Skip to main content

Advertisement

Log in

Red Blood Cell Inspired Strategies for Drug Delivery: Emerging Concepts and New Advances

  • Review Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

In the past five decades, red blood cells (RBCs) have been extensively explored as drug delivery systems due to their distinguishing potential in modulating the pharmacokinetic, pharmacodynamics, and biological activity of carried payloads. The extensive interests in RBC-mediated drug delivery technologies are in part derived from RBCs’ unique biological features such as long circulation time, wide access to many tissues in the body, and low immunogenicity. Owing to these outstanding properties, a large body of efforts have led to the development of various RBC-inspired strategies to enable precise drug delivery with enhanced therapeutic efficacy and reduced off-target toxicity. In this review, we discuss emerging concepts and new advances in such RBC-inspired strategies, including native RBCs, ghost RBCs, RBC-mimetic nanoparticles, and RBC-derived extracellular vesicles, for drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li W, Tang J, Lee D, Tice TR, Schwendeman SP, Prausnitz MR. Clinical translation of long-acting drug delivery formulations. Nature Reviews Materials. 2022.

  2. Furtado D, Björnmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the Blood-Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases. Adv Mater. 2018;30(46):1801362.

    Article  Google Scholar 

  3. Leandro K, Bicker J, Alves G, Falcão A, Fortuna A. ABC transporters in drug-resistant epilepsy: mechanisms of upregulation and therapeutic approaches. Pharmacol Res. 2019;144:357–76.

    Article  CAS  PubMed  Google Scholar 

  4. Dou Y, Li C, Li L, Guo J, Zhang J. Bioresponsive drug delivery systems for the treatment of inflammatory diseases. J Control Release. 2020;327:641–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vargason AM, Anselmo AC, Mitragotri S. The evolution of commercial drug delivery technologies. Nature Biomedical Engineering. 2021;5(9):951–67.

    Article  PubMed  Google Scholar 

  6. Brown TD, Whitehead KA, Mitragotri S. Materials for oral delivery of proteins and peptides. Nat Rev Mater. 2020;5(2):127–48.

    Article  Google Scholar 

  7. Holloway Julianne L. Drug delivery in stealth mode. Science Translational Medicine. 2018;10(471):eaaw0523.

  8. Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in Biomaterials for Drug Delivery. Adv Mater. 2018;30(29):1705328.

    Article  Google Scholar 

  9. Durán-Lobato M, Niu Z, Alonso MJ. Oral Delivery of Biologics for Precision Medicine. Adv Mater. 2020;32(13):1901935.

    Article  Google Scholar 

  10. Zhao Z, Ukidve A, Kim J, Mitragotri S. Targeting Strategies for Tissue-Specific Drug Delivery. Cell. 2020;181(1):151–67.

    Article  CAS  PubMed  Google Scholar 

  11. Glassman PM, Hood ED, Ferguson LT, Zhao Z, Siegel DL, Mitragotri S, Brenner JS, Muzykantov VR. Red blood cells: The metamorphosis of a neglected carrier into the natural mothership for artificial nanocarriers. Adv Drug Deliv Rev. 2021;178: 113992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Salunkhe SA, Chitkara D, Mahato RI, Mittal A. Lipid based nanocarriers for effective drug delivery and treatment of diabetes associated liver fibrosis. Adv Drug Deliv Rev. 2021;173:394–415.

    Article  CAS  PubMed  Google Scholar 

  13. George-Gay B, Parker K. Understanding the complete blood count with differential. J Perianesth Nurs. 2003;18(2):96–117.

    Article  PubMed  Google Scholar 

  14. Han X, Wang C, Liu Z. Red Blood Cells as Smart Delivery Systems. Bioconjug Chem. 2018;29(4):852–60.

    Article  CAS  PubMed  Google Scholar 

  15. Mantel P-Y, Hjelmqvist D, Walch M, Kharoubi-Hess S, Nilsson S, Ravel D, Ribeiro M, Grüring C, Ma S, Padmanabhan P, Trachtenberg A, Ankarklev J, Brancucci NM, Huttenhower C, Duraisingh MT, Ghiran I, Kuo WP, Filgueira L, Martinelli R, Marti M. Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria. Nat Commun. 2016;7(1):12727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu R, Avsievich T, Popov A, Bykov A, Meglinski I. In vivo nano-biosensing element of red blood cell-mediated delivery. Biosens Bioelectron. 2021;175: 112845.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang X, Luo M, Dastagir SR, Nixon M, Khamhoung A, Schmidt A, Lee A, Subbiah N, McLaughlin DC, Moore CL, Gribble M, Bayhi N, Amin V, Pepi R, Pawar S, Lyford TJ, Soman V, Mellen J, Carpenter CL, Turka LA, Wickham TJ, Chen TF. Engineered red blood cells as an off-the-shelf allogeneic anti-tumor therapeutic. Nat Commun. 2021;12(1):2637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang Q, Luo Z, Men Y, Yang P, Peng H, Guo R, Tian Y, Pang Z, Yang W. Red blood cell membrane-camouflaged melanin nanoparticles for enhanced photothermal therapy. Biomaterials. 2017;143:29–45.

    Article  CAS  PubMed  Google Scholar 

  19. Brenner JS, Mitragotri S, Muzykantov VR. Red Blood Cell Hitchhiking: A Novel Approach for Vascular Delivery of Nanocarriers. Annu Rev Biomed Eng. 2021;23(1):225–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hu C-MJ, Fang RH, Zhang L. Erythrocyte-Inspired Delivery Systems. Advanced Healthcare Materials. 2012;1(5):537–547.

  21. Oldenborg P-A, Zheleznyak A, Fang Y-F, Lagenaur Carl F, Gresham Hattie D, Lindberg FP. Role of CD47 as a Marker of Self on Red Blood Cells. Science. 2000;288(5473):2051–4.

    Article  CAS  PubMed  Google Scholar 

  22. Izzati Mat Rani NN, Alzubaidi ZM, Azhari H, Mustapa F, Iqbal Mohd Amin MC. Novel engineering: Biomimicking erythrocyte as a revolutionary platform for drugs and vaccines delivery. European Journal of Pharmacology. 2021;900:174009.

  23. Sun Y, Su J, Liu G, Chen J, Zhang X, Zhang R, Jiang M, Qiu M. Advances of blood cell-based drug delivery systems. Eur J Pharm Sci. 2017;96:115–28.

    Article  CAS  PubMed  Google Scholar 

  24. Luk BT, Zhang L. Cell membrane-camouflaged nanoparticles for drug delivery. J Control Release. 2015;220:600–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Villa CH, Anselmo AC, Mitragotri S, Muzykantov V. Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Adv Drug Deliv Rev. 2016;106:88–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sternberg N, Georgieva R Fau - Duft K, Duft K Fau - Bäumler H, Bäumler H. Surface-modified loaded human red blood cells for targeting and delivery of drugs. (1464–5246 (Electronic)).

  27. Xie J, Shen Q, Huang K, Zheng T, Cheng L, Zhang Z, Yu Y, Liao G, Wang X, Li C. Oriented Assembly of Cell-Mimicking Nanoparticles via a Molecular Affinity Strategy for Targeted Drug Delivery. ACS Nano. 2019;13(5):5268–77.

    Article  CAS  PubMed  Google Scholar 

  28. Glassman PM, Villa CH, Ukidve A, Zhao Z, Smith P, Mitragotri S, Russell AJ, Brenner JS, Muzykantov VR. Vascular Drug Delivery Using Carrier Red Blood Cells: Focus on RBC Surface Loading and Pharmacokinetics. Pharmaceutics. 2020;12(5).

  29. Gheibi Hayat SM, Bianconi V, Pirro M, Sahebkar A. Stealth functionalization of biomaterials and nanoparticles by CD47 mimicry. Int J Pharm. 2019;569: 118628.

    Article  CAS  PubMed  Google Scholar 

  30. Rao L, Bu L-L, Xu J-H, Cai B, Yu G-T, Yu X, He Z, Huang Q, Li A, Guo S-S, Zhang W-F, Liu W, Sun Z-J, Wang H, Wang T-H, Zhao X-Z. Red Blood Cell Membrane as a Biomimetic Nanocoating for Prolonged Circulation Time and Reduced Accelerated Blood Clearance. Small. 2015;11(46):6225–36.

    Article  CAS  PubMed  Google Scholar 

  31. Podsiedlik M, Markowicz-Piasecka M, Sikora J. Erythrocytes as model cells for biocompatibility assessment, cytotoxicity screening of xenobiotics and drug delivery. Chem Biol Interact. 2020;332: 109305.

    Article  CAS  PubMed  Google Scholar 

  32. Wadhwa R, Aggarwal T, Thapliyal N, Kumar A, Priya, Yadav P, Kumari V, Reddy BSC, Chandra P, Maurya PK. Red blood cells as an efficient in vitro model for evaluating the efficacy of metallic nanoparticles. 3 Biotech. 2019;9(7):279.

  33. Pierigè F, Bigini N, Rossi L, Magnani MJWIRN, Nanobiotechnology. Reengineering red blood cells for cellular therapeutics and diagnostics. 2017;9(5):e1454.

  34. Malhotra S, Dumoga S, Sirohi P, Singh N. Red Blood Cells-Derived Vesicles for Delivery of Lipophilic Drug Camptothecin. ACS Appl Mater Interfaces. 2019;11(25):22141–51.

    Article  CAS  PubMed  Google Scholar 

  35. Rossi L, Serafini S, Cenerini L, Picardi F, Bigi L, Panzani I, Magnani M. Erythrocyte-mediated delivery of dexamethasone in patients with chronic obstructive pulmonary disease. Biotechnol Appl Biochem. 2001;33(2):85–9.

    Article  CAS  PubMed  Google Scholar 

  36. Su J, Sun H, Meng Q, Yin Q, Zhang P, Zhang Z, Yu H, Li Y. Bioinspired Nanoparticles with NIR-Controlled Drug Release for Synergetic Chemophotothermal Therapy of Metastatic Breast Cancer. Adv Func Mater. 2016;26(41):7495–506.

    Article  CAS  Google Scholar 

  37. Aryal S, Nguyen TDT, Pitchaimani A, Shrestha TB, Biller D, Troyer D. Membrane Fusion-Mediated Gold Nanoplating of Red Blood Cell: A Bioengineered CT-Contrast Agent. ACS Biomater Sci Eng. 2017;3(1):36–41.

