle. All training set and test set data included the relevant solvent descriptors and experimental supersaturation 
as x values and crystal shape labels as y values

Solvent in which test 
set data was collected

Number of 
samples in test 
set

Experimental 
crystal shape

Solvent descriptors

Variable group 1: All sol-
vent descriptors

Variable group 2: Atom 
counts / bond counts + phar-
macophore features

Variable group 3 Physical 
properties

Predicted shape Prediction 
accuracy

Predicted shape Prediction 
accuracy

Predicted shape Predic-
tion 
accuracy

1,2-dichloroethane 7 Polyhedral Polyhedral 100% Polyhedral 100% Polyhedral 100%
Chloroform 5 Polyhedral Polyhedral 100% Polyhedral 100% Polyhedral 100%
Trichloroethylene 4 Polyhedral Polyhedral 100% Polyhedral 100% Polyhedral 100%
Ethanol 9 Polyhedral Polyhedral 100% Polyhedral 100% Polyhedral 100%
Aniline 7 Needle Needle 100% Needle 100% Needle 100%
Anisole 10 Needle Needle 100% Needle 100% Needle 100%
Toluene 6 Needle Needle 100% Needle 100% Needle 100%
Acetonitrile 12 Polyhedral Polyhedral 100% Polyhedral 100% 10 poly, 2 nd 83.3%
Acetone 9 Polyhedral 7 poly, 2 nd 77.8% Polyhedral 100% Polyhedral 100%
Iodomethane 3 Polyhedral Polyhedral 100% 1 poly, 2 nd 33.3% Polyhedral 100%
2-propanol 10 6 poly, 4 nd polyhedral 60.0% polyhedral 60.0% 7 poly, 3 nd 90.0%
2-methoxyethanol 10 Polyhedral 4 poly, 6 nd 40.0% 6 poly, 4 nd 60.0% Polyhedral 100%
2-butanol 6 3 poly, 3 nd 1 poly, 5 nd 66.7% 1 poly, 5 nd 66.7% 1 poly, 5 nd 66.7%
2-butanone 9 5 poly, 4 nd polyhedral 55.6% polyhedral 55.6% 6 poly, 3 nd 88.9%
1-methylnaphthalene 8 Needle needle 100% needle 100% polyhedral 0%
Methanol 10 6 poly, 4 nd polyhedral 60.0% polyhedral 60.0% polyhedral 60.0%
Diethyl sulfide 7 5 poly, 2 nd polyhedral 71.4% polyhedral 71.4% needle 28.6%
1,4-dioxane 8 2 poly, 6 nd 6 poly, 2 nd 50.0% needle 75.0% polyhedral 25.0%
DMF 9 Polyhedral 3 poly, 5 nd 33.3% needle 0% polyhedral 100%
Ethyl acetate 6 Polyhedral needle 0% 3 poly, 3 nd 50.0% 4 poly, 2 nd 66.7%
Acetic acid 10 Polyhedral 1 poly, 9 nd 10.0% needle 0% polyhedral 100%
Butyl acetate 7 1 poly, 6 nd polyhedral 14.3% polyhedral 14.3% 3 poly, 4 nd 71.4%
1-bromobutane 7 Needle polyhedral 0% polyhedral 0% 2 poly, 5 nd 71.4%
1-chlorobutane 6 Polyhedral needle 0% 1 poly, 5 nd 16.7% 2 poly, 4 nd 33.3%
Triethylamine 8 Polyhedral 2 poly, 6 nd 25.0% 2 poly, 6 nd 25.0% needle 0%
1-Octanol 7 Polyhedral needle 0% needle 0% needle 0%
Methyl acetate 11 Needle polyhedral 0% polyhedral 0% polyhedral 0%
Nitromethane 5 Needle polyhedral 0% polyhedral 0% polyhedral 0%
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solvents. These results suggest that some of the variables in 
the atom count, bound count and pharmacophore descriptor 
feature set had a confounding effect on model performance.

