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ABSTRACT
Purpose In this paper we investigated a newmethod for dose-
response analysis of longitudinal data in terms of precision and
accuracy using simulations.
Methods The new method, called Dose-Response Mixed
Models for Repeated Measures (DR-MMRM), combines
conventional Mixed Models for Repeated Measures
(MMRM) and dose-response modeling. Conventional
MMRM can be applied for highly variable repeated measure
data and is a way to estimate the drug effect at each visit and
dose, however without any assumptions regarding the dose-
response shape. Dose-response modeling, on the other hand,
utilizes information across dose arms and describes the drug
effect as a function of dose. Drug development in chronic
kidney disease (CKD) is complicated by many factors, primar-
ily by the slow progression of the disease and lack of predictive
biomarkers. Recently, new approaches and biomarkers are
being explored to improve efficiency in CKD drug develop-
ment. Proteinuria, i.e. urinary albumin-to-creatinine ratio
(UACR) is increasingly used in dose finding trials in patients
with CKD.We use proteinuria to illustrate the benefits of DR-
MMRM.
Results The DR-MMRM had higher precision than conven-
tional MMRM and less bias than a dose-response model on
UACR change from baseline to end-of-study (DR-EOS).

Conclusions DR-MMRM is a promising method for dose-
response analysis.

KEY WORDS Mixedmodels for repeatedmeasures
(MMRM) . dose-response analysis . dose-responsemixedmodels
for repeatedmeasures (DR-MMRM) . chronic kidney disease
(CKD) . urinary albumin-to-creatinine ratio (UACR)

BACKGROUND

Traditional dose-response analyses are strongly dependent on
the choice of model when the response is highly variable due
to unexplained variability. Model-based analyses give higher
statistical power than group-wise comparisons [1]. However,
many alternative models might provide similar predictions.
To select the most appropriate model can be challenging
when the signal-to-noise ratio (SNR) is low, since the knowl-
edge that can be gained is proportional to the SNR [2, 3]. The
model uncertainty results in large sample size and/or uncer-
tainty in the dose selection for the following study.

Mixed Models for Repeated Measures (MMRM) is an ap-
proach to model data with high unexplained variability, mak-
ing few/no assumptions regarding the response. Instead, at
each visit a placebo and treatment response is estimated inde-
pendent of other visits. This approach has proved superior in
terms of precision and accuracy to analysis of (co)variance
(ANOVA/ANCOVA) with the end-of-study data in cases
with dropout, where the traditional alternative is to use last
observation carried forward (LOCF) [4–11].

As an ANCOVA is only based on the information from the
last visit, it does not make use of the totality of data. The con-
ventional MMRM technique also ignores some of the informa-
tion in the data, since each visit and dose level is modeled inde-
pendently as a factor. By assuming a dose-response relationship
where the dose is handled as a continuous variable, information
can be shared between dose arms to improve prediction
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accuracy. Dose-response analysis is most commonly applied to
end-of-study data, thus ignoring shared information across visits.
In this manuscript we present a new method for dose-response
analysis of longitudinal data. The new method, Dose-Response
MixedModels for RepeatedMeasures (DR-MMRM), combines
conventional MMRM and dose-response modeling, with few
assumptions regarding the response but sharing information
across doses and visits. In DR-MMRM each visit has a separate
placebo and Emax estimate, while ED50 is a global parameter.
Similar methods have been described previously, but then fo-
cused on exposure-response analysis of QT interval prolongation
[12, 13]. These studies also handled Emax as a global parameter,
while DR-MMRM can account for different time-courses of the
drug effect.

Chronic kidney disease (CKD) is a global burden, which was
estimated to cause 1.2 million deaths in 2015, an increase of over
30% compared to 2005 [14]. The disease progression of CKD is
often slow with few initial symptoms. Traditionally, drug devel-
opment in CKD has focused on estimated glomerular filtration
rate (eGFR). It is recognized that clinical trials within the CKD
field face many challenges, related to the slow progression of the
disease but also the selection of sensitive clinical endpoint, patient
recruitment and influence of comorbidities [15]. Recently, the
National Kidney Foundation (NKF), held a workshop together
with the FDA and EMA where new approaches to improve
efficiency in CKD drug development were discussed [16]. New
opportunities were highlighted including the validity of urinary
albumin-to-creatinine ratio (UACR) as an important clinical
endpoint [16]. UACR is commonly used as a dose-finding clin-
ical endpoint inCKD, instead of eGFR, because it typically has a
faster response that allows for shorter studies [16, 17]. However,
UACR is highly variable both between and within subjects. The
new method, DR-MMRM, was applied to simulated UACR as
a clinical endpoint to demonstrate its usefulness.