    Article  CAS  PubMed  Google Scholar 

  38. Chen JL, Dhanaliwala AH, Dixon AJ, Farry JM, Hossack JA, Klibanov AL. Acoustically active red blood cell carriers for ultrasound-triggered drug delivery with photoacoustic tracking. In.2015 IEEE International Ultrasonics Symposium (IUS): IEEE; 2015. p. 1–4.

  39. Dixon A, Farry J, Chen J, Dhanaliwala AH, Hossack JA, Klibanov A. Photoacoustic imaging of stimuli-responsive red blood cell drug delivery agents. In.2016 IEEE International Ultrasonics Symposium (IUS); 2016. p. 1–4.

  40. Bax B, Bain M, Fairbanks L, Webster A, Chalmers RJBjoh. In vitro and in vivo studies with human carrier erythrocytes loaded with polyethylene glycol‐conjugated and native adenosine deaminase. 2000;109(3):549-554.

  41. Liu W-L, Liu T, Zou M-Z, Yu W-Y, Li C-X, He Z-Y, Zhang M-K, Liu M-D, Li Z-H, Feng J, Zhang X-Z. Aggressive Man-Made Red Blood Cells for Hypoxia-Resistant Photodynamic Therapy. Adv Mater. 2018;30(35):1802006.

    Article  Google Scholar 

  42. Domenech C, Thomas X, Chabaud S, Baruchel A, Gueyffier F, Mazingue F, Auvrignon A, Corm S, Dombret H, Chevallier P, Galambrun C, Huguet F, Legrand F, Mechinaud F, Vey N, Philip I, Liens D, Godfrin Y, Rigal D, Bertrand Y. l-asparaginase loaded red blood cells in refractory or relapsing acute lymphoblastic leukaemia in children and adults: results of the GRASPALL 2005–01 randomized trial. Br J Haematol. 2011;153(1):58–65.

    Article  CAS  PubMed  Google Scholar 

  43. Bodewes SB, van Leeuwen OB, Thorne AM, Lascaris B, Ubbink R, Lisman T, Monbaliu D, De Meijer VE, Nijsten MWN, Porte RJ. Oxygen Transport during Ex Situ Machine Perfusion of Donor Livers Using Red Blood Cells or Artificial Oxygen Carriers. International Journal of Molecular Sciences. 2021;22(1).

  44. Dominici S, Laguardia ME, Serafini G, Chiarantini L, Fortini C, Tripiciano A, Brocca-Cofano E, Scoglio A, Caputo A, Fiorelli V, Gavioli R, Cafaro A, Ensoli B, Magnani M. Red blood cell-mediated delivery of recombinant HIV-1 Tat protein in mice induces anti-Tat neutralizing antibodies and CTL. Vaccine. 2003;21(17):2073–81.

    Article  CAS  PubMed  Google Scholar 

  45. Chiarantini L, Argnani R, Zucchini S, Stevanato L, Zabardi P, Grossi MP, Magnani M, Manservigi R. Red blood cells as delivery system for recombinant HSV-1 glycoprotein B: immunogenicity and protection in mice. Vaccine. 1997;15(3):276–80.

    Article  CAS  PubMed  Google Scholar 

  46. Zheng J, Lu C, Ding Y, Zhang J, Tan F, Liu J, Yang G, Wang Y, Li Z, Yang M, Yang Y, Gong W, Gao C. Red blood cell-hitchhiking mediated pulmonary delivery of ivermectin: Effects of nanoparticle properties. Int J Pharm. 2022;619: 121719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li C, Wang X, Li R, Yang X, Zhong Z, Dai Y, Fan Q, Lin Y, Zhang R, Liang T, Ye Y, Zhou M. Resveratrol-loaded PLGA nanoparticles functionalized with red blood cell membranes as a biomimetic delivery system for prolonged circulation time. Journal of Drug Delivery Science and Technology. 2019;54: 101369.

    Article  CAS  Google Scholar 

  48. Chen Z-A, Wu S-H, Chen P, Chen Y-P, Mou C-Y. Critical Features for Mesoporous Silica Nanoparticles Encapsulated into Erythrocytes. ACS Appl Mater Interfaces. 2019;11(5):4790–8.

    Article  CAS  PubMed  Google Scholar 

  49. Raposo CJ, Cserny JD, Serena G, Chow JN, Cho P, Liu H, Kotler D, Sharei A, Bernstein H, John S. Engineered RBCs Encapsulating Antigen Induce Multi-Modal Antigen-Specific Tolerance and Protect Against Type 1 Diabetes. 2022;13.

  50. Cremel M, Guérin N Fau - Horand F, Horand F Fau - Banz A, Banz A Fau - Godfrin Y, Godfrin Y. Red blood cells as innovative antigen carrier to induce specific immune tolerance. (1873–3476 (Electronic)).

  51. Shi J, Kundrat L, Pishesha N, Bilate A, Theile C, Maruyama T, Dougan Stephanie K, Ploegh Hidde L, Lodish HF. Engineered red blood cells as carriers for systemic delivery of a wide array of functional probes. Proc Natl Acad Sci. 2014;111(28):10131–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xia D, He H, Wang Y, Wang K, Zuo H, Gu H, Xu P, Hu Y. Ultrafast glucose-responsive, high loading capacity erythrocyte to self-regulate the release of insulin. Acta Biomater. 2018;69:301–12.

    Article  CAS  PubMed  Google Scholar 

  53. Wang C, Huang J, Zhang Y, Jia H, Chen B. Construction and evaluation of red blood cells-based drug delivery system for chemo-photothermal therapy. Colloids Surf, B. 2021;204: 111789.

    Article  CAS  Google Scholar 

  54. Bachet J-B, Gay F, Maréchal R, Galais M-P, Adenis A, David Salako M, Cros J, Demetter P, Svrcek M, Bardier-Dupas AJP. Asparagine synthetase expression and phase I study with L-asparaginase encapsulated in red blood cells in patients with pancreatic adenocarcinoma. 2015;44(7):1141-1147.

  55. Harisa GI, Badran MM, AlQahtani SA, Alanazi FK, Attia SM. Pravastatin chitosan nanogels-loaded erythrocytes as a new delivery strategy for targeting liver cancer. Saudi Pharmaceutical Journal. 2016;24(1):74–81.

    Article  PubMed  Google Scholar 

  56. Hammel P, Fabienne P, Mineur L, Metges J-P, Andre T, De La Fouchardiere C, Louvet C, El Hajbi F, Faroux R, Guimbaud R, Tougeron D, Bouche O, Lecomte T, Rebischung C, Tournigand C, Cros J, Kay R, Hamm A, Gupta A, Bachet J-B, El Hariry I. Erythrocyte-encapsulated asparaginase (eryaspase) combined with chemotherapy in second-line treatment of advanced pancreatic cancer: An open-label, randomized Phase IIb trial. Eur J Cancer. 2020;124:91–101.

    Article  CAS  PubMed  Google Scholar 

  57. Huang N-J, Pishesha N, Mukherjee J, Zhang S, Deshycka R, Sudaryo V, Dong M, Shoemaker CB, Lodish HF. Genetically engineered red cells expressing single domain camelid antibodies confer long-term protection against botulinum neurotoxin. Nat Commun. 2017;8(1):423.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kosenko EA, Venediktova NI, Kudryavtsev AA, Ataullakhanov FI, Kaminsky YG, Felipo V, Montoliu C. Encapsulation of glutamine synthetase in mouse erythrocytes: a new procedure for ammonia detoxification. Biochem Cell Biol. 2008;86(6):469–76.

    Article  CAS  PubMed  Google Scholar 

  59. Hamidi M, Rafiei P, Azadi A, Mohammadi-Samani S. Encapsulation of Valproate-Loaded Hydrogel Nanoparticles in Intact Human Erythrocytes: A Novel Nano-cell Composite for Drug Delivery. J Pharm Sci. 2011;100(5):1702–11.

    Article  CAS  PubMed  Google Scholar 

  60. Hamidi M, Azimi K, Mohammadi-Samani SJJoP, Sciences P. Co-encapsulation of a drug with a protein in erythrocytes for improved drug loading and release: phenytoin and bovine serum albumin (BSA). 2011;14(1):46-59.

  61. Yew NS, Dufour E, Przybylska M, Putelat J, Crawley C, Foster M, Gentry S, Reczek D, Kloss A, Meyzaud A, Horand F, Cheng SH, Godfrin Y. Erythrocytes encapsulated with phenylalanine hydroxylase exhibit improved pharmacokinetics and lowered plasma phenylalanine levels in normal mice. Mol Genet Metab. 2013;109(4):339–44.

    Article  CAS  PubMed  Google Scholar 

  62. Rossi L, Pierigè F, Carducci C, Gabucci C, Pascucci T, Canonico B, Bell SM, Fitzpatrick PA, Leuzzi V, Magnani M. Erythrocyte-mediated delivery of phenylalanine ammonia lyase for the treatment of phenylketonuria in BTBR-Pahenu2 mice. J Control Release. 2014;194:37–44.

    Article  CAS  PubMed  Google Scholar 

  63. Sarkissian Christineh N, Gámez A, Wang L, Charbonneau M, Fitzpatrick P, Lemontt Jeffrey F, Zhao B, Vellard M, Bell Sean M, Henschell C, Lambert A, Tsuruda L, Stevens Raymond C, Scriver CR. Preclinical evaluation of multiple species of PEGylated recombinant phenylalanine ammonia lyase for the treatment of phenylketonuria. Proc Natl Acad Sci. 2008;105(52):20894–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bourgeaux V, Hequet O, Campion Y, Delcambre G, Chevrier A-M, Rigal D, Godfrin Y. Inositol hexaphosphate–loaded red blood cells prevent in vitro sickling. Transfusion. 2010;50(10):2176–84.

    Article  CAS  PubMed  Google Scholar 

  65. Lamarre Y, Bourgeaux V, Pichon A, Hardeman MR, Campion Y, Hardeman-Zijp M, Martin C, Richalet J-P, Bernaudin F, Driss F, Godfrin Y, Connes P. Effect of inositol hexaphosphate–loaded red blood cells (RBCs) on the rheology of sickle RBCs. Transfusion. 2013;53(3):627–36.

