Skip to main content
Log in

Identification of a Multi-Component Formulation for Intestinal Delivery of a GLP-1/Glucagon Co-agonist Peptide

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Oral delivery of therapeutic peptides has been challenging due to multiple physiological factors and physicochemical properties of peptides. We report a systematic approach to identify formulation compositions combining a permeation enhancer and a peptidase inhibitor that minimize proteolytic degradation and increase absorption of a peptide across the small intestine.

Methods

An acylated glucagon-like peptide-1/glucagon co-agonist peptide (4.5 kDa) was selected as a model peptide. Proteolytic stability of the peptide was investigated in rat and pig SIF. Effective PEs and multiple component formulations were identified in rats. Relative bioavailability of the peptide was determined in minipigs via intraduodenal administration (ID) of enteric capsules.

Results

The peptide degraded rapidly in the rat and pig SIF. Citric acid, SBTI, and SBTCI inhibited the enzymatic degradation. The peptide self-associated into trimers in solution, however, addition of PEs monomerized the peptide. C10 was the most effective PE among tested PEs (DPC, LC, rhamnolipid, C12-maltosides, and SNAC) to improve intestinal absorption of the peptide in the rat IJ-closed loop model. A combination of C10 and SBTI or SBTCI increased the peptide exposure 5–tenfold compared to the exposure with the PE alone in the rat IJ-cannulated model, and achieved 1.06 ± 0.76% bioavailability in minipigs relative to subcutaneous via ID administration using enteric capsules.

Conclusion

We identified SBTI and C10 as an effective peptidase inhibitor and PE for intestinal absorption of the peptide. The combination of SBTI and C10 addressed the peptide physiochemical properties and provides a formulation strategy to achieve intestinal delivery of this peptide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

C12-maltoside:

Dodecyl maltosides

DPC:

Dodecyl phosphocholine

IJ:

Intrajejunal

LC:

Lauroyl L-carnitine

PE:

Permeation enhancer

SBTI:

Soybean trypsin chymotrypsin inhibitor

SBTI:

Soybean trypsin inhibitor

SIF:

Small intestinal fluid

SNAC:

Sodium N-(8-[2-hydroxybenzoyl] amino) caprylate

References

  1. Wang J, Yadav V, Smart AL, Tajiri S, Basit AW. Toward oral delivery of biopharmaceuticals: an assessment of the gastrointestinal stability of 17 peptide drugs. Mol Pharm. 2015;12(3):966–73.

    Article  CAS  Google Scholar 

  2. Zizzari AT, Pliatsika D, Gall FM, Fischer T, Riedl R. New perspectives in oral peptide delivery. Drug Discov Today. 2021;26(4):1097–105.

    Article  CAS  Google Scholar 

  3. Drucker DJ. Advances in oral peptide therapeutics. Nat Rev Drug Discov. 2020;19(4):277–89.

    Article  CAS  Google Scholar 

  4. Tyagi P, Pechenov S, Anand SJ. Oral peptide delivery: Translational challenges due to physiological effects. J Control Release. 2018;287:167–76.

    Article  CAS  Google Scholar 

  5. Sturmer A, Mehta N, Giacchi J, Cagatay T, Tavakkol R, Mitta S, Fitzpatrick L, Wald J, Trang J, Stern W. Pharmacokinetics of oral recombinant human parathyroid hormone [rhPTH(1–31)NH(2)] in postmenopausal women with osteoporosis. Clin Pharmacokinet. 2013;52(11):995–1004.

    Article  CAS  Google Scholar 

  6. Buckley ST, Baekdal TA, Vegge A, Maarbjerg SJ, Pyke C, Ahnfelt-Ronne J, Madsen KG, Scheele SG, Alanentalo T, Kirk RK, Pedersen BL, Skyggebjerg RB, Benie AJ, Strauss HM, Wahlund PO, Bjerregaard S, Farkas E, Fekete C, Sondergaard FL, Borregaard J, Hartoft-Nielsen ML, Knudsen LB. Transcellular stomach absorption of a derivatized glucagon-like peptide-1 receptor agonist. Sci Transl Med. 2018;10(467):eaar7047.

