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ABSTRACT
Purpose Bayesian forecasting is crucial for model-based dose
optimization based on therapeutic drug monitoring (TDM)
data of vancomycin in intensive care (ICU) patients. We aimed
to evaluate the performance of Bayesian forecasting using max-
imum a posteriori (MAP) estimation for model-based TDM.
Methods We used a vancomycin TDM data set (n= 408 pa-
tients). We compared standardMAP-based Bayesian forecast-
ing with two alternative approaches: (i) adaptive MAP which
handles data over multiple iterations, and (ii) weighted MAP
which weights the likelihood contribution of data. We evalu-
ated the percentage error (PE) for seven scenarios including
historical TDM data from the preceding day up to seven days.
Results The mean of median PEs of all scenarios for the stan-
dard MAP, adaptive MAP and weighted MAP method were
− 7.7%, −4.5% and− 6.7%. The adaptive MAP also showed

the narrowest inter-quartile range of PE. In addition, regard-
less ofMAPmethod, including historical TDM data further in
the past will increase prediction errors.
Conclusions The proposed adaptive MAP method outper-
forms standard MAP in predictive performance and may be
considered for improvement of model-based dose optimiza-
tion. The inclusion of historical data beyond either one day
(standard MAP and weighted MAP) or two days (adaptive
MAP) reduces predictive performance.
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ABBREVIATIONS
CL Clearance
ICU Intensive care unit
MAP Maximum a posteriori
NONMEM Nonlinear mixed-effects modeling
PE Percentage error
PK Pharmacokinetic
SD Standard deviation
TDM Therapeutic drug monitoring
V Volume of distribution

INTRODUCTION

Therapeutic drug monitoring (TDM) concerns the measure-
ment of drug concentrations in patients to optimize dosing
schedules in individual patients and is commonly used in treat-
ment optimization of patients of intensive care unit (ICU).
Population pharmacokinetic (PK) models are regularly used
to derive optimized dosing regimens based on TDM data.
These model-based dosing regimens are guided by Bayesian
forecasting through maximum a posteriori (MAP) estimation.
Using MAP estimation, individual PK parameters are
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estimated using a previously developed population PK model
based on collected historical drug concentration TDM data of
a patient who has received the drug. These individual PK
parameters in turn can be used to perform Bayesian forecast-
ing to predict the prospective concentrations to further derive
a dosing schedule that meets therapeutic concentration targets
associated with efficacy or toxicity.

There is currently a lack of consensus or guidelines regard-
ing the use of historically collected TDM PK data for Bayesian
forecasting. Given that TDM is typically associated with sparse
PK samples, inclusion of all available TDM data may arguably
lead to optimal use of data and as a consequence individual PK
parameter estimates closer to the true value in a patient.
However, in ICU patients, rapid alterations in organ functions
associated with PK might also actually lead to increased bias in
the current PK parameter estimates if too much historical
TDM data is included (1). In ICU patients it is therefore un-
clear if and how such historical TDM data should be included
for Bayesian forecasting, and, if current MAP-based ap-
proaches optimally make use of available historical data in es-
timating individual PK parameters. In the current analysis we
aimed to address these questions using a representative TDM
data set for vancomycin in ICU patients. Vancomycin forms a
cornerstone antibiotic agent for treatment of sepsis associated
with gram-positive infections in the ICU. In the ICU popula-
tion, vancomycin usually shows large inter-individual variability
as well as large intra-individual variability in PK (2,3). TDM is
routinely performed for vancomycin in the ICU due to its nar-
row therapeutic window and rapid alterations in organ function
that could lead to changes in PK (3–6). As such, vancomycin
represents a relevant paradigm drug to study the optimization
of model-based TDM approaches.

In this analysis we propose and evaluate two methods of
MAP estimation for model-based dose optimization using
TDM data. We will refer to the newly proposed methods as
adaptive MAP and weighted MAP. The proposed methods
are compared to standard MAP estimation.