    Article  CAS  PubMed  Google Scholar 

  66. Muthuvel A, Rajamani R, Manikandan S, Sheeladevi R. Detoxification of formate by formate dehydrogenase-loaded erythrocytes and carbicarb in folate-deficient methanol-intoxicated rats. Clin Chim Acta. 2006;367(1):162–9.

    Article  CAS  PubMed  Google Scholar 

  67. Alexandrovich YG, Kosenko EA, Sinauridze EI, Obydennyi SI, Kireev II, Ataullakhanov FI, Kaminsky YG. Rapid Elimination of Blood Alcohol Using Erythrocytes: Mathematical Modeling and In Vitro Study. Biomed Res Int. 2017;2017:5849593.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hamarat Baysal Ş, Uslan AH. Encapsulation of catalase and peg-catalase in erythrocyte. Artificial Cells, Blood Substitutes, and Biotechnology. 2001;29(5):359–66.

    Article  CAS  PubMed  Google Scholar 

  69. Briones E, Colino CI, Lanao JMJIjop. Study of the factors influencing the encapsulation of zidovudine in rat erythrocytes. 2010;401(1-2):41-46.

  70. Harisa GI, Ibrahim MF, Alanazi FK. Erythrocyte-mediated delivery of pravastatin: In Vitro study of effect of hypotonic lysis on biochemical parameters and loading efficiency. Archives of Pharmacal Research. 2012;35(8):1431–1439.

  71. Rossi L, Pierigè F, Antonelli A, Bigini N, Gabucci C, Peiretti E, Magnani M. Engineering erythrocytes for the modulation of drugs’ and contrasting agents’ pharmacokinetics and biodistribution. Adv Drug Deliv Rev. 2016;106:73–87.

    Article  CAS  PubMed  Google Scholar 

  72. Wang S, Chen R. pH-Responsive, Lysine-Based, Hyperbranched Polymers Mimicking Endosomolytic Cell-Penetrating Peptides for Efficient Intracellular Delivery. Chem Mater. 2017;29(14):5806–15.

    Article  CAS  Google Scholar 

  73. Wang LL, Janes ME, Kumbhojkar N, Kapate N, Clegg JR, Prakash S, Heavey MK, Zhao Z, Anselmo AC, Mitragotri S. Cell therapies in the clinic. Bioeng Transl Med. 2021;6(2): e10214.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bachet JB, Gay F Fau - Maréchal R, Maréchal R Fau - Galais M-P, Galais Mp Fau - Adenis A, Adenis A Fau - MsC DS, MsC Ds Fau - Cros J, Cros J Fau - Demetter P, Demetter P Fau - Svrcek M, Svrcek M Fau - Bardier-Dupas A, Bardier-Dupas A Fau - Emile J-F, Emile Jf Fau - Hammel P, Hammel P Fau - Ebenezer C, Ebenezer C Fau - Berlier W, Berlier W Fau - Godfrin Y, Godfrin Y Fau - André T, André T. Asparagine Synthetase Expression and Phase I Study With L-Asparaginase Encapsulated in Red Blood Cells in Patients With Pancreatic Adenocarcinoma. (1536–4828 (Electronic)).

  75. Kontos S, Kourtis Iraklis C, Dane Karen Y, Hubbell JA. Engineering antigens for in situ erythrocyte binding induces T-cell deletion. Proc Natl Acad Sci. 2013;110(1):E60–8.

    Article  CAS  PubMed  Google Scholar 

  76. Zhao Y, Fan M, Chen Y, Liu Z, Shao C, Jin B, Wang X, Hui L, Wang S, Liao Z, Ling D, Tang R, Wang B. Surface-anchored framework for generating RhD-epitope stealth red blood cells. Science Advances;6(12):eaaw9679.

  77. Wang C, Sun X, Cheng L, Yin S, Yang G, Li Y, Liu Z. Multifunctional Theranostic Red Blood Cells For Magnetic-Field-Enhanced in vivo Combination Therapy of Cancer. Adv Mater. 2014;26(28):4794–802.

    Article  CAS  PubMed  Google Scholar 

  78. Ferrari G, Thrasher AJ, Aiuti A. Gene therapy using haematopoietic stem and progenitor cells. Nat Rev Genet. 2021;22(4):216–34.

    Article  CAS  PubMed  Google Scholar 

  79. Pishesha N, Bilate Angelina M, Wibowo Marsha C, Huang N-J, Li Z, Deshycka R, Bousbaine D, Li H, Patterson Heide C, Dougan Stephanie K, Maruyama T, Lodish Harvey F, Ploegh HL. Engineered erythrocytes covalently linked to antigenic peptides can protect against autoimmune disease. Proc Natl Acad Sci. 2017;114(12):3157–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bourgeaux V, Lanao JM, Bax BE, Godfrin Y. Drug-loaded erythrocytes: on the road toward marketing approval. (1177–8881 (Electronic)).

  81. Kitao T Fau - Hattori K, Hattori K Fau - Takeshita M, Takeshita M. Agglutination of leukemic cells and daunomycin entrapped erythrocytes with lectin in vitro and in vivo. (0014–4754 (Print)).

  82. Paulitschke M, Nash GB, Anstee DJ, Tanner MJ, Gratzer WB. Perturbation of red blood cell membrane rigidity by extracellular ligands. Blood. 1995;86(1):342–8.

    Article  CAS  PubMed  Google Scholar 

  83. Sharei A, Zoldan J, Adamo A, Sim Woo Y, Cho N, Jackson E, Mao S, Schneider S, Han M-J, Lytton-Jean A, Basto Pamela A, Jhunjhunwala S, Lee J, Heller Daniel A, Kang Jeon W, Hartoularos George C, Kim K-S, Anderson Daniel G, Langer R, Jensen KF. A vector-free microfluidic platform for intracellular delivery. Proc Natl Acad Sci. 2013;110(6):2082–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee J, Sharei A, Sim WY, Adamo A, Langer R, Jensen KF, Bawendi MG. Nonendocytic delivery of functional engineered nanoparticles into the cytoplasm of live cells using a novel. High-Throughput Microfluidic Device Nano Letters. 2012;12(12):6322–7.

    CAS  PubMed  Google Scholar 

  85. Ding X, Stewart MP, Sharei A, Weaver JC, Langer RS, Jensen KF. High-throughput nuclear delivery and rapid expression of DNA via mechanical and electrical cell-membrane disruption. Nature Biomedical Engineering. 2017;1(3):0039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Stewart MP, Sharei A, Ding X, Sahay G, Langer R, Jensen KF. In vitro and ex vivo strategies for intracellular delivery. Nature. 2016;538(7624):183–92.

    Article  CAS  PubMed  Google Scholar 

  87. Marx V. Cell biology: delivering tough cargo into cells. Nat Methods. 2016;13(1):37–40.

    Article  CAS  Google Scholar 

  88. Szeto GL, Van Egeren D, Worku H, Sharei A, Alejandro B, Park C, Frew K, Brefo M, Mao S, Heimann M, Langer R, Jensen K, Irvine DJ. Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines. Sci Rep. 2015;5(1):10276.

    Article  PubMed  Google Scholar 

  89. Prakash S, Kumbhojkar N, Clegg JR, Mitragotri S. Cell-bound nanoparticles for tissue targeting and immunotherapy: Engineering of the particle–membrane interface. Curr Opin Colloid Interface Sci. 2021;52: 101408.

    Article  CAS  Google Scholar 

  90. Bush LM, Healy CP, Javdan SB, Emmons JC, Deans TL. Biological cells as therapeutic delivery vehicles. Trends Pharmacol Sci. 2021;42(2):106–18.

    Article  CAS  PubMed  Google Scholar 

  91. Wang Y, Pisapati AV, Zhang XF, Cheng X. Recent developments in nanomaterial-based shear-sensitive drug delivery systems. Adv Healthcare Mater. 2021;10(13):2002196.

    Article  CAS  Google Scholar 

  92. Ferguson LT, Hood ED, Shuvaeva T, Shuvaev VV, Basil MC, Wang Z, Nong J, Ma X, Wu J, Myerson JW, Marcos-Contreras OA, Katzen J, Carl JM, Morrisey EE, Cantu E, Villa CH, Mitragotri S, Muzykantov VR, Brenner JS. Dual Affinity to RBCs and Target Cells (DART) Enhances Both Organ- and Cell Type-Targeting of Intravascular Nanocarriers. ACS Nano. 2022;16(3):4666–83.

    Article  CAS  PubMed  Google Scholar 

  93. Zou Y, Liu Y, Yang Z, Zhang D, Lu Y, Zheng M, Xue X, Geng J, Chung R, Shi B. Effective and targeted human orthotopic glioblastoma xenograft therapy via a multifunctional biomimetic nanomedicine. Adv Mater. 2018;30(51):1803717.

    Article  Google Scholar 

  94. Wang P, Li X, Yao C, Wang W, Zhao M, El-Toni AM, Zhang F. Orthogonal near-infrared upconversion co-regulated site-specific O2 delivery and photodynamic therapy for hypoxia tumor by using red blood cell microcarriers. Biomaterials. 2017;125:90–100.

    Article  CAS  PubMed  Google Scholar 

  95. Zhu D-M, Wu L, Suo M, Gao S, Xie W, Zan M-H, Liu A, Chen B, Wu W-T, Ji L-W, Chen L-b, Huang H-M, Guo S-S, Zhang W-F, Zhao X-Z, Sun Z-J, Liu W. Engineered red blood cells for capturing circulating tumor cells with high performance. Nanoscale. 2018;10(13):6014–6023.

  96. Mai TD, d’Orlyé F, Ménager C, Varenne A, Siaugue J-M. Red blood cells decorated with functionalized core–shell magnetic nanoparticles: elucidation of the adsorption mechanism. Chem Commun. 2013;49(47):5393–5.

    Article  CAS  Google Scholar 

  97. Zhang K, Cao Y, Kuang Y, Liu M, Chen Y, Wang Z, Hong S, Wang J, Pei R. Gd2O3 and GH combined with red blood cells to improve the sensitivity of contrast agents for cancer targeting MR imaging. Biomaterials Science. 2017;5(1):46–9.

