Skip to main content

Advertisement

Log in

Enhanced Dermal Delivery of Flurbiprofen Nanosuspension Based Gel: Development and Ex Vivo Permeation, Pharmacokinetic Evaluations

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The objective of this study was to optimize the Flurbiprofen (FB) nanosuspension (NS) based gel and to investigate the in vitro release, ex vivo permeation, the plasma concentration-time profile and pharmacokinetic parameters.

Methods

FB-NSs were developed using the wet milling process with the Design of Experiment (DoE) approach. The optimum FB-NS was characterized on the basis of SEM, DSC, XRPD, solubility and permeation studies. The dermal gel was prepared by incorporating FB-NS into HPMC gel. Then the in-vitro release, ex vivo permeation studies were performed, and pharmacokinetic studies were evaluated on rats.

Results

The particle size, polydispersity index and zeta potential values of optimum NS were determined as 237.7 ± 6.8 nm, 0.133 ± 0.030 and − 30.4 ± 0.7 mV, respectively. By means of the surfactant content and nanosized particles of the nanosuspension, the solubility of FB was increased about 7-fold. The percentage permeated amount of FB from FB-NS gel (8.40%) was also found to be higher than the physical mixture (5.25%) and coarse suspension (reference) (2.08%) gels. The pharmacokinetic studies showed that the Cmax of FB-NS gel was 2.5 times higher than the reference gel, while AUC0–24 was 2.96 times higher.

Conclusion

FB-NSs were successfully prepared with a wet milling method and optimized with the DoE approach. The optimized FB nanosuspension gel provided better permeation and pharmacokinetic performance compared to FB coarse suspension gel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

BCS :

Biopharmaceutical Classification System

COX :

Cyclooxygenase

CPP :

Critical Process Parameters

CQA :

Critical Quality Attributes

DoE :

Design of Experiment

FB :

Flurbiprofen

HPH :

High-Pressure Homogenization

NS :

Nanosuspension

NSAID :

Nonsteroidal Anti-inflammatory Drugs

PDI :

Polydispersity Index

PL :

Plantacare 2000

PM :

Physical Mixture

PS :

Particle Size

QbD :

Quality by Design

ZP :

Zeta Potential

References

  1. Karakucuk A, Teksin ZS, Eroglu H, Celebi N. Evaluation of improved oral bioavailability of ritonavir nanosuspension. Eur J Pharm Sci. 2019;131:153–8.

    Article  CAS  PubMed  Google Scholar 

  2. Tashan E, Karakucuk A, Celebi N. Optimization and in vitro evaluation of ziprasidone nanosuspensions produced by a top-down approach. Journal of Drug Delivery Science and Technology. 2019;52:37–45.

    Article  CAS  Google Scholar 

  3. Langguth P, Hanafy A, Frenzel D, Grenier P, Nhamias A, Ohlig T, et al. Nanosuspension formulations for low-soluble drugs: pharmacokinetic evaluation using spironolactone as model compound. Drug Dev Ind Pharm. 2005;31(3):319–29.

    Article  CAS  PubMed  Google Scholar 

  4. Hu J, Johnston KP, Williams RO III. Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. Drug Dev Ind Pharm. 2004;30(3):233–45.

    Article  PubMed  Google Scholar 

  5. Wang Y, Zheng Y, Zhang L, Wang Q, Zhang D. Stability of nanosuspensions in drug delivery. J Control Release. 2013;172(3):1126–41.

    Article  CAS  PubMed  Google Scholar 

  6. Wang H, Xiao Y, Wang H, Sang Z, Han X, Ren S, et al. Development of daidzein nanosuspensions: preparation, characterization, in vitro evaluation, and pharmacokinetic analysis. Int J Pharm. 2019;566:67–76.

    Article  CAS  PubMed  Google Scholar 

  7. Geng T, Banerjee P, Lu Z, Zoghbi A, Li T, Wang B. Comparative study on stabilizing ability of food protein, non-ionic surfactant and anionic surfactant on BCS type II drug carvedilol loaded nanosuspension: physicochemical and pharmacokinetic investigation. Eur J Pharm Sci. 2017;109:200–8.

    Article  CAS  PubMed  Google Scholar 

  8. Ye L, Miao M, Li S, Hao K. Nanosuspensions of a new compound, ER-β005, for enhanced oral bioavailability and improved analgesic efficacy. Int J Pharm. 2017;531(1):246–56.