  7. Karsdal MA, Byrjalsen I, Riis BJ, Christiansen C. Optimizing bioavailability of oral administration of small peptides through pharmacokinetic and pharmacodynamic parameters: the effect of water and timing of meal intake on oral delivery of Salmon Calcitonin. BMC Clin Pharmacol. 2008;8:5.

    Article  Google Scholar 

  8. Brayden DJ, Hill TA, Fairlie DP, Maher S, Mrsny RJ. Systemic delivery of peptides by the oral route: Formulation and medicinal chemistry approaches. Adv Drug Deliv Rev. 2020;157:2–36.

    Article  CAS  Google Scholar 

  9. Tuvia S, Pelled D, Marom K, Salama P, Levin-Arama M, Karmeli I, Idelson GH, Landau I, Mamluk R. A novel suspension formulation enhances intestinal absorption of macromolecules via transient and reversible transport mechanisms. Pharm Res. 2014;31(8):2010–21.

    Article  CAS  Google Scholar 

  10. Brayden DJ, Maher S. Transient Permeation Enhancer(R) (TPE(R)) technology for oral delivery of octreotide: a technological evaluation. Expert Opin Drug Deliv. 2021;18(10):1501–12.

    Article  Google Scholar 

  11. Rybelsus label https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/213051s000lbl.pdf. Accessed 20 April 2022.

  12. Tuvia S, Atsmon J, Teichman SL, Katz S, Salama P, Pelled D, Landau I, Karmeli I, Bidlingmaier M, Strasburger CJ, Kleinberg DL, Melmed S, Mamluk R. Oral octreotide absorption in human subjects: comparable pharmacokinetics to parenteral octreotide and effective growth hormone suppression. J Clin Endocrinol Metab. 2012;97(7):2362–9.

    Article  CAS  Google Scholar 

  13. Maher S, Geoghegan C, Brayden DJ. Intestinal permeation enhancers to improve oral bioavailability of macromolecules: reasons for low efficacy in humans. Expert Opin Drug Deliv. 2021;18(2):273–300.

    Article  CAS  Google Scholar 

  14. Vertzoni M, Augustijns P, Grimm M, Koziolek M, Lemmens G, Parrott N, Pentafragka C, Reppas C, Rubbens J, Van Den Alphabeele J, Vanuytsel T, Weitschies W, Wilson CG. Impact of regional differences along the gastrointestinal tract of healthy adults on oral drug absorption: An UNGAP review. Eur J Pharm Sci. 2019;134:153–75.

    Article  CAS  Google Scholar 

  15. Pechenov S, Revell J, Will S, Naylor J, Tyagi P, Patel C, Liang L, Tseng L, Huang Y, Rosenbaum AI, Balic K, Konkar A, Grimsby J, Subramony JA. Development of an orally delivered GLP-1 receptor agonist through peptide engineering and drug delivery to treat chronic disease. Sci Rep. 2021;11(1):22521.

    Article  CAS  Google Scholar 

  16. Mezo AR, Chen Y, Valenzuela FA, Qu H. Glucagon and GLP-1 co-agonist compounds. US patent. 2018;US 9,938,335 B2.

  17. Lawrence SA, Blankenship R, Brown R, Estwick S, Ellis B, Thangaraju A, Datta-Mannan A. Influence of FcRn binding properties on the gastrointestinal absorption and exposure profile of Fc molecules. Bioorg Med Chem. 2021;32: 115942.

    Article  CAS  Google Scholar 

  18. Maher S, Leonard TW, Jacobsen J, Brayden DJ. Safety and efficacy of sodium caprate in promoting oral drug absorption: from in vitro to the clinic. Adv Drug Deliv Rev. 2009;61(15):1427–49.