    Article  CAS  Google Scholar 

  98. Cinti C, Taranta M, Naldi I, Grimaldi S. Newly Engineered Magnetic Erythrocytes for Sustained and Targeted Delivery of Anti-Cancer Therapeutic Compounds. PLoS ONE. 2011;6(2): e17132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wu Z, Li T, Li J, Gao W, Xu T, Christianson C, Gao W, Galarnyk M, He Q, Zhang L, Wang J. Turning Erythrocytes into Functional Micromotors. ACS Nano. 2014;8(12):12041–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Jain SK, Vyas SP. Magnetically responsive diclofenac sodium-loaded erythrocytes: Preparation and in vitro characterization. J Microencapsul. 1994;11(2):141–51.

    Article  CAS  PubMed  Google Scholar 

  101. Delcea M, Sternberg N, Yashchenok AM, Georgieva R, Bäumler H, Möhwald H, Skirtach AG. Nanoplasmonics for Dual-Molecule Release through Nanopores in the Membrane of Red Blood Cells. ACS Nano. 2012;6(5):4169–80.

    Article  CAS  PubMed  Google Scholar 

  102. Gao M, Hu A, Sun X, Wang C, Dong Z, Feng L, Liu Z. Photosensitizer decorated red blood cells as an ultrasensitive light-responsive drug delivery system. ACS Appl Mater Interfaces. 2017;9(7):5855–63.

    Article  CAS  PubMed  Google Scholar 

  103. Zhu Y-X, Jia H-R, Guo Y, Liu X, Zhou N, Liu P, Wu F-G. Repurposing Erythrocytes as a “Photoactivatable Bomb”: A General Strategy for Site-Specific Drug Release in Blood Vessels. Small. 2021;17(34):2100753.

    Article  CAS  Google Scholar 

  104. Zhao Z, Ukidve A, Krishnan V, Fehnel A, Pan DC, Gao Y, Kim J, Evans MA, Mandal A, Guo J, Muzykantov VR, Mitragotri S. Systemic tumour suppression via the preferential accumulation of erythrocyte-anchored chemokine-encapsulating nanoparticles in lung metastases. Nature Biomedical Engineering. 2021;5(5):441–54.

    Article  CAS  PubMed  Google Scholar 

  105. Brenner JS, Pan DC, Myerson JW, Marcos-Contreras OA, Villa CH, Patel P, Hekierski H, Chatterjee S, Tao J-Q, Parhiz H, Bhamidipati K, Uhler TG, Hood ED, Kiseleva RY, Shuvaev VS, Shuvaeva T, Khoshnejad M, Johnston I, Gregory JV, Lahann J, Wang T, Cantu E, Armstead WM, Mitragotri S, Muzykantov V. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat Commun. 2018;9(1):2684.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zhao Z, Ukidve A, Gao Y, Kim J, Mitragotri S. Erythrocyte leveraged chemotherapy (ELeCt): Nanoparticle assembly on erythrocyte surface to combat lung metastasis. Science Advances;5(11):eaax9250.

  107. Anselmo AC, Gupta V Fau - Zern BJ, Zern Bj Fau - Pan D, Pan D Fau - Zakrewsky M, Zakrewsky M Fau - Muzykantov V, Muzykantov V Fau - Mitragotri S, Mitragotri S. Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells. (1936–086X (Electronic)).

  108. Nikitin MP, Zelepukin IV, Shipunova VO, Sokolov IL, Deyev SM, Nikitin PI. Enhancement of the blood-circulation time and performance of nanomedicines via the forced clearance of erythrocytes. Nature Biomedical Engineering. 2020;4(7):717–31.

    Article  CAS  PubMed  Google Scholar 

  109. Chambers E, Mitragotri S. Long circulating nanoparticles via adhesion on red blood cells: Mechanism and extended circulation. Exp Biol Med. 2007;232(7):958–66.

    CAS  Google Scholar 

  110. Anselmo AC, Kumar S, Gupta V, Pearce AM, Ragusa A, Muzykantov V, Mitragotri S. Exploiting shape, cellular-hitchhiking and antibodies to target nanoparticles to lung endothelium: Synergy between physical, chemical and biological approaches. Biomaterials. 2015;68:1–8.

    Article  CAS  PubMed  Google Scholar 

  111. Zhang CY, Lin W, Gao J, Shi X, Davaritouchaee M, Nielsen AE, Mancini RJ, Wang Z. pH-Responsive Nanoparticles Targeted to Lungs for Improved Therapy of Acute Lung Inflammation/Injury. ACS Appl Mater Interfaces. 2019;11(18):16380–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ding Y, Lv B, Zheng J, Lu C, Liu J, Lei Y, Yang M, Wang Y, Li Z, Yang Y, Gong W, Han J, Gao C. RBC-hitchhiking chitosan nanoparticles loading methylprednisolone for lung-targeting delivery. J Control Release. 2022;341:702–15.

    Article  CAS  PubMed  Google Scholar 

  113. Ye H, Shen Z, Wei M, Li Y. Red blood cell hitchhiking enhances the accumulation of nano- and micro-particles in the constriction of a stenosed microvessel. Soft Matter. 2021;17(1):40–56.

    Article  CAS  PubMed  Google Scholar 

  114. Aghili ZS, Mirzaei SA, Banitalebi-Dehkordi M. A potential hypothesis for 2019-nCoV infection therapy through delivery of recombinant ACE2 by red blood cell-hitchhiking. Journal of Biological Research-Thessaloniki. 2020;27(1):17.

    Article  CAS  Google Scholar 

  115. Ukidve A, Zhao Z, Fehnel A, Krishnan V, Pan Daniel C, Gao Y, Mandal A, Muzykantov V, Mitragotri S. Erythrocyte-driven immunization via biomimicry of their natural antigen-presenting function. Proc Natl Acad Sci. 2020;117(30):17727–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Anderson HL, Brodsky IE, Mangalmurti NS. The Evolving Erythrocyte: Red Blood Cells as Modulators of Innate Immunity. J Immunol. 2018;201(5):1343.

    Article  CAS  PubMed  Google Scholar 

  117. Nombela I, Ortega-Villaizan MdM. Nucleated red blood cells: Immune cell mediators of the antiviral response. PLOS Pathogens. 2018;14(4):e1006910.

  118. Chapanian R, Constantinescu I, Brooks DE, Scott MD, Kizhakkedathu JN. In vivo circulation, clearance, and biodistribution of polyglycerol grafted functional red blood cells. Biomaterials. 2012;33(10):3047–57.

    Article  CAS  PubMed  Google Scholar 

  119. Briones E, Colino CI, Millán CG, Lanao JM. Increasing the selectivity of amikacin in rat peritoneal macrophages using carrier erythrocytes. Eur J Pharm Sci. 2009;38(4):320–4.

    Article  CAS  PubMed  Google Scholar 

  120. Millán CG, Castañeda AZ, López FG, Marinero MLS, Lanao JM. Pharmacokinetics and biodistribution of amikacin encapsulated in carrier erythrocytes. J Antimicrob Chemother. 2008;61(2):375–81.

    Article  Google Scholar 

  121. Han X, Shen S, Fan Q, Chen G, Archibong E, Dotti G, Liu Z, Gu Z, Wang C. Red blood cell–derived nanoerythrosome for antigen delivery with enhanced cancer immunotherapy. Science Advances. 2019;5(10):eaaw6870.

  122. Sun X, Han X, Xu L, Gao M, Xu J, Yang R, Liu Z. Surface-Engineering of Red Blood Cells as Artificial Antigen Presenting Cells Promising for Cancer Immunotherapy. Small. 2017;13(40):1701864.

    Article  Google Scholar 

  123. Banz A, Cremel M, Mouvant A, Guerin N, Horand F, Godfrin Y. Tumor Growth Control Using Red Blood Cells as the Antigen Delivery System and Poly(I: C). Journal of Immunotherapy. 2012;35(5).

  124. Sun L, Shen F, Xu J, Han X, Fan C, Liu Z. DNA-Edited Ligand Positioning on Red Blood Cells to Enable Optimized T Cell Activation for Adoptive Immunotherapy. Angew Chem Int Ed. 2020;59(35):14842–53.

    Article  CAS  Google Scholar 

  125. McArdel SL, Dugast A-S, Hoover ME, Bollampalli A, Hong E, Castano Z, Leonard SC, Pawar S, Mellen J, Muriuki K, McLaughlin DC, Bayhi N, Carpenter CL, Turka LA, Wickham TJ, Elloul S. Anti-tumor effects of RTX-240: an engineered red blood cell expressing 4–1BB ligand and interleukin-15. Cancer Immunol Immunother. 2021;70(9):2701–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lorentz Kristen M, Kontos S, Diaceri G, Henry H, Hubbell Jeffrey A. Engineered binding to erythrocytes induces immunological tolerance to E. coli asparaginase. Science Advances;1(6):e1500112.

  127. Wang F, Zong R, Chen G. Erythrocyte-enabled immunomodulation for vaccine delivery. J Control Release. 2022;341:314–28.

    Article  CAS  PubMed  Google Scholar 

  128. Aktar N, Chen T, Moudud A, Xu S, Zhou X. Tolerogenic vehicles of antigens in the antigen-specific immunotherapy for autoimmunity. Journal of Drug Delivery Science and Technology. 2021;65: 102772.

    Article  CAS  Google Scholar 

  129. Alvarez FJ, Jordán JA, Calleja P, Lotero LA, Olmos G, Díez JC, Tejedor MC. Cross-linking treatment of loaded erythrocytes increases delivery of encapsulated substance to macrophages. Biotechnol Appl Biochem. 1998;27(2):139–43.

    CAS  PubMed  Google Scholar 

  130. Antonelou MH, Kriebardis AG, Papassideri IS. Aging and death signalling in mature red cells: from basic science to transfusion practice. Blood Transfus. 2010;8 Suppl 3(Suppl 3):s39-s47.

  131. Thiagarajan P, Parker CJ, Prchal JT. How Do Red Blood Cells Die? 2021;12.

  132. Lutz HU. Comment Concerning the Role of CD47 and Signal Regulatory Protein Alpha in Regulating the Clearance of Aged Red Blood Cells. Transfusion Medicine and Hemotherapy. 2013;40(2):140–1.

    Article  Google Scholar 

  133. Klei TRL, Dalimot J, Nota B, Veldthuis M, Mul FPJ, Rademakers T, Hoogenboezem M, Nagelkerke SQ, van Ijcken WFJ, Oole E, Svendsen P, Moestrup SK, van Alphen FPJ, Meijer AB, Kuijpers TW, van Zwieten R, van Bruggen R. Hemolysis in the spleen drives erythrocyte turnover. Blood. 2020;136(14):1579–89.