MATERIALS AND METHODS

Data

A retrospective vancomycin TDM data set collected in ICU
patients was used for this analysis, containing vancomycin
concentration-time data, vancomycin dosing histories, and pa-
tient demographics, collected from two hospitals in
The Netherlands. The patients from one hospital received
vancomycin with a loading dose of between 1000 mg and
2000 mg followed by doses of 1000 mg twice a day until doses
were adjusted at the discretion of the treating clinician. The
patients from the other hospital received vancomycin with a
loading dose, followed by continuous infusion. Both loading

doses and continuous infusion doses were individualized based
on the advice from the in-house-developedmodel-based TDM
software AutoKinetics (7). The infusion duration time ranged
from one to two hours for non-continuous infusion and was
24 h for continuous infusion. Blood samples were obtained on
average twice or three times every weekmainly at trough level,
i.e. prior to the next dose. A serum creatinine measurement
was also measured for each sample. The creatinine clearance
of the patients were calculated by default based on theMDRD
formula, provided that the commonly seen formulae for calcu-
lating glomerular filtration rate were expected to perform sim-
ilarly in ICU patients (8,9). We excluded the patients if plasma
concentration samples were only available for a single day of
treatment since model predictions cannot be validated for such
patients. As a result, a data set consisting of 2435 of concen-
tration data points from 408 patients was used (Table I).

Population Pharmacokinetic Model

A previously published one-compartmental population PK
model of vancomycin by Roberts et al. 2011 (Table II) was
used to perform both the MAP estimation and Bayesian fore-
casting (10). The model has been validated in our own ICU
population, with the same data as used in this study (11).

MAP Estimation

Data splitting was needed in order to evaluate different MAP
methods. The data set was split into segments where each
segment contained the concentration data of a single day.

Table I Characteristics of the Patients in this Study

Characteristics Mean± SD

No. of patients 408 (CI = 372)

No. of data points 2435

Samples/Patient 6

Sampling frequency 2 to 3 samples/week

Loading dose 1000 mg*

Following dose 1000 mg twice a day*

Infusion duration Ranging from 1 to 2 h**

Age (years) 67± 12

Male (%) 63%

Weight (kg) 84± 18

CrCL (ml/min/1.73m2) 66.5± 53.1

CI, continuous infusion

CrCL, creatinine clearance calculated according to MDRD formula (8)

*Both loading dose and following dose may be adjusted according to the
advice from AutoKinetics (7)

**Infusion duration time was adjusted at the discretion of treating nurses and
was always 24 h for continuous infusion
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Thus, one segment corresponded to one day which contained
one trough sample. For each patient, we estimated individual
PK parameters based on one to up to seven consecutive seg-
ments of data to predict the concentration data of the
succeeding segment. Hence, a segment of data was regarded
as either historical data if used for MAP estimation, or as
prospective data if used to validate the model predictions.
We compared three estimation methods: standard MAP,
adaptive MAP and weighted MAP. Figure 1 depicts the

conceptual differences between these methods, and are de-
fined further in below.

Standard MAP

Given a model with random-effect (of clearance (CL) and
volume of distribution (V)) parameter vectors η, the standard
MAP estimation constructs a posterior density distribution as
follows (12):

z ηð Þ ¼ f ηjYð Þg ηð Þ ð1Þ

where f(η|Y) is the likelihood of η given concentration observa-
tion vector of Y. g(η) denotes the prior density distribution of η,
which followed amulti-normal distribution informed by the van-
comycin population PK model (Table II). z(η) is the posterior
density distribution that MAP estimation aims to maximize so
that the mode (maximum) value of z(η) is the final estimate of η.

Adaptive MAP

The adaptive MAP shared a similar idea of model predictive
control theory (13). The estimation was executed iteratively, in

Table II The Vancomycin PopPK Model (10)

Component Equation

Pharmacokinetic parameters CL (L/h) = 4.58·CrCL/100·eη1
V (L) = 1.53 ·WGT·eη2

Inter-individual variability η1 ~ N(0, ω2
1 ) and η2 ~ N(0, ω2

2 )
ω1= 0.389 and ω2 = 0.374

Residual errors Obs= Pred·(1+ ε1) + ε2
ε1~ N(0, σ21 ) and ε2 ~ N(0, σ22 )
σ1 = 0.199 and σ2 = 2.4 (mg/L)

CL, clearance; V, volume of distribution; CrCL, creatinine clearance in ml/min;
WGT, body weight in kg; Obs, observed concentration; Pred, predicted
concentration