    Article  CAS  PubMed  Google Scholar 

  9. Xia D, Quan P, Piao H, Piao H, Sun S, Yin Y, et al. Preparation of stable nitrendipine nanosuspensions using the precipitation–ultrasonication method for enhancement of dissolution and oral bioavailability. Eur J Pharm Sci. 2010;40(4):325–34.

    Article  CAS  PubMed  Google Scholar 

  10. Leitner J, Sedmidubský D, Jankovský O. Size and shape-dependent solubility of CuO nanostructures. Materials. 2019;12(20):3355.

    Article  CAS  PubMed Central  Google Scholar 

  11. Zhai X, Lademann J, Keck CM, Müller RH. Nanocrystals of medium soluble actives—novel concept for improved dermal delivery and production strategy. Int J Pharm. 2014;470(1–2):141–50.

    Article  CAS  PubMed  Google Scholar 

  12. Lin Z, Gao W, Hu H, Ma K, He B, Dai W, et al. Novel thermo-sensitive hydrogel system with paclitaxel nanocrystals: high drug-loading, sustained drug release and extended local retention guaranteeing better efficacy and lower toxicity. J Control Release. 2014;174:161–70.

    Article  CAS  PubMed  Google Scholar 

  13. Sun W, Tian W, Zhang Y, He J, Mao S, Fang L. Effect of novel stabilizers—cationic polymers on the particle size and physical stability of poorly soluble drug nanocrystals. Nanomedicine. 2012;8(4):460–7.

    Article  CAS  PubMed  Google Scholar 

  14. Li M, Yaragudi N, Afolabi A, Dave R, Bilgili E. Sub-100nm drug particle suspensions prepared via wet milling with low bead contamination through novel process intensification. Chem Eng Sci. 2015;130:207–20.

    Article  CAS  Google Scholar 

  15. Mitri K, Shegokar R, Gohla S, Anselmi C, Muller RH. Lutein nanocrystals as antioxidant formulation for oral and dermal delivery. Int J Pharm. 2011;420(1):141–6.

    Article  CAS  PubMed  Google Scholar 

  16. Bartos C, Szabó-Révész P, Bartos C, Katona G, Jójárt-Laczkovich O, Ambrus R. The effect of an optimized wet milling technology on the crystallinity, morphology and dissolution properties of micro-and nanonized meloxicam. Molecules. 2016;21(4):507.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Malamatari M, Taylor KM, Malamataris S, Douroumis D, Kachrimanis K. Pharmaceutical nanocrystals: production by wet milling and applications. Drug Discov Today. 2018;23(3):534–47.

    Article  CAS  PubMed  Google Scholar 

  18. Liu P, Rong X, Laru J, van Veen B, Kiesvaara J, Hirvonen J, et al. Nanosuspensions of poorly soluble drugs: preparation and development by wet milling. Int J Pharm. 2011;411(1–2):215–22.

    Article  CAS  PubMed  Google Scholar 

  19. Bitterlich A, Laabs C, Krautstrunk I, Dengler M, Juhnke M, Grandeury A, et al. Process parameter dependent growth phenomena of naproxen nanosuspension manufactured by wet media milling. Eur J Pharm Biopharm. 2015;92:171–9.

    Article  CAS  PubMed  Google Scholar 

  20. George M, Ghosh I. Identifying the correlation between drug/stabilizer properties and critical quality attributes (CQAs) of nanosuspension formulation prepared by wet media milling technology. Eur J Pharm Sci. 2013;48(1–2):142–52.

    Article  CAS  PubMed  Google Scholar 

  21. Karakucuk A, Celebi N. Investigation of formulation and process parameters of wet media milling to develop Etodolac Nanosuspensions. Pharm Res. 2020;37:1–18.

    Article  Google Scholar 

  22. Verma S, Lan Y, Gokhale R, Burgess DJ. Quality by design approach to understand the process of nanosuspension preparation. Int J Pharm. 2009;377(1–2):185–98.

    Article  CAS  PubMed  Google Scholar 

  23. Gandhi A, Roy C. Quality by design (QbD) in pharmaceutical industry: tools. Perspectives and Challenges PharmaTutor. 2016;4(11):12–20.