    Article  CAS  Google Scholar 

  19. Raoof AA, Ramtoola Z, McKenna B, Yu RZ, Hardee G, Geary RS. Effect of sodium caprate on the intestinal absorption of two modified antisense oligonucleotides in pigs. Eur J Pharm Sci. 2002;17(3):131–8.

    Article  CAS  Google Scholar 

  20. Halberg IB, Lyby K, Wassermann K, Heise T, Zijlstra E, Plum-Morschel L. Efficacy and safety of oral basal insulin versus subcutaneous insulin glargine in type 2 diabetes: a randomised, double-blind, phase 2 trial. Lancet Diabetes Endocrinol. 2019;7(3):179–88.

    Article  Google Scholar 

  21. Kidron M. Methods and compositions for oral administration of proteins. US patent. 2016;9,259,456 B2.

  22. Takeuchi MWaH. Strategies to Overcome the Enzymatic Barrier. Book Chaper in Oral Delivery of Macromolecular Drugs edited by Andreas Bernkop-Schnurch. Springer Sci Chapter. 2009;4:65–83.

    Google Scholar 

  23. Yamamoto A, Taniguchi T, Rikyuu K, Tsuji T, Fujita T, Murakami M, Muranishi S. Effects of various protease inhibitors on the intestinal absorption and degradation of insulin in rats. Pharm Res. 1994;11(10):1496–500.

    Article  CAS  Google Scholar 

  24. Welling SH, Hubalek F, Jacobsen J, Brayden DJ, Rahbek UL, Buckley ST. The role of citric acid in oral peptide and protein formulations: relationship between calcium chelation and proteolysis inhibition. Eur J Pharm Biopharm. 2014;86(3):544–51.

    Article  CAS  Google Scholar 

  25. Lee YH, Sinko PJ. Oral delivery of salmon calcitonin. Adv Drug Deliv Rev. 2000;42(3):225–38.

    Article  CAS  Google Scholar 

  26. Maher S, Mrsny RJ, Brayden DJ. Intestinal permeation enhancers for oral peptide delivery. Adv Drug Deliv Rev. 2016;106(Pt B):277–319.

    Article  CAS  Google Scholar 

  27. Laskowski M Jr, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem. 1980;49:593–626.

    Article  CAS  Google Scholar 

  28. Burshtein G, Itin C, Tang JCY, Galitzer H, Fraser WD, Schwartz P. The combined effect of permeation enhancement and proteolysis inhibition on the systemic exposure of orally administrated peptides: Salcaprozate sodium, soybean trypsin inhibitor, and teriparatide study in pigs. Int J Pharm X. 2021;3: 100097.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Woodley JF. Enzymatic barriers for GI peptide and protein delivery. Crit Rev Ther Drug Carrier Syst. 1994;11(2–3):61–95.

    CAS  PubMed  Google Scholar 

  30. Frederiksen TM, Sonderby P, Ryberg LA, Harris P, Bukrinski JT, Scharff-Poulsen AM, Elf-Lind MN, Peters GH. Oligomerization of a Glucagon-like Peptide 1 Analog: Bridging Experiment and Simulations. Biophys J. 2015;109(6):1202–13.

    Article  CAS  Google Scholar 

  31. Foger F, Kopf A, Loretz B, Albrecht K, Bernkop-Schnurch A. Correlation of in vitro and in vivo models for the oral absorption of peptide drugs. Amino Acids. 2008;35(1):233–41.

    Article  CAS  Google Scholar 

  32. Maher S, Wang X, Bzik V, McClean S, Brayden DJ. Evaluation of intestinal absorption and mucosal toxicity using two promoters. II. Rat instillation and perfusion studies. Eur J Pharm Sci. 2009;38(4):301–11.