Fig. 1 Schematic diagram of
methods of MAP estimation used in
the study. Standard MAP executes
estimation once using all historical
TDM data (a); Adaptive MAP
executes estimation iteratively using
each segment of historical TDM
data with updated prior mean by
posterior mode from its preceding
iteration and repeats until the last
iteration, i.e. 0 to m1, …, mn-1 to
mn (b). Weighted MAP executes
estimation once using all historical
TDM data with weighted
importance (likelihood) of each
segment of data during the
estimation (c).
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which each iteration used one segment of the historical data.
For the 1st iteration, we executed MAP estimation using the
earliest one segment of data to obtain the random-effect pa-
rameters (posterior mode) which were denoted as m1. For the
2nd iteration, the means of the variance of the random-effect
parameters (prior mean), which are 0 under usual assump-
tions, were substituted by m1. Then the MAP estimation was
executed using the next segment of data. By this way, the prior
means of each iteration (except for the first one) were updated
by the posterior modes of the last iteration. Such process was
repeated until only one segment of data was left, which was
used to validate model predictions (Fig. 1b).

Weighted MAP

Like the standard MAP estimation, the weighted MAP esti-
mation was executed once using all historical data (Fig. 1c).
However, the contribution of each segment of historical data
to the total likelihood was weighted according to the following
functions:

z ηð Þ ¼ f ηjYð Þw Ysð Þg ηð Þ ð2Þ

w Ysð Þ ¼ ΔT Ref

ΔT Ys

� �α

ð3Þ

where w(Ys) is a weighting function for the likelihood of the
parameter to be estimated given observation Ys, which is a
subset of Y e.g. the concentration data at a particular day
prior to the data to be predicted. ΔT Ys stands for the time
distance in days between the historical data Ys and the data to
be predicted. ΔTRef and α are both weighting factors. ΔTRef is
the reference day, defined as the cutoff value of the time dis-
tance where w(Ys) is 1, i.e. where ΔTRef equals ΔT Ys . α is the
unitless effect size of the weighting function w(Ys) on the like-
lihood f(η|Y). For the sake of simplicity, we only tested a

number of integer combinations of ΔTRef and α including
integers from 1 to 7 for ΔTRef, and integers 1 to 5 for α. By
this method, the individual likelihood of each data point to the
total likelihood was exponentiated by w(Ys) so that its impor-
tance for the MAP estimation was weighted.

Evaluation of MAP Methods

The evaluation of the MAP methods was based on the use of
different amounts of historical TDM data for each patient to
estimate the PK parameter and predict a prospective drug
concentration. To this end, a segment of data may be used
as historical data for MAP estimation or as prospective data to
validate model predictions in different scenarios. The predic-
tion of prospective data was done using historical data from
preceding one up to seven days (Fig. 2).

To evaluate predictive performance of each method, we
calculated the difference between the observed and predicted
vancomycin concentration, by calculating the percentage er-
ror (PE) as follows:

PEi ¼ 1
ni

∑
j¼1

ni bY ij−Y ij

Y ij
� 100% ð4Þ

Here, PEi denotes percentage error for ith subject; ni equals

to the number of forecasted concentration of ith subject; bY ij

and Yij represent the predicted and observed value of the jth
prospective concentration of ith subject, respectively. We nor-
malized the PE to the number of data points of the patient, to
equalize the weight of each patient in the results. The accura-
cy and the precision were measured as the median and the
interquartile range (IQR) of the PE, respectively. The results
of PE were also visualized using a bar plot for standard MAP
and adaptive MAP methods, and a heat map for weighted
MAP method.

Fig. 2 Schematic diagram of including historical data for MAP estimation and Bayesian forecasting of one patient.
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Implementation

We executed theMAP estimation with all threemethods using
historical data to obtain individual PK parameters. We also
estimated PK parameters using each segment of data set to
explore the trend of the parameters’ change over time.
Nonlinear mixed-effects modeling software (NONMEM, ver-
sion 7.4.4; ICON Development Solutions, MD, USA) was
used for both MAP estimation and Bayesian forecasting.
The NONMEM code of the implementation of all methods
is available as supplementary material. Data organization and
visualization were carried out with R (version 3.6.0; R-project.
org).