    Google Scholar 

  24. Tsume Y, Mudie DM, Langguth P, Amidon GE, Amidon GL. The biopharmaceutics classification system: subclasses for in vivo predictive dissolution (IPD) methodology and IVIVC. Eur J Pharm Sci. 2014;57:152–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Philip AK, Dubey RK, Pathak K. Optimizing delivery of flurbiprofen to the colon using a targeted prodrug approach. J Pharm Pharmacol. 2008;60(5):607–13.

    Article  CAS  PubMed  Google Scholar 

  26. Han F, Li S, Yin R, Shi X, Jia Q. Investigation of nanostructured lipid carriers for transdermal delivery of flurbiprofen. Drug Dev Ind Pharm. 2008;34(4):453–8.

    Article  CAS  PubMed  Google Scholar 

  27. Gonzalez-Mira E, Egea M, Souto E, Calpena A, Garcia M. Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery. Nanotechnology. 2010;22(4):045101.

    Article  PubMed  Google Scholar 

  28. Mokhtar M, Sammour OA, Hammad MA, Megrab NA. Effect of some formulation parameters on flurbiprofen encapsulation and release rates of niosomes prepared from proniosomes. Int J Pharm. 2008;361(1–2):104–11.

    Article  CAS  PubMed  Google Scholar 

  29. Paliwal S, Tilak A, Sharma J, Dave V, Sharma S, Yadav R, et al. Flurbiprofen loaded ethosomes-transdermal delivery of anti-inflammatory effect in rat model. Lipids Health Dis. 2019;18(1):133.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Paliwal S, Tilak A, Sharma J, Dave V, Sharma S, Verma K, et al. Flurbiprofen-loaded ethanolic liposome particles for biomedical applications. J Microbiol Methods. 2019;161:18–27.

    Article  CAS  PubMed  Google Scholar 

  31. Han F, Yin R, Che X, Yuan J, Cui Y, Yin H, et al. Nanostructured lipid carriers (NLC) based topical gel of flurbiprofen: design, characterization and in vivo evaluation. Int J Pharm. 2012;439(1–2):349–57.

    Article  CAS  PubMed  Google Scholar 

  32. Gonzalez-Mira E, Nikolić S, Garcia M, Egea M, Souto E, Calpena A. Potential use of nanostructured lipid carriers for topical delivery of flurbiprofen. J Pharm Sci. 2011;100(1):242–51.

    Article  CAS  PubMed  Google Scholar 

  33. Fang JY, Leu YL, Chang CC, Lin CH, Tsai YH. Lipid nano/submicron emulsions as vehicles for topical flurbiprofen delivery. Drug Deliv. 2004;11(2):97–105.

    Article  CAS  PubMed  Google Scholar 

  34. Naeem M, Rahman NU, TAVARES G, Barbosa SF, Chacra NB, Loebenberg R, et al. Physicochemical, in vitro and in vivo evaluation of flurbiprofen microemulsion. An Acad Bras Cienc. 2015;87(3):1823–31.

    Article  CAS  PubMed  Google Scholar 

  35. Kai S, Kondo E, Kawaguchi Y, Kitamura N, Yasuda K. Flurbiprofen concentration in soft tissues is higher after topical application than after oral administration. Br J Clin Pharmacol. 2013;75(3):799–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Patzelt A, Richter H, Knorr F, Schäfer U, Lehr C-M, Dähne L, et al. Selective follicular targeting by modification of the particle sizes. J Control Release. 2011;150(1):45–8.

    Article  CAS  PubMed  Google Scholar 

  37. Lademann J, Richter H, Teichmann A, Otberg N, Blume-Peytavi U, Luengo J, et al. Nanoparticles–an efficient carrier for drug delivery into the hair follicles. Eur J Pharm Biopharm. 2007;66(2):159–64.

    Article  CAS  PubMed  Google Scholar 

  38. Salimi A, Gobadian H, Sharif MB. Dermal pharmacokinetics of rivastigmine-loaded liposomes: an ex vivo–in vivo correlation study. Journal of Liposome Research. 2020:1–9.

  39. Said M, Elsayed I, Aboelwafa AA, Elshafeey AH. A novel concept of overcoming the skin barrier using augmented liquid nanocrystals: box-Behnken optimization, ex vivo and in vivo evaluation. Colloids Surf B: Biointerfaces. 2018;170:258–65.

    Article  CAS  PubMed  Google Scholar 

  40. Yu Q, Wu X, Zhu Q, Wu W, Chen Z, Li Y, et al. Enhanced transdermal delivery of meloxicam by nanocrystals: preparation, in vitro and in vivo evaluation. Asian journal of pharmaceutical sciences. 2018;13(6):518–26.