OBJECTIVES

To investigate the precision and accuracy of placebo-adjusted
change from baseline of simulated UACR (ΔΔUACR) with
different methods: dose-response on end-of-study data (DR-
EOS), conventional MMRM and dose-response MMRM
(DR-MMRM).

METHODS

Previous Studies

Inspiration for the simulation study setup and the estimates of
variability and correlation between residuals were taken from
a previous study of dapagliflozin where UACR was measured
over time (data on file, n= 251). This was a three-arm, double-

blinded, placebo-controlled, parallel group, randomized clin-
ical trial in a population with type 2 diabetes and mild renal
impairment. Scheduled visits occurred at baseline and weeks
1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24. Several models
for the correlation of residuals (autoregressive of different or-
der, independence, etc.) in the placebo arm of this study (n =
84) were evaluated and compared based on Akaike
Information Criterion (AIC) and Bayesian Information
Criterion (BIC) as well as by inspecting the model population
predictions. As all models provided similar fit (not shown), a
1st order autoregressive model was chosen for simulations.

Simulations

The model for the previous data was used as a basis for the
simulations. A true dose-response model following an Emax

shape with a range of ED50 (2–128 mg) was assumed, see
Fig. 1. The Emax parameter was set so that the highest dose
achieved a reduction of 40% in UACR at the last visit. The
baseline UACR was set to a mean of 5.63 log(mg/g) and the
baseline variability (ω) was set to 0.3716 log(mg/g), as found in
the previous study. As the simulated values were change from
baseline, the actual value of the baseline had no importance
for the results. A 1st order autoregressive model (AR [1]) with
ρ= 0.226/visit and a residual error magnitude (σ) of 0.50
log(mg/g) was assumed for the correlation of residuals, again
based on previous findings.

The simulated values of UACR were log-transformed
changes from baseline (ΔUACR). Three different time-
courses of the drug effects were investigated: direct, exponen-
tial or linear. For each combination of ED50 and drug effect
time-course, a number (n = 1000) of 16-week studies were
simulated, totaling 21,000 studies. Samples were taken at
week −2, −1, 0, 2, 4, 6, 8, 10, 12, 14, 15 and 16. There was
1 placebo arm and 3 or 4 dose arms (10, 30 and 100 mg or 3,
10, 30 and 100 mg). The baseline was averaged across the
visits at week −2, −1 and 0.

The sample was size set to provide 95% statistical power
for detecting a 40% reduction inΔUACRbetween the highest
dose arm and placebo at end-of-study using a t-test, given the
variability that was previously assumed. This led to the same
sample size (n= 39 per arm) in all trials, while varying the Emax

parameter at the end-of-study visit.
The Emax parameter also changed with respect to different

time-courses of the drug effect. For the exponential and linear
time-courses the 40% reduction was reached at the last visit
with the highest dose. The direct effect-profile reached the
40% reduction already at the first visit post baseline with the
highest dose. The following equations (Eq. 1–2) were used to
calculate the Emax at each visit for each ED50 and time-course:

Emax;k ¼ log 0:6ð Þ � 100þ ED50;k

100
ð1Þ
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Models

Three methods were investigated. First, the dose-response re-
lationship on change from baseline at end-of-study data was
fitted only on change from baseline data at the last visit (week
16). Then, the placebo response, ED50 and Emax were estimat-
ed. Secondly, in the conventional MMRM analysis, each visit
and dose arm had a separate estimate of both the placebo
response and the response in each of the different dose arms.
No dose-response through ED50 or Emax was estimated then.
Lastly, in the dose-response MMRM analysis, each visit had a
separate estimate of the placebo response and Emax but all
visits shared the ED50 parameter. This saved 2 or 3 parame-
ters per visit (depending on number of dose arms) but added 1
global. TheMMRMmethods were estimated with a 1st order
autoregressive covariance matrix for the correlation of
residuals.

A schematic of the simulation and estimation setup is
shown in Appendix Fig. 1.

Evaluation Metrics

The precision was assessed through the magnitude of the un-
certainty of the estimated ΔΔUACR. Precision was also eval-
uated in the same way for the Emax and ED50 estimates in the
dose-response informed methods that contained these param-
eters (DR-EOS and DR-MMRM).

The accuracy of ΔΔUACR was assessed through relative
bias, computed as the absolute bias at the last visit compared
to the true values, relative to the maximal effect (40% reduc-
tion of UACR). The bias for ED50 and Emax was assessed
through absolute bias for the dose-response informed
methods.