    CAS  PubMed  Google Scholar 

  134. Saleemuddin M, Zimmermann U, Schneeweiß F. Preparation of Human Erythrocyte Ghosts in Isotonic Solution: Haemoglobin Content and Polypeptide Composition. Zeitschrift für Naturforschung C. 1977;32(7–8):627–31.

    Article  CAS  Google Scholar 

  135. Tilney LG, Detmers P. Actin in erythrocyte ghosts and its association with spectrin. Evidence for a nonfilamentous form of these two molecules in situ. Journal of Cell Biology. 1975;66(3):508–520.

  136. Ivanov IT, Paarvanova BK, Ivanov V, Smuda K, Bäumler H, Georgieva R. Effects of heat and freeze on isolated erythrocyte submembrane skeletons. Gen Physiol Biophys. 2017;36(2):155–65.

    Article  CAS  PubMed  Google Scholar 

  137. Yuan J, Yin W-y, Wang Y, Chen J, Zhang Z-m, Tang Y-x, Pei S-y, Tan L-x, Hu X-w, Fan X-g, Li N. Cargo-laden erythrocyte ghosts target liver mediated by macrophages. Transfusion and Apheresis Science. 2021;60(1):102930.

  138. Wilson BW, Henderson JD, Ramirez A, O’Malley MA. Standardization of Clinical Cholinesterase Measurements. Int J Toxicol. 2002;21(5):385–8.

    Article  CAS  PubMed  Google Scholar 

  139. Fye HKS, Mrosso P, Bruce L, Thézénas M-L, Davis S, Fischer R, Rwegasira GL, Makani J, Kessler BM. A robust mass spectrometry method for rapid profiling of erythrocyte ghost membrane proteomes. Clin Proteomics. 2018;15(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Hod EA, Zhang N, Sokol SA, Wojczyk BS, Francis RO, Ansaldi D, Francis KP, Della-Latta P, Whittier S, Sheth S, Hendrickson JE, Zimring JC, Brittenham GM, Spitalnik SL. Transfusion of red blood cells after prolonged storage produces harmful effects that are mediated by iron and inflammation. Blood. 2010;115(21):4284–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Streuli Ra Fau - Kanofsky JR, Kanofsky Jr Fau - Gunn RB, Gunn Rb Fau - Yachnin S, Yachnin S. Diminished osmotic fragility of human erythrocytes following the membrane insertion of oxygenated sterol compounds. (0006–4971 (Print)).

  142. Dong X, Niu Y, Ding Y, Wang Y, Zhao J, Leng W, Qin L. Formulation and Drug Loading Features of Nano-Erythrocytes. Nanoscale Res Lett. 2017;12(1):202.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Gómez Flores V, Martínez-Martínez A, Roacho Pérez JA, Acosta Bezada J, Aguirre-Tostado FS, García Casillas PE. Biointeraction of Erythrocyte Ghost Membranes with Gold Nanoparticles Fluorescents. Materials. 2021;14(21).

  144. Liu X, Li Y-p, Zhong Z-m, Tan H-q, Lin H-p, Chen S-j, Fu Y-c, Xu W-c, Wei C-j. Incorporation of Viral Glycoprotein VSV-G Improves the Delivery of DNA by Erythrocyte Ghost into Cells Refractory to Conventional Transfection. Applied Biochemistry and Biotechnology. 2017;181(2):748–761.

  145. Okimoto T, Friedmann T, Miyanohara A. VSV-G Envelope Glycoprotein Forms Complexes with Plasmid DNA and MLV Retrovirus-like Particles in Cell-free Conditions and Enhances DNA Transfection. Mol Ther. 2001;4(3):232–8.

    Article  CAS  PubMed  Google Scholar 

  146. Kim S-H, Kim E-J, Hou J-H, Kim J-M, Choi H-G, Shim C-K, Oh Y-K. Opsonized erythrocyte ghosts for liver-targeted delivery of antisense oligodeoxynucleotides. Biomaterials. 2009;30(5):959–67.

    Article  PubMed  Google Scholar 

  147. Deák R, Mihály J, Szigyártó IC, Beke-Somfai T, Turiák L, Drahos L, Wacha A, Bóta A, Varga Z. Nanoerythrosomes tailoring: Lipid induced protein scaffolding in ghost membrane derived vesicles. Mater Sci Eng, C. 2020;109: 110428.

    Article  Google Scholar 

  148. Deák R, Mihály J, Szigyártó IC, Wacha A, Lelkes G, Bóta A. Physicochemical characterization of artificial nanoerythrosomes derived from erythrocyte ghost membranes. Colloids Surf, B. 2015;135:225–34.

    Article  Google Scholar 

  149. Capossela S, Mathew V, Boos M, Bertolo A, Krupkova O, Stoyanov JV. Novel Fast and Reliable Method for Nano-Erythrosome Production Using Shear Force. Drug Des Devel Ther. 2020;14:4547–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chhabria V, Beeton S. Development of nanosponges from erythrocyte ghosts for removal of streptolysin-O from mammalian blood. Nanomedicine. 2016;11(21):2797–807.

    CAS  PubMed  Google Scholar 

  151. AlQahtani SA, Harisa GI, Alomrani AH, Alanazi FK, Badran MM. Improved pharmacokinetic and biodistribution of 5-fluorouracil loaded biomimetic nanoerythrocytes decorated nanocarriers for liver cancer treatment. Colloids Surf, B. 2021;197: 111380.

    Article  CAS  Google Scholar 

  152. Berikkhanova K, Omarbaev R, Gulyayev A, Shulgau Z, Ibrasheva D, Adilgozhina G, Sergazy S, Zhumadilov Z, Askarova S. Red blood cell ghosts as promising drug carriers to target wound infections. Med Eng Phys. 2016;38(9):877–84.

    Article  PubMed  Google Scholar 

  153. Hod EA, Brittenham Gm Fau - Billote GB, Billote Gb Fau - Francis RO, Francis Ro Fau - Ginzburg YZ, Ginzburg Yz Fau - Hendrickson JE, Hendrickson Je Fau - Jhang J, Jhang J Fau - Schwartz J, Schwartz J Fau - Sharma S, Sharma S Fau - Sheth S, Sheth S Fau - Sireci AN, Sireci An Fau - Stephens HL, Stephens Hl Fau - Stotler BA, Stotler Ba Fau - Wojczyk BS, Wojczyk Bs Fau - Zimring JC, Zimring Jc Fau - Spitalnik SL, Spitalnik SL. Transfusion of human volunteers with older, stored red blood cells produces extravascular hemolysis and circulating non-transferrin-bound iron. (1528–0020 (Electronic)).

  154. Mambrini G, Mandolini M, Rossi L, Pierigè F, Capogrossi G, Salvati P, Serafini S, Benatti L, Magnani M. Ex vivo encapsulation of dexamethasone sodium phosphate into human autologous erythrocytes using fully automated biomedical equipment. Int J Pharm. 2017;517(1):175–84.

    Article  CAS  PubMed  Google Scholar 

  155. Boogaard C, Dixon GJECR. Red cell ghost-mediated microinjection of RNA into HeLa cells: I. A comparison of two techniques for the entrapment and microinjection of tRNA and mRNA. 1983;143(1):175–190.

  156. Antonelli A, Sfara C, Manuali E, Bruce IJ, Magnani M. Encapsulation of superparamagnetic nanoparticles into red blood cells as new carriers of MRI contrast agents. Nanomedicine. 2011;6(2):211–23.

    Article  CAS  PubMed  Google Scholar 

  157. Rahman MH, Wong CHN, Lee MM, Chan MK, Ho Y-P. Efficient encapsulation of functional proteins into erythrocytes by controlled shear-mediated membrane deformation. Lab Chip. 2021;21(11):2121–8.

    Article  CAS  PubMed  Google Scholar 

  158. Green R, Lamon J, Curran D. Clinical trial of desferrioxamine entrapped in red cell ghosts. The Lancet. 1980;316(8190):327–30.

    Article  Google Scholar 

  159. Malhotra S, Dumoga S, Singh N. Red blood cells membrane-derived nanoparticles: Applications and key challenges in their clinical translation. WIREs Nanomedicine and Nanobiotechnology. 2022;n/a(n/a):e1776.

  160. Pan Y, Wang F, Liu Y, Jiang J, Yang Y-G, Wang H. Studying the mechanism of CD47–SIRPα interactions on red blood cells by single molecule force spectroscopy. Nanoscale. 2014;6(17):9951–4.

    Article  CAS  PubMed  Google Scholar 

  161. Hu Che-Ming J, Zhang L, Aryal S, Cheung C, Fang Ronnie H, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci. 2011;108(27):10980–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Gao W, Hu C-MJ, Fang RH, Luk BT, Su J, Zhang L. Surface Functionalization of Gold Nanoparticles with Red Blood Cell Membranes. Advanced Materials. 2013;25(26):3549–3553.

  163. Li S, Zhang L. Erythrocyte membrane nano-capsules: biomimetic delivery and controlled release of photothermal–photochemical coupling agents for cancer cell therapy. Dalton Trans. 2020;49(8):2645–51.

    Article  CAS  PubMed  Google Scholar 

  164. Ran L, Lu B, Qiu H, Zhou G, Jiang J, Hu E, Dai F, Lan G. Erythrocyte membrane-camouflaged nanoworms with on-demand antibiotic release for eradicating biofilms using near-infrared irradiation. Bioactive Materials. 2021;6(9):2956–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Ren X, Zheng R, Fang X, Wang X, Zhang X, Yang W, Sha X. Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy. Biomaterials. 2016;92:13–24.

    Article  CAS  PubMed  Google Scholar 

  166. Rao L, Cai B, Bu L-L, Liao Q-Q, Guo S-S, Zhao X-Z, Dong W-F, Liu W. Microfluidic Electroporation-Facilitated Synthesis of Erythrocyte Membrane-Coated Magnetic Nanoparticles for Enhanced Imaging-Guided Cancer Therapy. ACS Nano. 2017;11(4):3496–505.