    Article  PubMed  Google Scholar 

  41. Oktay AN, Ilbasmis-Tamer S, Han S, Uludag O, Celebi N. Preparation and in vitro/in vivo evaluation of flurbiprofen nanosuspension-based gel for dermal application. Eur J Pharm Sci. 2020;155:105548.

    Article  CAS  PubMed  Google Scholar 

  42. Oktay AN, Ilbasmis-Tamer S, Karakucuk A, Celebi N. Screening of stabilizing agents to optimize flurbiprofen nanosuspensions using experimental design. Journal of Drug Delivery Science and Technology 2020:101690.

  43. Oktay AN, Karakucuk A, Ilbasmis-Tamer S, Celebi N. Dermal flurbiprofen nanosuspensions: optimization with design of experiment approach and in vitro evaluation. Eur J Pharm Sci. 2018;122:254–63.

    Article  CAS  PubMed  Google Scholar 

  44. Oktay AN, Ilbasmis-Tamer S, Celebi N. The effect of critical process parameters of the high pressure homogenization technique on the critical quality attributes of flurbiprofen nanosuspensions. Pharm Dev Technol. 2019;24(10):1278–86.

    Article  CAS  PubMed  Google Scholar 

  45. Liu Q, Mai Y, Gu X, Zhao Y, Di X, Ma X, et al. A wet-milling method for the preparation of cilnidipine nanosuspension with enhanced dissolution and oral bioavailability. Journal of Drug Delivery Science and Technology. 2020;55:101371.

    Article  CAS  Google Scholar 

  46. Dillen K, Vandervoort J, Van den Mooter G, Verheyden L, Ludwig A. Factorial design, physicochemical characterisation and activity of ciprofloxacin-PLGA nanoparticles. Int J Pharm. 2004;275(1–2):171–87.

    Article  CAS  PubMed  Google Scholar 

  47. Jacobs C, Müller RH. Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharm Res. 2002;19(2):189–94.

    Article  CAS  PubMed  Google Scholar 

  48. Romero GB, Arntjen A, Keck CM, Muller RH. Amorphous cyclosporin a nanoparticles for enhanced dermal bioavailability. Int J Pharm. 2016;498(1–2):217–24.

    Article  CAS  PubMed  Google Scholar 

  49. Cerdeira AM, Mazzotti M, Gander B. Formulation and drying of miconazole and itraconazole nanosuspensions. Int J Pharm. 2013;443(1–2):209–20.

    Article  CAS  PubMed  Google Scholar 

  50. Ghosh I, Schenck D, Bose S, Ruegger C. Optimization of formulation and process parameters for the production of nanosuspension by wet media milling technique: effect of vitamin E TPGS and nanocrystal particle size on oral absorption. Eur J Pharm Sci. 2012;47(4):718–28.

    Article  PubMed  Google Scholar 

  51. Elsayed I, Abdelbary AA, Elshafeey AH. Nanosizing of a poorly soluble drug: technique optimization, factorial analysis, and pharmacokinetic study in healthy human volunteers. Int J Nanomedicine. 2014;9:2943.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Varma M, Pandi J. Dissolution, solubility, XRD, and DSC studies on flurbiprofen-nicotinamide solid dispersions. Drug Dev Ind Pharm. 2005;31(4–5):417–23.

    Article  CAS  PubMed  Google Scholar 

  53. Paradkar A, Maheshwari M, Tyagi AK, Chauhan B, Kadam S. Preparation and characterization of flurbiprofen beads by melt solidification technique. AAPS PharmSciTech. 2003;4(4):514–22.

    Article  PubMed Central  Google Scholar 

  54. Zhang J, Huang Y, Liu D, Gao Y, Qian S. Preparation of apigenin nanocrystals using supercritical antisolvent process for dissolution and bioavailability enhancement. Eur J Pharm Sci. 2013;48(4–5):740–7.

    Article  CAS  PubMed  Google Scholar 

  55. Sohail MF, Shah PA, Tariq I, Saeed-ul-Hassan S, Amin U, Raza SA, et al. Development and in vitro evaluation of flurbiprofen microcapsules prepared by modified solvent evaporation technique. Trop J Pharm Res. 2014;13(7):1031–8.

    Article  Google Scholar 

  56. Teeranachaideekul V, Junyaprasert VB, Souto EB, Müller RH. Development of ascorbyl palmitate nanocrystals applying the nanosuspension technology. Int J Pharm. 2008;354(1–2):227–34.