RESULTS

Impact of the Methods of MAP Estimation

The median PEs of including preceding one up to seven days
of historical data for the standard MAP method ranged from
−3.4% to−11.5% and for the adaptive MAPmethod,−3.4%
to −5.4% (Fig. 3a, b). For the weighted MAP method, the
median PEs ranged from −2.3% to −8.5% (using optimal
values for weighting factors ΔTRef=4, α=2 based on the mean
and median values of median PEs that were closest to 0) (Fig.
3c). The adaptive MAP method thus outperformed the stan-
dardMAPmethod, whilst the effect of weightedMAPmethod
was limited. We did not find a clear effect of the weighting

factors ΔTRef and α (Fig. 4). The IQR of the PE for the stan-
dardMAPmethod and the weightedMAPmethod were both
visibly wider than that for the adaptive MAP method, indicat-
ing the adaptive MAP method was most precise. An alterna-
tive error bar plot based on mean values and 95% confidence
intervals is available in the supplementary material.

Impact of the Number of Days of Included Historical
Data

Including only one preceding day of historical data led to the
most accurate Bayesian forecasting (Figs. 3 and 4). The PE
worsened noticeably when including more historical data and
using the standard MAP method and the weighted MAP
method, while was consistent when using the adaptive MAP
method (Figs. 3 and 4). The adaptive MAPmethod was there-
fore most robust to the included amount of historical data.
The IQR of PE did not show clear relationship with the num-
ber of days of included historical data, regardless of the MAP
method. However, the adaptive method resulted in the
narrowest IQR which decreased markedly when using more
than one preceding day of historical data (Fig. 3b). Thus,
including the preceding two days of historical data for the
adaptive MAP method guaranteed both accuracy and preci-
sion. Given the current setting of data splitting, including pre-
vious e.g. three segments of historical data can be also seen as
including one segment of historical data which contains three
days of concentration data. Hence, the similar results would
be expected.

Fig. 3 The percentage error of Bayesian forecasting using the standard MAP method (a), the adaptative MAP method (b), and the weighted MAP method using
optimal weighting factorsΔTRef=4 and α=2 (c). The squares are the median values, and the bars represent 25% and 75% quantile lines respectively. The labeled
text is the number of patients that were included for the calculation.
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Time Course of the Random-Effects Parameters

The random-effects of both PK parameters, CL and V,
were estimated for each day (Fig. 5). The random-effect
of CL showed a decreasing trend over time while that of

V was rather stable. Such a result is in agreement with
the observation that the PE values are all negative, since
using a retrospective CL of a higher value would result
in underprediction of the prospective data.

Fig. 4 The percentage error of Bayesian forecasting using the weighted MAP method for all combinations of weighting factors ΔTRef and α.ΔTRef and α are both
weighting factors.ΔTRef is the reference day, defined as the cutoff value of the time distance where w(Ys) is 1, i.e. whereΔTRef equalsΔT Ys . α is the unitless effect
size of the weighting function w(Ys) on the likelihood f(η|Y).

Fig. 5 Time course of random-effects on PK parameters over time. CL, clearance; V, volume of distribution. The squares are the mean values, and the bars
represent mean plus standard deviation and mean minus standard deviation lines respectively.
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DISCUSSION

Adequate dosing is crucial for successful treatment of critically ill
patients. Bayesian forecasting is probably the most commonly
used approach in model-based TDM for ICU patients. There
is unfortunately no evidence how Bayesian forecasting should be
made properly. Our study investigated to optimize the use of
historical TDM data in this special population.

Although potentially counter-intuitive, we found that includ-
ing more historical TDM data can result in reduced forecasting
accuracy. From the clinical perspective, this is not surprising since
PK properties of ICU patients can change rapidly with disease
progression. This means that older historical data contains out-
dated information that leads to bias in Bayesian forecasting.
Thus, TDM samples that are drawn more closely to the ones
to be forecasted in terms of time, are more likely to have better
predictive abilities. Similar findings were reported in a previous
study that if only a single sample was utilized, Bayesian predicted
concentrations were less accurate when obtained using the first
(‘oldest’) observed concentration compared with the most recent
observed vancomycin concentration (14). By contrast, in the gen-
eral patient population, it was reported that taking more TDM
data into account did improve the performance of Bayesian fore-
casting for vancomycin (15).