For ΔΔUACR, the root mean squared error (RMSE),
which is a weighted measure of precision and accuracy, was
also calculated at the last visit through Eq. 3:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sd2 þ bias2

p
ð3Þ

Software and Implementation

Both simulations and estimations were performed inR version
3.2.4 [18]. The autocorrelation models of previous studies
were fit using the nlme() package with the lme() function
[19]. The nlme() package was also used to fit the dose-
response MMRM relationship and the MCPMod() package
was used to fit the dose-response relationship on end-of-study
data [20].

In order to directly get the standard deviation and partly to
stabilize the model, the dose-response MMRM was parame-
terized so that the estimates from each dose arm were obtain-
ed separately and the standard Emax equation was changed so
the effect was given at dose = 1 – here called Edose – instead of
Emax, reformulating the model as in Eq. 4:

y¼Plcþ Edose � dose
ED50 þ dose

� ED50 þ dosem
dosem

ð4Þ

where y are the responses, Plc the placebo responses and
dosem is the dose in question (3, 10, 30 or 100 mg), collapsing
to Eq. 5 when dose = dosem:

Fig. 1 True dose-response rela-
tionship used in the simulations.
The effect is shown at the last visit
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Emax;k;t ¼
Emax;k � 1; Direct effect

Emax;k � 1−e−
log 2ð Þ
1:75 �t

� �
; Exponential effect

Emax;k � t
16

; Linear effect

8>><
>>:

ð2Þ

where Emax,k,t is the change in UACR with ED50,k (2, 4, 8, 16,
32, 64 or 128 mg) at t weeks after start of treatment.



y ¼ Plcþ Edose ð5Þ

The estimates were only saved when dose = dosem was ful-
filled. This meant fitting the same data 3 or 4 times to get
estimates for each dose arm, while obtaining the same esti-
mate for ED50 – and also Emax, which could be back-calculat-
ed. The number of times the models could not converge was
recorded. Since the dose-response MMRM was performed
with several attempts, a complete convergence failure was
defined as when all parameterizations for one study failed
simultaneously.

For full details on the implementation, R code with a work-
ing example is provided in Appendix File 1.

RESULTS

The true and estimated ΔΔUACR with 95% confidence in-
tervals for 3 example studies with linear drug effect time-
course and ED50 = 32 mg are shown in Fig. 2. Due to the
large number of simulated scenarios, the ΔΔUACR for more
cases are not shown. The illustrational example in Fig. 2 shows
how all 3 methods are comparable in precision for the highest
dose at the end-of-study visit. The dose-response informed
methods have shorter confidence intervals for the lower doses,
and the DR-MMRM has the highest precision (lowest stan-
dard errors) in all cases. The same figure, but for the simula-
tion scenario where only 3 doses and placebo were simulated
is shown in Appendix Fig. 2.

In Fig. 3, the bias at the last visit is shown in relation to the
maximal effect (a reduction of 40% in UACR), stratified by
time-course of the effect and the dose levels. The gray area
indicates the expected variability (±2 SD) of estimates known
to be unbiased given the simulation setup. The conventional
MMRM is unbiased (if any dropout is at random) [4, 8] and
generally showed estimated bias within the gray area which was
the expected outcome: only 3 of 84 estimates (4%) fell outside
this range. The expected outcome was 5%. All methods had
low bias for the highest dose. For the dose-response informed
methods, the bias increased with increasing ED50 whichmay be
due to that the studied dose range (3–100mg) covered a smaller
part of the true dose-response relationship. The DR-MMRM
had 18 of 84 estimates (21%) outside the expected theoretical
range. The DR-EOS always had the strongest bias, which at
most was around 6% of the maximal UACR effect, and 53 of
84 estimates (63%) had larger bias than the expected theoretical
range. For DR-MMRM the highest bias was around 3% of the
maximal UACR effect.

In Fig. 4, the RMSE for the last visit is shown, stratified by
time-course of the drug effect and the dose levels. As stated in Eq.
3, this is a composite measure of variance and bias, and all
methods had constant RMSE across different values of ED50

for the highest dose, where conventional MMRM was slightly
higher than the other methods. The conventional MMRM al-
ways had a relatively constant RMSE for different time-courses
of the drug effect as well as dose levels, which was higher than the
dose-response informed methods and on par with the theoretical

expected RMSE,
ffiffiffiffiffiffiffiffiffiffi
ω2þσ2

p ffiffi
n

p � ffiffiffi
2

p
≈0:14 log mg

g

� �
. The dose-

response informed methods had decreasing RMSEwith increas-
ing ED50 for the lower doses, dose-response MMRM RMSE
was lowest at a dose of 3 mg and ED50 of 128 mg – the lowest
dose and highest ED50. TheDR-MMRMhad the lowest RMSE
in all cases.