    Article  CAS  PubMed  Google Scholar 

  167. Lin K, Cao Y, Zheng D, Li Q, Liu H, Yu P, Li J, Xue Y, Wu M. Facile phase transfer of hydrophobic Fe3O4@Cu2−xS nanoparticles by red blood cell membrane for MRI and phototherapy in the second near-infrared window. Journal of Materials Chemistry B. 2020;8(6):1202–11.

    Article  CAS  PubMed  Google Scholar 

  168. Jakobsson U, Mäkilä E, Rahikkala A, Imlimthan S, Lampuoti J, Ranjan S, Heino J, Jalkanen P, Köster U, Mizohata K, Santos HA, Salonen J, Airaksinen AJ, Sarparanta M, Helariutta K. Preparation and in vivo evaluation of red blood cell membrane coated porous silicon nanoparticles implanted with 155Tb. Nucl Med Biol. 2020;84–85:102–10.

    Article  PubMed  Google Scholar 

  169. Peng H, Xu Z, Wang Y, Feng N, Yang W, Tang J. Biomimetic Mesoporous Silica Nanoparticles for Enhanced Blood Circulation and Cancer Therapy. ACS Appl Bio Mater. 2020;3(11):7849–57.

    Article  CAS  PubMed  Google Scholar 

  170. Nazemidashtarjandi S, Farnoud AM. Membrane outer leaflet is the primary regulator of membrane damage induced by silica nanoparticles in vesicles and erythrocytes. Environ Sci Nano. 2019;6(4):1219–32.

    Article  CAS  Google Scholar 

  171. Li M, Fang H, Liu Q, Gai Y, Yuan L, Wang S, Li H, Hou Y, Gao M, Lan X. Red blood cell membrane-coated upconversion nanoparticles for pretargeted multimodality imaging of triple-negative breast cancer. Biomaterials Science. 2020;8(7):1802–14.

    Article  CAS  PubMed  Google Scholar 

  172. Rao L, Meng Q-F, Bu L-L, Cai B, Huang Q, Sun Z-J, Zhang W-F, Li A, Guo S-S, Liu W, Wang T-H, Zhao X-Z. Erythrocyte Membrane-Coated Upconversion Nanoparticles with Minimal Protein Adsorption for Enhanced Tumor Imaging. ACS Appl Mater Interfaces. 2017;9(3):2159–68.

    Article  CAS  PubMed  Google Scholar 

  173. Ding H, Lv Y, Ni D, Wang J, Tian Z, Wei W, Ma G. Erythrocyte membrane-coated NIR-triggered biomimetic nanovectors with programmed delivery for photodynamic therapy of cancer. Nanoscale. 2015;7(21):9806–15.

    Article  CAS  PubMed  Google Scholar 

  174. Wang Z, Cheng L, Sun Y, Wei X, Cai B, Liao L, Zhang Y, Zhao X-Z. Enhanced Isolation of Fetal Nucleated Red Blood Cells by Enythrocyte-Leukocyte Hybrid Membrane-Coated Magnetic Nanoparticles for Noninvasive Pregnant Diagnostics. Anal Chem. 2021;93(2):1033–42.

    Article  CAS  PubMed  Google Scholar 

  175. Zou S, Wang B, Wang C, Wang Q, Zhang L. Cell membrane-coated nanoparticles: research advances. Nanomedicine. 2020;15(6):625–41.

    Article  CAS  PubMed  Google Scholar 

  176. Zhuang J, Duan Y, Zhang Q, Gao W, Li S, Fang RH, Zhang L. Multimodal enzyme delivery and therapy enabled by cell membrane-coated metal-organic framework nanoparticles. Nano Lett. 2020;20(5):4051–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Liu X, Jansman MMT, Hosta-Rigau L. Haemoglobin-loaded metal organic framework-based nanoparticles camouflaged with a red blood cell membrane as potential oxygen delivery systems. Biomaterials Science. 2020;8(21):5859–73.

    Article  CAS  PubMed  Google Scholar 

  178. Gao M, Liang C, Song X, Chen Q, Jin Q, Wang C, Liu Z. Erythrocyte-membrane-enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy. Adv Mater. 2017;29(35):1701429.

    Article  Google Scholar 

  179. Ren H, Liu J, Li Y, Wang H, Ge S, Yuan A, Hu Y, Wu J. Oxygen self-enriched nanoparticles functionalized with erythrocyte membranes for long circulation and enhanced phototherapy. Acta Biomater. 2017;59:269–82.

    Article  CAS  PubMed  Google Scholar 

  180. Zhang D, Zhou C, Liu F, Ding T, Wang Z. Red blood cells membrane vehicle co-delivering DOX and IR780 for effective prostate cancer therapy. J Mater Res. 2020;35(22):3116–23.

    Article  CAS  Google Scholar 

  181. Wan G, Chen B, Li L, Wang D, Shi S, Zhang T, Wang Y, Zhang L, Wang Y. Nanoscaled red blood cells facilitate breast cancer treatment by combining photothermal/photodynamic therapy and chemotherapy. Biomaterials. 2018;155:25–40.

    Article  CAS  PubMed  Google Scholar 

  182. Qian H, Qian K, Cai J, Yang Y, Zhu L, Liu B. Therapy for gastric cancer with peritoneal metastasis using injectable albumin hydrogel hybridized with paclitaxel-loaded red blood cell membrane nanoparticles. ACS Biomater Sci Eng. 2019;5(2):1100–12.

    Article  CAS  PubMed  Google Scholar 

  183. Chai Z, Hu X, Wei X, Zhan C, Lu L, Jiang K, Su B, Ruan H, Ran D, Fang RH, Zhang L, Lu W. A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery. J Control Release. 2017;264:102–11.

    Article  CAS  PubMed  Google Scholar 

  184. Guo Y, Wang D, Song Q, Wu T, Zhuang X, Bao Y, Kong M, Qi Y, Tan S, Zhang Z. Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma. ACS Nano. 2015;9(7):6918–33.

    Article  CAS  PubMed  Google Scholar 

  185. Liu W, Ruan M, Wang Y, Song R, Ji X, Xu J, Dai J, Xue W. Light-Triggered biomimetic nanoerythrocyte for tumor-targeted lung metastatic combination therapy of malignant melanoma. Small. 2018;14(38):1801754.

    Article  Google Scholar 

  186. Tan S, Wu T, Zhang D, Zhang Z. Cell or cell membrane-based drug delivery systems. Theranostics. 2015;5(8):863–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Sun R, Ge Y, Liu H, He P, Song W, Zhang X. Erythrocyte Membrane-Encapsulated Glucose Oxidase and Manganese/Ferrite Nanocomposite as a Biomimetic “All in One” Nanoplatform for Cancer Therapy. ACS Appl Bio Mater. 2021;4(1):701–10.

    Article  CAS  Google Scholar 

  188. Aryal S, Hu C-MJ, Fang RH, Dehaini D, Carpenter C, Zhang D-E, Zhang L. Erythrocyte membrane-cloaked polymeric nanoparticles for controlled drug loading and release. Nanomedicine. 2013;8(8):1271–1280.

  189. Zhang Z, Qian H, Yang M, Li R, Hu J, Li L, Yu L, Liu B, Qian X. Gambogic acid-loaded biomimetic nanoparticles in colorectal cancer treatment. Int J Nanomedicine. 2017;12:1593–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Sathiyaseelan A, Saravanakumar K, Manivasagan P, Jeong MS, Jang E-S, Wang M-H. Folic acid conjugated chitosan encapsulated palladium nanoclusters for NIR triggered photothermal breast cancer treatment. Carbohyd Polym. 2022;280: 119021.

    Article  CAS  Google Scholar 

  191. Huang X, Wu B, Li J, Shang Y, Chen W, Nie X, Gui RA-O. Anti-tumour effects of red blood cell membrane-camouflaged black phosphorous quantum dots combined with chemotherapy and anti-inflammatory therapy. (2169–141X (Electronic)).

  192. Liang X, Li H, Zhang A, Tian X, Guo H, Zhang H, Yang J, Zeng Y. Red blood cell biomimetic nanoparticle with anti-inflammatory, anti-oxidative and hypolipidemia effect ameliorated atherosclerosis therapy. Nanomedicine: Nanotechnology, Biology and Medicine. 2022;41:102519.

  193. Xue X, Liu H, Wang S, Hu Y, Huang B, Li M, Gao J, Wang X, Su J. Neutrophil-erythrocyte hybrid membrane-coated hollow copper sulfide nanoparticles for targeted and photothermal/ anti-inflammatory therapy of osteoarthritis. Compos B Eng. 2022;237: 109855.

    Article  CAS  Google Scholar 

  194. Liang H, Huang K, Su T, Li Z, Hu S, Dinh P-U, Wrona EA, Shao C, Qiao L, Vandergriff AC, Hensley MT, Cores J, Allen T, Zhang H, Zeng Q, Xing J, Freytes DO, Shen D, Yu Z, Cheng K. Mesenchymal stem cell/red blood cell-inspired nanoparticle therapy in mice with carbon tetrachloride-induced acute liver failure. ACS Nano. 2018;12(7):6536–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Hayashi K, Yamada S, Hayashi H, Sakamoto W, Yogo T. Red blood cell-like particles with the ability to avoid lung and spleen accumulation for the treatment of liver fibrosis. Biomaterials. 2018;156:45–55.

    Article  CAS  PubMed  Google Scholar 

  196. Wu X, Zhang X, Feng W, Feng H, Ding Z, Zhao Q, Li X, Tang N, Zhang P, Li J, Wang J. A targeted erythrocyte membrane-encapsulated drug-delivery system with anti-osteosarcoma and anti-osteolytic effects. ACS Appl Mater Interfaces. 2021;13(24):27920–33.

    Article  CAS  PubMed  Google Scholar 

  197. Xuan M, Shao J, Zhao J, Li Q, Dai L, Li J. Magnetic mesoporous silica nanoparticles cloaked by red blood cell membranes: applications in cancer therapy. Angew Chem Int Ed. 2018;57(21):6049–53.

    Article  CAS  Google Scholar 

  198. Biagiotti S, Paoletti MF, Fraternale A, Rossi L, Magnani M. Drug delivery by red blood cells. IUBMB Life. 2011;63(8):621–31.

    Article  CAS  PubMed  Google Scholar 

  199. Hui L, Qin S, Yang L. Upper critical solution temperature polymer, photothermal agent, and erythrocyte membrane coating: an unexplored recipe for making drug carriers with spatiotemporally controlled cargo release. ACS Biomater Sci Eng. 2016;2(12):2127–32.