    Article  CAS  PubMed  Google Scholar 

  57. Londoño-Restrepo SM, Jeronimo-Cruz R, Millán-Malo BM, Rivera-Muñoz EM, Rodriguez-García ME. Effect of the nano crystal size on the X-ray diffraction patterns of biogenic hydroxyapatite from human, bovine, and porcine bones. Sci Rep. 2019;9(1):1–12.

    Article  Google Scholar 

  58. Verma S, Kumar S, Gokhale R, Burgess DJ. Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening. Int J Pharm. 2011;406(1–2):145–52.

    Article  CAS  PubMed  Google Scholar 

  59. Al Shaal L, Shegokar R, Muller RH. Production and characterization of antioxidant apigenin nanocrystals as a novel UV skin protective formulation. Int J Pharm. 2011;420(1):133–40.

    Article  PubMed  Google Scholar 

  60. Beirowski J, Inghelbrecht S, Arien A, Gieseler H. Freeze drying of nanosuspensions, 2: the role of the critical formulation temperature on stability of drug nanosuspensions and its practical implication on process design. J Pharm Sci. 2011;100(10):4471–81.

    Article  CAS  PubMed  Google Scholar 

  61. Tuomela A, Saarinen J, Strachan CJ, Hirvonen J, Peltonen L. Production, applications and in vivo fate of drug nanocrystals. Journal of Drug Delivery Science and Technology. 2016;34:21–31.

    Article  CAS  Google Scholar 

  62. Van Eerdenbrugh B, Van den Mooter G, Augustijns P. Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products. Int J Pharm. 2008;364(1):64–75.

    Article  PubMed  Google Scholar 

  63. Cevc G, Vierl U. Nanotechnology and the transdermal route: a state of the art review and critical appraisal. J Control Release. 2010;141(3):277–99.

    Article  CAS  PubMed  Google Scholar 

  64. Hatahet T, Morille M, Hommoss A, Dorandeu C, Müller R, Bégu S. Dermal quercetin smartCrystals®: formulation development, antioxidant activity and cellular safety. Eur J Pharm Biopharm. 2016;102:51–63.

    Article  CAS  PubMed  Google Scholar 

  65. Valentová J, Bauerová K, Farah L, Devínsky F. Does stereochemistry influence transdermal permeation of flurbiprofen through the rat skin? Arch Dermatol Res. 2010;302(8):635–8.

    Article  PubMed  Google Scholar 

  66. Malvey S, Kottaimuthu A. Formulation of flurbiprofen transdermal patche: In vitro and ex vivo report. International Journal of Research in Pharmaceutical Sciences. 2019;10(4):2661–9.

    Article  CAS  Google Scholar 

  67. Ayoub RK, Murtaza G, Imran M, Khan SA, Mir S, Khan AK, et al. Formulation and permeation kinetic studies of Flurbiprofen gel. Trop J Pharm Res. 2015;14(2):195–203.

    Article  CAS  Google Scholar 

  68. Hamzah ML. Formulation and evaluation of Flurbiprofen nanogel. Research Journal of Pharmacy and Technology. 2020;13(11):5183–8.

    Google Scholar 

  69. Ghosh I, Michniak-Kohn B. Influence of critical parameters of nanosuspension formulation on the permeability of a poorly soluble drug through the skin—a case study. AAPS PharmSciTech. 2013;14(3):1108–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Shen C, Shen B, Liu X, Yuan H. Nanosuspensions based gel as delivery system of nitrofurazone for enhanced dermal bioavailability. Journal of Drug Delivery Science and Technology. 2018;43:1–11.

    Article  Google Scholar 

  71. Singh MK, Pooja D, Ravuri HG, Gunukula A, Kulhari H, Sistla R. Fabrication of surfactant-stabilized nanosuspension of naringenin to surpass its poor physiochemical properties and low oral bioavailability. Phytomedicine. 2018;40:48–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nevin Celebi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oktay, A.N., Ilbasmis-Tamer, S., Uludag, O. et al. Enhanced Dermal Delivery of Flurbiprofen Nanosuspension Based Gel: Development and Ex Vivo Permeation, Pharmacokinetic Evaluations. Pharm Res 38, 991–1009 (2021). https://doi.org/10.1007/s11095-021-03060-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-021-03060-6

Key Words

Navigation