In Fig. 5, the median estimates of ED50 fromDR-EOS and
DR-MMRM are shown, exemplified with direct time-course
of the drug effect. The median estimates were generally well
aligned with the true value that was used for simulation, ex-
cept for the two highest ED50 (64 and 128 mg), where a slight
bias could be seen and the uncertainty of the estimates were
higher. The median was used since the mean was heavily
influenced by estimates that were on the upper boundary.
The estimates for all time-courses of the drug effect are shown
in Appendix Fig. 3.

In Fig. 6, the median estimates of the Emax parameter for
the last visit from DR-EOS and DR-MMRM are shown,
exemplified with direct time-course of the drug effect. The
2.5th and 97.5th percentiles of the estimates are shown with
error bars, which indicate that the uncertainty of the estimates
was increasing with increasing ED50. Themedian was used for
plotting since some extreme values influenced the mean to
overestimate the Emax parameter for both methods. Instead,
the median Emax was overestimated by DR-EOS but ap-
peared unbiased for DR-MMRM. The percentiles were al-
ways wider for DR-EOS than DR-MMRM, however that
may be a feature of the constraints in the settings as many
values were at the upper boundary. The estimates for all
time-courses of the drug effect are shown in Appendix Fig. 4.

In the simulation scenario with 3 doses, at least one of the 3
parameterizations converged successfully for all 21,000 simu-
lated studies and provided an estimate of ED50 and Emax.
When 4 dose arms were used, it was possible to get an estimate
of ED50 and Emax for all cases, except 2 of the 21,000 simu-
lated studies where none of the 4 parameterizations con-
verged. The failed attempts both occurred for an ED50 of
128 mg, with either exponential or direct time-course of the
drug effect. For DR-EOS and conventional MMRM, estima-
tion was always successful. A summary of the pros and cons of
the investigated methods is shown in Table 1.

DISCUSSION

Conventional MMRM analyses are inherently unbiased if
dropout is at random, which is not the case for the dose-
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response informedmethods. None of the investigatedmethods
had a large bias at any point – it was never more than 6% of
the maximal drug effect on UACR. The DR-MMRM had
lower bias than the DR-EOS, which can be explained by the
fact that they use different amounts of data. The MMRM
methods were also mostly within the expected range of bias
following the study design and simulation setup, while the
DR-EOS had a clear trend of increasing bias when ED50

increased.
Dose-response at end-of-study or dose-response MMRM

offers an improvement in precision over conventional
MMRM analyses. The improvement is mostly seen for lower
doses. The precision for the highest dose is comparable for all

methods, but slightly higher for MMRM. Since the precision
for the highest dose level was not improved to any large degree
by adding the 4th dose (3 mg), it seems that the highest dose
contains most information regarding the dose-response, and
certainly so with increasing ED50, as lower doses are not
informing as much about the Emax and ED50 parameters. As
expected, DR-EOS performs well (on par with DR-MMRM
in terms of precision for the highest dose) since there was no
dropout in the simulated data. Should we have included drop-
out, we know an ANCOVA with LOCF, which resembles the
DR-EOS, will be biased [4, 5]. The relatively frequent obser-
vations in this study favors the DR-MMRM method as more
information regarding ED50 is utilized.

Fig. 2 Placebo-adjusted ΔUACR
and 95%CI for 3 studies with linear
time-course of the drug effect
where ED50 = 32 mg, stratified by
dose. The true ΔΔUACR is also
shown

Fig. 3 Bias relative to the absolute
maximal effect at last visit, stratified
by time-course of the drug effect
and dose level. The gray area
(±1.7%) indicates the expected
variability (±2 SD) of estimates
known to be unbiased given the
simulation setup of 1000 simula-
tions for each scenario
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For the correlation of residuals most conventional MMRM
analyses estimate an unconstrained covariance matrix where-
as we used a 1st order autoregressive covariance matrix in this
work. However, again since we simulate without drop-out,
this does not alter the comparisons presented here unless the
variances would have varied substantially across visits.