    Article  CAS  PubMed  Google Scholar 

  200. Su J, Sun H, Meng Q, Zhang P, Yin Q, Li Y. Enhanced blood suspensibility and laser-activated tumor-specific drug release of theranostic mesoporous silica nanoparticles by functionalizing with erythrocyte membranes. Theranostics. 2017;7(3):523–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Hsieh C-C, Kang S-T, Lin Y-H, Ho Y-J, Wang C-H, Yeh C-K, Chang C-W. Biomimetic acoustically-responsive vesicles for theranostic applications. Theranostics. 2015;5(11):1264–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Zhang H, Liang Y, Zhao H, Qi R, Chen Z, Yuan H, Liang H, Wang L. Dual-mode antibacterial conjugated polymer nanoparticles for photothermal and photodynamic therapy. Macromol Biosci. 2020;20(2):1900301.

    Article  CAS  Google Scholar 

  203. Sun D, Chen J, Wang Y, Ji H, Peng R, Jin L, Wu W. Advances in refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery. Theranostics. 2019;9(23):6885–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Chen W, Zeng K, Liu H, Ouyang J, Wang L, Liu Y, Wang H, Deng L, Liu Y-N. Cell membrane camouflaged hollow prussian blue nanoparticles for synergistic photothermal-/chemotherapy of cancer. Adv Func Mater. 2017;27(11):1605795.

    Article  Google Scholar 

  205. Pei Q, Hu X, Zheng X, Liu S, Li Y, Jing X, Xie Z. Light-activatable red blood cell membrane-camouflaged dimeric prodrug nanoparticles for synergistic photodynamic/chemotherapy. ACS Nano. 2018;12(2):1630–41.

    Article  CAS  PubMed  Google Scholar 

  206. Li Q, Lin B, Li Y, Lu N. Erythrocyte-camouflaged mesoporous titanium dioxide nanoplatform for an ultrasound-mediated sequential therapies of breast cancer. Int J Nanomedicine. 2021;16:3875–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Zhang H, Chen J, Zhu X, Ren Y, Cao F, Zhu L, Hou L, Zhang H, Zhang Z. Ultrasound induced phase-transition and invisible nanobomb for imaging-guided tumor sonodynamic therapy. Journal of Materials Chemistry B. 2018;6(38):6108–21.

    Article  CAS  PubMed  Google Scholar 

  208. Feng X, Ma L, Lei J, Ouyang Q, Zeng Y, Luo Y, Zhang X, Song Y, Li G, Tan L, Liu X, Yang C. Piezo-augmented sonosensitizer with strong ultrasound-propelling ability for efficient treatment of osteomyelitis. ACS Nano. 2022;16(2):2546–57.

    Article  CAS  PubMed  Google Scholar 

  209. Yan J, Yu J, Wang C, Gu Z. Red blood cells for drug delivery. Small Methods. 2017;1(12):1700270.

    Article  Google Scholar 

  210. Ye S, Wang F, Fan Z, Zhu Q, Tian H, Zhang Y, Jiang B, Hou Z, Li Y, Su G. Light/pH-triggered biomimetic red blood cell membranes camouflaged small molecular drug assemblies for imaging-guided combinational chemo-photothermal therapy. ACS Appl Mater Interfaces. 2019;11(17):15262–75.

    Article  CAS  PubMed  Google Scholar 

  211. Lai P-Y, Huang R-Y, Lin S-Y, Lin Y-H, Chang C-W. Biomimetic stem cell membrane-camouflaged iron oxide nanoparticles for theranostic applications. RSC Adv. 2015;5(119):98222–30.

    Article  CAS  Google Scholar 

  212. Sun X, Wang C, Gao M, Hu A, Liu Z. Remotely Controlled Red Blood Cell Carriers for Cancer Targeting and Near-Infrared Light-Triggered Drug Release in Combined Photothermal-Chemotherapy. Adv Func Mater. 2015;25(16):2386–94.

    Article  CAS  Google Scholar 

  213. Fang RH, Jiang Y, Fang JC, Zhang L. Cell membrane-derived nanomaterials for biomedical applications. Biomaterials. 2017;128:69–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Bidkar AP, Sanpui P, Ghosh SS. Transferrin-Conjugated Red Blood Cell Membrane-Coated Poly(lactic-co-glycolic acid) Nanoparticles for the Delivery of Doxorubicin and Methylene Blue. ACS Applied Nano Materials. 2020;3(4):3807–19.

    Article  CAS  Google Scholar 

  215. Chen H-Y, Deng J, Wang Y, Wu C-Q, Li X, Dai H-W. Hybrid cell membrane-coated nanoparticles: A multifunctional biomimetic platform for cancer diagnosis and therapy. Acta Biomater. 2020;112:1–13.

    Article  PubMed  Google Scholar 

  216. Chen Z, Wang W, Li Y, Wei C, Zhong P, He D, Liu H, Wang P, Huang Z, Zhu W, Zhou Y, Qin L. Folic acid-modified erythrocyte membrane loading dual drug for targeted and chemo-photothermal synergistic cancer therapy. Mol Pharm. 2021;18(1):386–402.

    Article  CAS  PubMed  Google Scholar 

  217. Falsafi M, Zahiri M, Saljooghi AS, Abnous K, Taghdisi SM, Sazgarnia A, Ramezani M, Alibolandi M. Aptamer targeted red blood cell membrane-coated porphyrinic copper-based MOF for guided photochemotherapy against metastatic breast cancer. Microporous Mesoporous Mater. 2021;325: 111337.

    Article  CAS  Google Scholar 

  218. Zhao Y, Wang J, Cai X, Ding P, Lv H, Pei R. Metal-organic frameworks with enhanced photodynamic therapy: Synthesis, erythrocyte membrane camouflage, and aptamer-targeted aggregation. ACS Appl Mater Interfaces. 2020;12(21):23697–706.

    Article  CAS  PubMed  Google Scholar 

  219. Zhang C, Zhang P-Q, Guo S, Chen G, Zhao Z, Wang G-X, Zhu B. Application of Biomimetic Cell-Derived Nanoparticles with Mannose Modification as a Novel Vaccine Delivery Platform against Teleost Fish Viral Disease. ACS Biomater Sci Eng. 2020;6(12):6770–7.

    Article  CAS  PubMed  Google Scholar 

  220. Zhu DM, Xie W Fau - Xiao Y-S, Xiao Ys Fau - Suo M, Suo M Fau - Zan M-H, Zan Mh Fau - Liao Q-Q, Liao Qq Fau - Hu X-J, Hu Xj Fau - Chen L-B, Chen Lb Fau - Chen B, Chen B Fau - Wu W-T, Wu Wt Fau - Ji L-W, Ji Lw Fau - Huang H-M, Huang Hm Fau - Guo S-S, Guo Ss Fau - Zhao X-Z, Zhao Xz Fau - Liu Q-Y, Liu Qy Fau - Liu W, Liu W. Erythrocyte membrane-coated gold nanocages for targeted photothermal and chemical cancer therapy. (1361–6528 (Electronic)).

  221. Mao J, Bian Y, Zhang Q, Kong L, Shi X, Hu J, Yang M, Li L, Qian H, Liu B, Qian X. Antitumor activity of iRGD-modified red blood cell membrane nanoparticles loaded with Juglone and Oxaliplatin against colorectal cancer. J Biomater Appl. 2021;36(7):1301–16.

    Article  PubMed  Google Scholar 

  222. Fu Q, Lv P, Chen Z, Ni D, Zhang L, Yue H, Yue Z, Wei W, Ma G. Programmed co-delivery of paclitaxel and doxorubicin boosted by camouflaging with erythrocyte membrane. Nanoscale. 2015;7(9):4020–30.

    Article  CAS  PubMed  Google Scholar 

  223. Gao W, Zhang LJAJ. Engineering re„ bloo„ cell membrane coated nanoparticles for broad biomedical applications. 2015;61:738–746.

  224. Chai Z, Ran D, Lu L, Zhan C, Ruan H, Hu X, Xie C, Jiang K, Li J, Zhou J, Wang J, Zhang Y, Fang RH, Zhang L, Lu W. Ligand-Modified Cell Membrane Enables the Targeted Delivery of Drug Nanocrystals to Glioma. ACS Nano. 2019;13(5):5591–601.

    Article  CAS  PubMed  Google Scholar 

  225. Fu S, Liang M, Wang Y, Cui L, Gao C, Chu X, Liu Q, Feng Y, Gong W, Yang M, Li Z, Yang C, Xie X, Yang Y, Gao C. Dual-Modified Novel Biomimetic Nanocarriers Improve Targeting and Therapeutic Efficacy in Glioma. ACS Appl Mater Interfaces. 2019;11(2):1841–54.

    Article  CAS  PubMed  Google Scholar 

  226. Li H, Peng Q, Yang L, Lin Y, Chen S, Qin Y, Li S, Yu X, Zhang L. High-Performance Dual Combination Therapy for Cancer Treatment with Hybrid Membrane-Camouflaged Mesoporous Silica Gold Nanorods. ACS Appl Mater Interfaces. 2020;12(52):57732–45.

    Article  CAS  PubMed  Google Scholar 

  227. Jiao X, Yu X, Gong C, Zhu H, Zhang B, Wang R, Yuan YJCpb. Erythrocyte-cancer hybrid membrane-camouflaged mesoporous silica nanoparticles loaded with Gboxin for glioma-targeting therapy. 2022.

  228. Shan X, Zhang C, Mai C, Hu X, Cheng N, Chen W, Peng D, Wang L, Ji Z, Xie Y. The Biogenesis, Biological Functions, and Applications of Macrophage-Derived Exosomes. 2021;8.

  229. Dehaini D, Wei X, Fang RH, Masson S, Angsantikul P, Luk BT, Zhang Y, Ying M, Jiang Y, Kroll AV, Gao W, Zhang L. Erythrocyte-Platelet Hybrid Membrane Coating for Enhanced Nanoparticle Functionalization. Adv Mater. 2017;29(16):1606209.

    Article  Google Scholar 

  230. Esteban-Fernández de Ávila B, Angsantikul P, Ramírez-Herrera Doris E, Soto F, Teymourian H, Dehaini D, Chen Y, Zhang L, Wang J. Hybrid biomembrane–functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins. Science Robotics. 2018;3(18):eaat0485.