Accuracy trends were also observed for solvent type. All 
models had high prediction accuracies for morphologies of 
crystals grown in chlorinated solvents (1,2 chloroethane, 
chloroform, and trichloroethylene), aniline, anisole, etha-
nol, and toluene. By contrast, the models performed poorly 
when predicting morphologies for crystals grown from 
1-octanol, triethylamine, methyl acetate, and nitromethane. 
Model performance was determined by using an external test 
set comprised of multiple experiments conducted at various 
supersaturations in the solvent not included in the training 
data. To understand why RF classification consistently per-
formed well for some solvents and badly for others, these 
results were explored via logistic regression. Crystal form 
characterisation was also investigated for crystals grown in 
solvents where morphology was poorly predicted.

Variable Importance in the RF Classification 
for Crystal Morphology Prediction

Table V shows the two most important variables for each 
model for solvents with the highest and lowest prediction 
accuracies. For the first two variable sets, the most impor-
tant feature focus on the structure of the molecule, mainly 
the number of rings, number of rigid or single bonds, atom 
count and adjacency matrix. While there is no clear differ-
ence between the most important descriptors identified for 
the models that performed poorly or well using Variable 
Groups 1 & 2, we do observe some difference in the top 
two important variables for models trained with Variable 
Group 3. The models trained using these two sets of vari-
ables performed similarly in terms of the number of correct 
and incorrect predictions. Models using the third variable 
set (13 physical properties MOE descriptors) performed 
much better and identified the most important variables 
including aqueous solubility and molecular refractivity. 
Unlike the models that performed well, 3 of the 5 models 
that performed poorly using the third variable set identi-
fied features related to van der Waals volume as the most 
important. As relative feature importance alone is insuffi-
cient to describe the variability in model performance for 
different solvents, this will be explored further by logistic 
regression later in the paper.

We also observed that if the model did not identify one 
of the two most important variables as aqueous solubil-
ity or molecular refractivity, the accuracy of the predic-
tions was low. Aqueous solubility can be linked with the 
ability of the molecules to form H-bonds while molecular 
refractivity is related to London dispersive forces [46]. 
The anisotropy of the rate of incorporation of growth units 
from solution to individual crystal faces determines crystal 

shape [8, 47]. In solution, both the crystal surface and 
solute growth units are solvated, and the relative growth 
rates of faces depend on the strengths of intermolecular 
interactions between the solute–solvent and solvent-crystal 
surfaces [48, 49]. It was demonstrated previously that the 
crystallisation from organic solvents is dominated by weak 
interactions between permanent dipoles and London dis-
persion forces between the nonpolar groups of the solute 
and solvent and these interactions are responsible for differ-
ent crystal shapes obtained from various solvents [50]. Our 
machine-learning model also identified these interactions 
as the most important distinguishers between models for 
solvents that show very good prediction accuracy (100%). 
Further exploration of feature importance can be found in 
the ESI where model performance was investigated for var-
iations on Model 2 (no solvent removal) trained on super-
saturation and only one additional feature. This analysis 
also indicated that molar refractivity and aqueous solubility 
are key features in these models.

Using Logistic Regression to Understand Model 
Performance

As seen in Table V, we see that changes in the relative fea-
ture importance were not sufficient to explain the variable 
model performance for the different solvents. Thus, logis-
tic regression was also used to probe why the RF models 
consistently performed well for some solvents and poorly 
for others even when the solvent feature sets were changed 
(Table VI). For this analysis, models 60–87 were used (i.e. 
solvent-exclusion models that used solvent physical proper-
ties and supersaturation as training variables), and models 
with prediction accuracy greater than 50% were labelled as 
1 while models with prediction accuracies less than 50% 
were labelled as 0. This set of models was chosen as the 
feature set for these models resulted in the highest overall 
prediction accuracy across solvents. The most important 
features in logistic regression can be determined by the 
highest absolute values of the variable coefficients and/or 
recursive feature elimination until only the most relevant 
features remain.