    Article  CAS  Google Scholar 

  33. Sinko PJ, Lee YH, Makhey V, Leesman GD, Sutyak JP, Yu H, Perry B, Smith CL, Hu P, Wagner EJ, Falzone LM, McWhorter LT, Gilligan JP, Stern W. Biopharmaceutical approaches for developing and assessing oral peptide delivery strategies and systems: in vitro permeability and in vivo oral absorption of salmon calcitonin (sCT). Pharm Res. 1999;16(4):527–33.

    Article  CAS  Google Scholar 

  34. Maggio ET. Intravail: highly effective intranasal delivery of peptide and protein drugs. Expert Opin Drug Deliv. 2006;3(4):529–39.

    Article  CAS  Google Scholar 

  35. Liu DZ, LeCluyse EL, Thakker DR. Dodecylphosphocholine-mediated enhancement of paracellular permeability and cytotoxicity in Caco-2 cell monolayers. J Pharm Sci. 1999;88(11):1161–8.

    Article  CAS  Google Scholar 

  36. Wallace CJ, Medina SH, ElSayed ME. Effect of rhamnolipids on permeability across Caco-2 cell monolayers. Pharm Res. 2014;31(4):887–94.

    Article  CAS  Google Scholar 

  37. Perinelli DR, Vllasaliu D, Bonacucina G, Come B, Pucciarelli S, Ricciutelli M, Cespi M, Itri R, Spinozzi F, Palmieri GF, Casettari L. Rhamnolipids as epithelial permeability enhancers for macromolecular therapeutics. Eur J Pharm Biopharm. 2017;119:419–25.

    Article  CAS  Google Scholar 

  38. Twarog C, Fattah S, Heade J, Maher S, Fattal E, Brayden DJ. Intestinal permeation enhancers for oral delivery of macromolecules: a comparison between salcaprozate sodium (SNAC) and sodium caprate (C10). Pharmaceutics. 2019;11(2):78.

  39. Maher S, Brayden DJ. Formulation strategies to improve the efficacy of intestinal permeation enhancers(). Adv Drug Deliv Rev. 2021;177: 113925.

    Article  CAS  Google Scholar 

  40. Petersen SB, Nolan G, Maher S, Rahbek UL, Guldbrandt M, Brayden DJ. Evaluation of alkylmaltosides as intestinal permeation enhancers: comparison between rat intestinal mucosal sheets and Caco-2 monolayers. Eur J Pharm Sci. 2012;47(4):701–12.

    Article  CAS  Google Scholar 

  41. Henze LJ, Koehl NJ, O’Shea JP, Kostewicz ES, Holm R, Griffin BT. The pig as a preclinical model for predicting oral bioavailability and in vivo performance of pharmaceutical oral dosage forms: a PEARRL review. J Pharm Pharmacol. 2019;71(4):581–602.

    Article  CAS  Google Scholar 

  42. Tyagi P, Trivedi R, Pechenov S, Patel C, Revell J, Wills S, Huang Y, Rosenbaum AI, Subramony JA. Targeted oral peptide delivery using multi-unit particulates: Drug and permeation enhancer layering approach. J Control Release. 2021;338:784–91.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Michele Lake and Donald Risley for the analytical support for the dissolution studies, Dr. Siyuan Huang for preparation of capsules, and Dr. Xianyin Lai for his LC/MS support of the proteolytic stability assay. The authors would like to thank Andrew Riley for editing and proofreading the manuscript.

Funding

Open Access funding enabled and organized by CAUL and its Member Institutions. This work was funded by Eli Lilly and Company.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huyen Tran or Amita Datta –Mannan.

Ethics declarations

Conflict of Interest Statement

At the time the work in this publication was performed, all authors were employees of Eli Lilly and Company. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. There are no other competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, H., Patel, P.J., Aburub, A. et al. Identification of a Multi-Component Formulation for Intestinal Delivery of a GLP-1/Glucagon Co-agonist Peptide. Pharm Res 39, 2555–2567 (2022). https://doi.org/10.1007/s11095-022-03372-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03372-1

Keywords

Navigation