  231. You P, Mayier A, Zhou H, Yang A, Fan J, Ma S, Liu B, Jiang Y. Targeting and promoting atherosclerosis regression using hybrid membrane coated nanomaterials via alleviated inflammation and enhanced autophagy. Appl Mater Today. 2022;26: 101386.

    Article  Google Scholar 

  232. Xiong J, Wu M, Chen J, Liu Y, Chen Y, Fan G, Liu Y, Cheng J, Wang Z, Wang S, Liu Y, Zhang W. Cancer-Erythrocyte Hybrid Membrane-Camouflaged Magnetic Nanoparticles with Enhanced Photothermal-Immunotherapy for Ovarian Cancer. ACS Nano. 2021;15(12):19756–70.

    Article  CAS  PubMed  Google Scholar 

  233. Cheng H, Fan J-H, Zhao L-P, Fan G-L, Zheng R-R, Qiu X-Z, Yu X-Y, Li S-Y, Zhang X-Z. Chimeric peptide engineered exosomes for dual-stage light guided plasma membrane and nucleus targeted photodynamic therapy. Biomaterials. 2019;211:14–24.

    Article  CAS  PubMed  Google Scholar 

  234. Wang Y, Zhang K, Qin X, Li T, Qiu J, Yin T, Huang J, McGinty S, Pontrelli G, Ren J, Wang Q, Wu W, Wang G. Biomimetic Nanotherapies: Red Blood Cell Based Core-Shell Structured Nanocomplexes for Atherosclerosis Management. Advanced Science. 2019;6(12):1900172.

    Article  PubMed  PubMed Central  Google Scholar 

  235. Shao J, Abdelghani M, Shen G, Cao S, Williams DS, van Hest JCM. Erythrocyte membrane modified janus polymeric motors for thrombus therapy. ACS Nano. 2018;12(5):4877–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Rossi L, Fraternale A, Bianchi M, Magnani M. Red Blood Cell Membrane Processing for Biomedical Applications. 2019;10.

  237. Li M, Xu Z, Zhang L, Cui M, Zhu M, Guo Y, Sun R, Han J, Song E, He Y, Su Y. Targeted noninvasive treatment of choroidal neovascularization by hybrid cell-membrane-cloaked biomimetic nanoparticles. ACS Nano. 2021;15(6):9808–19.

    Article  PubMed  Google Scholar 

  238. Wang Y, Luan Z, Zhao C, Bai C, Yang K. Target delivery selective CSF-1R inhibitor to tumor-associated macrophages via erythrocyte-cancer cell hybrid membrane camouflaged pH-responsive copolymer micelle for cancer immunotherapy. Eur J Pharm Sci. 2020;142: 105136.

    Article  CAS  PubMed  Google Scholar 

  239. Kalluri R, LeBleu Valerie S. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):eaau6977.

  240. Wiklander Oscar PB, Brennan Meadhbh Á, Lötvall J, Breakefield Xandra O, Samir ELA. Advances in therapeutic applications of extracellular vesicles. Science Translational Medicine. 2019;11(492):eaav8521.

  241. Costa Verdera H, Gitz-Francois JJ, Schiffelers RM, Vader P. Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. J Control Release. 2017;266:100–8.

    Article  CAS  PubMed  Google Scholar 

  242. Chiangjong W, Netsirisawan P, Hongeng S, Chutipongtanate S. Red Blood Cell Extracellular Vesicle-Based Drug Delivery: Challenges and Opportunities. 2021;8.

  243. Keles E, Song Y, Du D, Dong W-J, Lin Y. Recent progress in nanomaterials for gene delivery applications. Biomaterials Science. 2016;4(9):1291–309.

    Article  CAS  PubMed  Google Scholar 

  244. Farris E, Heck K, Lampe AT, Brown DM, Ramer-Tait AE, Pannier AK. Oral non-viral gene delivery for applications in DNA vaccination and gene therapy. Current Opinion in Biomedical Engineering. 2018;7:51–7.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Rey-Rico A, Cucchiarini M. Controlled release strategies for rAAV-mediated gene delivery. Acta Biomater. 2016;29:1–10.

    Article  CAS  PubMed  Google Scholar 

  246. Zhao Z, Anselmo AC, Mitragotri S. Viral vector-based gene therapies in the clinic. Bioengineering & Translational Medicine. 2022;7(1): e10258.

    Article  Google Scholar 

  247. Wan C, Allen TM, Cullis PR. Lipid nanoparticle delivery systems for siRNA-based therapeutics. Drug Deliv Transl Res. 2014;4(1):74–83.

    Article  CAS  PubMed  Google Scholar 

  248. Usman WM, Pham TC, Kwok YY, Vu LT, Ma V, Peng B, Chan YS, Wei L, Chin SM, Azad A, He AB-L, Leung AYH, Yang M, Shyh-Chang N, Cho WC, Shi J, Le MTN. Efficient RNA drug delivery using red blood cell extracellular vesicles. Nature Communications. 2018;9(1):2359.

  249. Zhang G, Huang X, Xiu H, Sun Y, Chen J, Cheng G, Song Z, Peng Y, Shen Y, Wang J, Cai Z. Extracellular vesicles: Natural liver-accumulating drug delivery vehicles for the treatment of liver diseases. Journal of Extracellular Vesicles. 2020;10(2): e12030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Chang M, Hsiao J-K, Yao M, Chien L-Y, Hsu S-C, Ko B-S, Chen S-T, Liu H-M, Chen Y-C, Yang C-SJN. Homologous RBC-derived vesicles as ultrasmall carriers of iron oxide for magnetic resonance imaging of stem cells. 2010;21(23):235103.

  251. Borgheti-Cardoso LN, Kooijmans SAA, Chamorro LG, Biosca A, Lantero E, Ramírez M, Avalos-Padilla Y, Crespo I, Fernández I, Fernandez-Becerra C, del Portillo HA, Fernàndez-Busquets X. Extracellular vesicles derived from Plasmodium-infected and non-infected red blood cells as targeted drug delivery vehicles. Int J Pharm. 2020;587: 119627.

    Article  CAS  PubMed  Google Scholar 

  252. Kuo WP, Tigges JC, Toxavidis V, Ghiran I. Red Blood Cells: A Source of Extracellular Vesicles. In: Kuo WP, Jia S, editors. Extracellular Vesicles: Methods and Protocols. New York, NY: Springer New York; 2017. p. 15–22.

  253. Huber HJ, Holvoet P. Exosomes: emerging roles in communication between blood cells and vascular tissues during atherosclerosis. Curr Opin Lipidol. 2015;26(5):412–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Davidson SM, Andreadou I, Barile L, Birnbaum Y, Cabrera-Fuentes HA, Cohen MV, Downey JM, Girao H, Pagliaro P, Penna C, Pernow J, Preissner KT, Ferdinandy P, on behalf of the EUCCA. Circulating blood cells and extracellular vesicles in acute cardioprotection. Cardiovascular Research. 2019;115(7):1156–1166.

  255. Thangaraju K, Neerukonda SN, Katneni U, Buehler PW. Extracellular Vesicles from Red Blood Cells and Their Evolving Roles in Health, Coagulopathy and Therapy. International Journal of Molecular Sciences. 2021;22(1).

  256. Gao Y, Jin H, Tan H, Wang Y, Wu J, Wang Y, Zhang J, Yang Y, Tian W, Hou R. The role of extracellular vesicles from stored RBC units in B lymphocyte survival and plasma cell differentiation. J Leukoc Biol. 2020;108(6):1765–76.

    Article  CAS  PubMed  Google Scholar 

  257. Sadallah S, Eken C, Schifferli JA. Erythrocyte-derived ectosomes have immunosuppressive properties. J Leukoc Biol. 2008;84(5):1316–25.

    Article  CAS  PubMed  Google Scholar 

  258. Straat M, Böing AN, Tuip-De Boer A, Nieuwland R, Juffermans NP. Extracellular Vesicles from Red Blood Cell Products Induce a Strong Pro-Inflammatory Host Response Dependent on Both Numbers and Storage Duration. Transfusion Medicine and Hemotherapy. 2016;43(4):302–5.

    Article  PubMed  Google Scholar 

  259. Gangadaran P, Hong CM, Oh JM, Rajendran RL, Kalimuthu S, Son SH, Gopal A, Zhu L, Baek SH, Jeong SY, Lee S-W, Lee J, Ahn B-C. In vivo Non-invasive Imaging of Radio-Labeled Exosome-Mimetics Derived From Red Blood Cells in Mice. 2018;9.

  260. Yoshida T, Prudent M, D’Alessandro A. Red blood cell storage lesion: causes and potential clinical consequences. Blood Transfus. 2019;17(1):27–52.

    PubMed  PubMed Central  Google Scholar 

  261. Crowe JH, Crowe LM, Carpenter JF, Aurell WC. Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J. 1987;242(1):1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Sun WQ, Leopold AC, Crowe LM, Crowe JH. Stability of dry liposomes in sugar glasses. Biophys J. 1996;70(4):1769–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Gupta A, Das R, Makabenta JM, Gupta A, Zhang X, Jeon T, Huang R, Liu Y, Gopalakrishnan S, Milán R-C, Rotello VM. Erythrocyte-mediated delivery of bioorthogonal nanozymes for selective targeting of bacterial infections. Mater Horiz. 2021;8(12):3424–31.

    Article  CAS  PubMed  Google Scholar 

  264. Patel J, Chowdhury EA, Noorani B, Bickel U, Huang J. Isoflurane increases cell membrane fluidity significantly at clinical concentrations. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2020;1862(2):183140.

  265. Wang C, Ye Y, Sun W, Yu J, Wang J, Lawrence DS, Buse JB, Gu Z. Red Blood Cells for Glucose-Responsive Insulin Delivery. Adv Mater. 2017;29(18):1606617.

    Article  Google Scholar 

Download references

Acknowledgements

ZZ acknowledge support from College of Pharmacy at University of Illinois Chicago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongmin Zhao.

Ethics declarations

Conflict of Interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, E., Phan, P., Algarni, H.A. et al. Red Blood Cell Inspired Strategies for Drug Delivery: Emerging Concepts and New Advances. Pharm Res 39, 2673–2698 (2022). https://doi.org/10.1007/s11095-022-03328-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03328-5

Keywords

Navigation