From the relative importance of different variables in 
the logistic regression analysis, we see that polarizability 
(apol, bpol) and solubility (logS) play an important role 
in determining whether the RF classification model per-
formed well for a given solvent. While the polar surface 
area variable (TPSA) was deemed a relatively unimpor-
tant feature, this rating may be due to this variable being 
redundant after the inclusion of apol and bpol into the 
models. Variables pertaining to van der Waals interac-
tions (vdw_area and vdw_volume) were also amongst 
the more relevant features in determining whether the RF 
classification models performed well for observations in a 
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Table V  List of first and second most important variables of the models for predicting the shape of crystals crystallised from individual solvents

Crystallisation solvents The most important variables of each model

Variable group 1: All solvent 
descriptors

Variable group 2: Atom counts / bond 
counts + pharmacophore features

Variable group 3: Physical properties

Solvents where the crystals were 100% accurately predicted by the models
1,2-Dichloroethane 1. number of rings

2. adjacency matrix
1. no. of rigid bonds
2. atom count

1. aqueous solubility
2. molecular refractivity

Chloroform 1. adjacency matrix
2. number of rings

1. no. of rigid bonds
2. no. of single bonds

1. aqueous solubility
2. molecular refractivity

Ethanol 1. adjacency matrix
2. number of rings

1. no. of rigid bonds
2. no. of single bonds

1. aqueous solubility
2. molecular refractivity

Trichloroethylene 1. adjacency matrix
2. number of rings

1. no. of rigid bonds
2. no. of single bonds

1. aqueous solubility
2. molecular refractivity

Aniline 1. adjacency matrix
2. number of rings

1. no. of single bonds
2. no. of rigid bonds

1. aqueous solubility
2.  bpol#

Anisole 1. number of rings
2. distance Matrix

1. no. of rigid bonds
2. no. of single bonds

1. aqueous solubility
2. molecular refractivity

Toluene 1. adjacency matrix
2. number of rings

1. no. of single bonds
2. no. of rigid bonds

1. aqueous solubility
2. molecular refractivity

Solvents where the crystals were incorrectly predicted by the models
1-Chlorobutane 1. number of rings

2. adjacency matrix
1. no. of rigid bonds
2. no. of single bonds

1. aqueous solubility
2.  bpol#

1-Octanol 1. chi1_C*
2.  zagreb$

1. no. of heavy atoms
2. no. of rigid bonds

1. aqueous solubility
2. van der Waals volume

Triethylamine 1. distance matrix
2. molecular refractivity

1. no. of single bonds
2. no. of rigid bonds

1. molecular refractivity
2. van der Waals volume

Methyl acetate 1. distance matrix
2. adjacency matrix

1. no. of rigid bonds
2. no. of rings

1. van der Waals volume
2. molecular refractivity

Nitromethane 1. adjacency matrix
2. number of rings

1. no. of rigid bonds
2. atom count

1.  bpol#

2. aqueous solubility

Table VI  MOE descriptors included as variables in the RF classification models 60–87 listed according to importance scores in the logistic 
regression analysis of the performance of these models. RF model accuracies above 50% were labelled as 1 in the logistic regression analysis 
while RF model accuracies below 50% were labelled as 0. Recursive feature elimination was done until the 6 most relevant features/variables 
remained (these 6 features are ranked as 1 in the Table below)

MOE descriptor Summary of MOE descriptor Logistic regression coef-
ficients

Ranking by recursive 
feature elimination

bpol sum of the absolute value of the difference between atomic 
polarizabilities of all bonded atoms in the molecule