The median PE values across scenario’s (Figs. 3 and 4) are all
negative indicating concentrations are typically underpredicted.
We indeed observe a decreasing trend of the random-effects on
the CL over time (Fig. 5). Considering that the time-varying
covariate creatinine clearance, which is the only potential
time-varying covariate identified in most published vancomycin
PKmodels (11,16), was taken into account, a likely explanation is
that there could still be other time-varying factors that are diffi-
cult to be captured by covariates, e.g. health condition. Patients
staying long at the ICU usually require more clinical care indi-
cating a deteriorated health condition and possibly worsening
organ function. Such results demonstrated that changes in health
condition and related PK in ICU patients may occur and could
limit the utility of previously published models for model-based
TDM.Our analysis provided a possible solution to best deal with
this situation. Clinical practitioners should be well aware of the
disease progress of the patient and should primarily take themost
recent history into account for Bayesian forecasting. Further im-
provement of the model is desirable to account time-varying PK,
but is not the purpose of this study.

The adaptive MAP method turned out to be most accurate
and precise for Bayesian forecasting. A similar approach has been
recently proposed for a tacrolimus PK model and it showed that
such an approach can be more robust with regard to model
misspecification (17). Compared to the standard MAP method,
the adaptive MAP method led to a smaller median PE with a
smaller accompanying IQR except for including only the preced-
ing one day of historical data. Only one (the first) MAP iteration
needs to be executed in such a case, so that the adaptive MAP is

identical to the standard MAP (Fig. 3a, b). When including his-
torical data from further past, the adaptiveMAPmethod extracts
the information of a segment of historical data in one iteration
and carries it forward into the next iteration. Hence, the prior
distribution is always updated by the last posterior which is tai-
lored by the historical data from the preceding iteration. After the
last iteration, the accumulated information of the historical data
was optimally “resembled” through the iterative procedure rather
than averaged at once as is done in the standard MAP method.
Consequently, the prediction is generated with smarter use of
data and thus the accuracy and the precision are improved.
Although the most accurate Bayesian forecasting was observed
when only including the preceding one day of historical data for
the adaptive MAP method, including historical TDM data from
the preceding two days is favorable as precision improved drasti-
cally with negligible loss in accuracy, which may cause clinically
relevant consequences. Provided an actual AUC0–24 is
480 mg∙h/L, the IQR of its prediction would be from 382 to
537 mg∙h/L using the preceding one day of TDM data (IQR of
PE from −15.2% to 11.9%), while that would be from 443 to
517 mg∙h/L using the preceding two days of TDMdata (IQR of
PE from −7.7% to 7.7%). As an AUC0–24between 400 and
600 mg∙h/L is now recommended the target range for effective
and safe vancomycin treatment, the former would unrightfully
indicate a dose adjustment while the latter would not (3).

Regarding the weighted MAP method, the underlying hy-
pothesis was that with increasing “age” of the historical data their
carried information on the PK of the drug would be of less
importance for predicting the data in the future.
Mathematically, it equates with weighting the likelihood contri-
bution of each data point to the total likelihood. The time dis-
tance between the historical data and the prospective data was
chosen to construct the weighting function given our hypothesis.
The main reason we additionally added two parameters ΔTRef

and α to the weighting function was to incorporate flexibility in
the exploration on how much effect time distance could have on
the likelihood as well as on the Bayesian forecasting.
Unfortunately, the weighted MAP method showed limited im-
provement in Bayesian forecasting compared to the standard
MAP method. The reason is probably that the weighted MAP
method alters the likelihood by relocating the relative importance
of data points based on the time distance but does not affect the
prior distribution. Given that TDM data are usually sparse, the
prior distribution is likely to have a greater impact on the MAP
estimation than the data does. Hence, the weighted MAP meth-
od is not able to optimize the MAP estimation as much as the
adaptive estimation does.We evaluated the values ofΔTRef and α
using only a limited number of integer combinations, but this
should not have a harmful impact on the results. ForΔTRef, there
is an obvious interpretability that it refers to the time distance.
For α, its value is not anticipated to be considerably large or
small, which indicates to either diminish the contribution of prior
distribution or the likelihood to the MAP estimation. There
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might be some precision loss not evaluating non-integers, but the
result should be covered in the investigated range and the preci-
sion may not be much off.

Despite that this study focuses on vancomycin only, the find-
ings are potentially generalizable for other TDM drugs as well.
First, the ICU data set used in this study is large. This ensures the
ICU patient population is well represented which guarantees the
validity of finding. Second, the evidence of the findings in this
study is not drug specific. It is ICUpatient population rather than
vancomycin that results in the observed altering PK properties in
the data. It is thus physiologically plausible to assume that similar
behaviors may be observed for other drugs in ICU patient.
Nonetheless, the applicability of the finding to other TDMdrugs
in ICUpatients needs to be verified and cautions should be taken
when making decisions in clinical practice.

Since Bayesian forecasting in routine practice is usually based
on the MAP estimation, it inherits the properties as well as the
drawbacks of the point estimation. As the PK models used for
Bayesian forecasting are usually nonlinear models, the point es-
timate of MAP does not necessarily relate to the most probable
clinical outcome. MAP estimation does not address the uncer-
tainty of the posterior distribution and hence is not able to quan-
tify the potential risk of the relevant clinical outcome. Recently,
MAP-based approaches have been questioned in certain circum-
stances, such as when trough concentration is of interest because
even a subtle discrepancy could be damaging for concentrations
at a low level (18). Although a full Bayesian approach is superior
to MAP-based approaches in handling mentioned issues, the
benefit from such an approach could be limited or perhaps clin-
ically irrelevant, due to the relatively large noise in the routine
TDM data from ICU patients which influences the results as
well. Considering the requirement of extensive domain knowl-
edge in non-clinical fields, a full Bayesian approach is conceivably
difficult to be implemented for routine practice and has poor
translational ability to communicate to the clinical professionals.

Nonparametric estimation has been proposed and has
shown to outperform parametric estimation in the cases where
the assumption of normal distribution of the data is violated,
while the nonparametric estimation does not make any as-
sumptions as such (19). Indeed, nonparametric approach by
theory could be better suited for a particular type of tasks. Yet,
it has not been widely adopted in clinical practice and thus the
experience is limited in the community. Further investigation
and understanding of the differences between parametric and
nonparametric approaches and their applicability are certain-
ly required but are out of the scope of this study. Although the
parametric MAP-based approaches may have limitations, we
believe they are likely to retain the mainstay across the com-
munity for a considerable time.

There are limitations worth mentioning regarding this study.
First, the creatinine clearance of patients was calculated using the
MDRD equation normalized to body surface area.We were not
able to calculate the absolute MDRD (which we should ideally

have as the original population PK model used measured creat-
inine clearance) since height (required to estimate body surface
area) was not available at the time the data set was obtained. This
may affect the descriptive ability of the model for our data set.
However, considering that the used model was externally vali-
dated using the same data set (11) and MAP estimation can
correct individual PK parameters, the consequence of using nor-
malized MDRD should be modest. Second, since vancomycin
concentration is usually measured sparsely in routine clinical
practice, the impact of the intensity of samples within one dosing
interval was not investigated with TDM data in this study. This
however may be of interest for other TDM drugs for which
samples can be measured multiple times in a dosing interval.
Third, we identified that themost recent historical data have best
predictive value. Yet, we didn’t investigate what the time distance
to the last historical data could be to still have acceptable predic-
tive performance of Bayesian forecasting. This was because the
sampling scheme of vancomycin followed the local policy, where
trough samples are collected prior to the next dose which are
usually scheduled regularly. The time distance to the last histor-
ical data is thus usually fixed. Yet, it is our expectation that a
greater time distance to the last historical data comes with higher
PE, as was also shown by Broeker et al. in a mixed patient pop-
ulation receiving vancomycin (14). Last, although the
time-varying covariate creatinine clearance was taken into ac-
count in the analysis, further inclusion of time-varying character-
istics is expected to improve the performance of Bayesian fore-
casting using the standard MAP method. This can however be
challenging due to the need for sufficient data abundancy over
the course of therapy. Besides, the inclusion of inter-occasion
variability can probably improve the model and also predictive
performance of the standardMAPmethod, but it is often difficult
to define occasions in the local data set in the same way as was
done for the development of the population PK model.

In conclusion, the adaptiveMAPmethod seems to be prom-
ising for model-based TDM of vancomycin in ICU patients
with better performance in Bayesian forecasting than the stan-
dard MAP method. One should include historical TDM data
of the preceding one day when using the standard MAP meth-
od or the weighted MAP method, or of the preceding two days
when using the adaptive MAP method for the most reliable
Bayesian forecasting of vancomycin for ICU patients.
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