-0.7288 1

apol sum of the atomic polarizabilities -0.4332 1
logS log of the aqueous solubility (mol/L) 0.3232 1
SMR molecular refractivity -0.2926 1
vdw_area Area of van der Waals surface -0.2872 1
vdw_volume van der Waals volume -0.2594 1
mr molecular refractivity -0.2587 2
logP(o/w) log of the octanol/water partition coefficient -0.2248 3
density molecular mass density 0.1845 4
reactive indicator of the presence of reactive groups 0.1039 5
TPSA polar surface area -0.1081 6
SlogP log of the octanol/water partition coefficient -0.0897 7
Weight molecular weight -0.0209 8
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given solvent. As we would expect crystal morphologies 
to be strongly influenced by intermolecular interactions 
between the mefenamic acid and the crystallisation sol-
vent, the importance of variables pertaining to solubil-
ity, polarity and van der Waals interactions corresponds 
with the important physical parameters in a crystallisation 
experiment. According to these results, the values of fea-
tures related to polarizability and aqueous solubility can 
dictate whether or not a model performs well. Thus, while 
this methodology may work well for solvents with a given 
polarizability or aqueous solubility calculated descriptors, 
additional features may be needed to improve the model 
performance for solvents with higher/lower values of sol-
ubility or polarizability. Further work could explore what 
feature values are associated with better performance and 
what additional information could be included to improve 
the model performance for these models. This further 
work would also benefit from a larger dataset of solutes 
and solvents on which to test these hypotheses.

Characterisation of Mefenamic Acid Crystals Grown 
in Triethylamine

Further crystal characterisation was done for the crystals grown 
in solvents with the models showing low prediction accuracy. 
All samples were consistent with mefenamic acid form I (See 
PXRD patterns in ESI, Figure S4) except the sample crystal-
lised from trimethylamine which exhibited a notably distinct 
PXRD pattern (Fig. 4a). Characterisation of the mefenamic 
acid grown in triethylamine was of particular interest as results 
revealed these crystals to be a previously unidentified solvate of 
mefenamic acid. Additionally, the shape of the crystals grown 
in triethylamine had thinner flat plates as observed under a 
microscope when compared to the plate crystals of mefenamic 
acid form-I crystallised from the other solvents (see Fig. 4b).

Characterisation of these crystals by differential scanning 
calorimetry (DSC) also suggested that mefenamic acid crys-
tals grown from triethylamine were a previously unidentified 
solvate (see ESI for details).

Fig. 4  (a) Experimental powder 
X-ray diffraction pattern of 
mefenamic acid crystallised 
from triethylamine, compared to 
the simulated powder patterns 
of mefenamic acid form-I (ref-
code: XYANAC), II (refcode: 
XYANAC02), and III (refcode: 
XYANAC03) calculated from 
Mercury, (b) Mefenamic acid 
crystals crystallised from trieth-
ylamine at supersaturation = 1.4.
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Conclusions

The choice of solvent in crystallisation is a critical design 
decision and can affect the crystal morphology with further 
implications for downstream manufacturability. For this work, 
we generated 261 experimental observations of MFA crystal 
shape in 30 various organic solvents at the range of supersatu-
ration levels between S = 1.0 – 3.0. RF classification models 
can predict the shape of mefenamic acid crystals observed 
from different solvents experimentally. Thus, the results illus-
trate that RF classification can be a useful tool to predict the 
experimental crystal shape of MFA. Our two-class RF predic-
tion model with polyhedral and needle classes resulted in a 
prediction accuracy of 93%. This model was further modified 
(as detailed in Fig. 2) to explore prediction accuracies for crys-
tals grown in specific solvents. For solvents that were excluded 
from the training set at all supersaturation levels, the predic-
tion accuracy depended on the solvent. The most important 
variables for the correctly predicted solvents relate to H-bonds 
and London dispersion forces identifying this interaction as 
key for the determination of a crystal shape. Additionally, to 
improve the capability of the predictive models, further model 
development could include exploring different sets of molecu-
lar descriptors, optimising hyperparameters and investigating 
more compounds, solvents, and crystallisation parameters.

Whilst demonstrated only for mefenamic acid it is 
expected that with the appropriate data, the application of 
this tool can be broadened to cover a wider range of active 
ingredient molecular and crystal attributes. Such data are 
already often collected during physical form selection, solu-
bility and early development studies. Hence, this study high-
lights the potential role of machine learning and data-driven 
predictive tools to support decision making during pharma-
ceutical process development. Informing solvent selection, 
reducing experimental time and material consumption and 
enabling the selection of conditions that deliver materials 
engineered to achieve desirable attributes.
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