DR-MMRM always had lower RMSE than MMRM.
RMSE is the weighted measure of both precision and bias
but in this example the bias was very low for all methods
investigated, so RMSE was effectively a measure of the preci-
sion. Higher precision, especially in the lower dose range,
allows for better predictions and interpolations to doses that
have not been studied. Phase 3 clinical trials failures are pre-
dominantly due to lack of efficacy or safety concerns [21].
Choosing the correct dose could increase the success rates,
which is why proper characterization of dose-response rela-
tionships are of high importance. Phase 2 trials typically aim to

both establish proof-of-concept (PoC) as well as to character-
ize the dose-response relationship, but the number of dose
arms is often limited so that the latter part is difficult.
Uncertainty in the dose-response means that assumptions re-
garding the response in phase 3 need to be made, which is a
risk that is preferably minimized. The positive trade-off be-
tween precision and bias (lowered RMSE) is encouraging and
shows that the DR-MMRM methodology should be consid-
ered when evaluating dose-response in dose-finding trials
when the endpoint is a repeated measure. Even when the
simulated ED50 was low there was a marked reduction in
RMSE in favor of DR-MMRM, which only grew with in-
creasing ED50.

In this work the highest simulated ED50 was 128 mg, while
the highest dose was 100 mg, i.e. well below the ED50. For this
scenario, the dose range was not sufficient to characterize an
Emax relationship in dose-response. This is evident fromFigs. 5

Fig. 4 The RMSE for the
investigated models with varying
ED50, stratified by time-course of
the drug effect and the dose levels.
The theoretical RMSE following the
study design is also shown

Fig. 5 The median estimated
ED50 with 2.5th and 97.5th
percentiles vs. true ED50 for dose-
response on end-of-study data and
dose-response MMRM, exempli-
fied by a direct time-course of the
drug effect
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and 6, where the uncertainty of the estimated ED50 and Emax

parameters increases as the simulated ED50 increases. The
limited dose range in combination with the selected model
(Emax) is the root cause for this bias when the simulated
ED50 is high. A linear or perhaps log-linear model would likely
have performed equally well in these cases. Model averaging
could have been applied to avoid selection bias, which uses a
weighted average of several proposed structural models [22].
That could be a future extension to this work, together with
further investigations of the impact of model misspecification.

As previously discussed, it is important to choose doses
wisely in the design of phase 2 studies, so that the dose-
response relationship can be properly characterized, i.e.
studying a sufficient number and wide enough range of doses
to avoid bias. In this example there was roughly a 3-fold dif-
ference between 3 or 4 consecutive doses (4 or 5 including
placebo). As clinical trials are usually optimized for sample
size, this fold difference could be increased to explore a larger
range with fewer doses, depending on earlier knowledge of a

compound’s effectiveness. It is worth to mention that the ratio
between ED90 and ED10 is 81 under an Emax function without
sigmoidicity, a range that is seldom covered by phase 2 trials.
If the confidence in a proposed ED50 is high, the fold differ-
ence may not need to be as wide. In this exercise we simulated
without sigmoidicity in the Emax equation so that practically
any dose larger than 0 would illicit a detectable effect, mean-
ing that all doses carried some information on the dose-
response relationship.When the true relationship is sigmoidal,
further doses might be warranted to estimate ED50 at any
meaningful certainty if there is no/little previous knowledge
to learn from. Also, Emax and ED50 are correlated parameters,
and it can be seen that they are biased in the same direction.
Again, the setup without sigmoid Emax relationship makes this
finding expected.

The time-course of the effect is not affecting the conclu-
sions, because the same trends are visible in all the scenarios.
The simulations were performed so that the full effect was
reached at least by the end of the study (at visit 12).

Fig. 6 The median estimate of the
Emax parameter with 2.5th and
97.5th percentiles for dose-
response on end-of-study data and
dose-response MMRM, stratified by
time-course of the drug effect and
ED50. The true Emax is also shown
in the gray line. The y axis was cut at
−5 for visibility, error bars for higher
true ED50 extend well below the
range of the graph

Table 1 Summary of pros and cons for the investigated methods

Pros Cons

DR-EOS Simple, can be used for
extrapolation or interpolation

Disregards information from all other visits

MMRM Always unbiased, uses information
from all visits

Parameter heavy, cannot extrapolate or interpolate

DR-MMRM Makes use of shared
information from all
visits and dose arms, higher
ED50 precision than DR-EOS,
can be used for extrapolation or interpolation,
overall best precision of ΔΔUACR

Assumes the same ED50 for all visits

DR-EOS, Dose-Response at End-of-Study; DR-MMRM, Dose-Response Mixed Models for Repeated Measures; ED50, effective dose giving 50% of maximal
effect; MMRM, Mixed Models for Repeated Measures; ΔΔUACR, Placebo-adjusted change from baseline of Urinary Albumin-to-Creatinine Ratio

Page 7 of 9 157Pharm Res (2020) 37: 157



One potential caveat of the MMRM methods is that
they handle time as discrete values/fixed effects – each visit
is independent of all other visits. If the study protocol is not
followed, e.g. if a sample is taken on the wrong date, this
can lead to a bias. However, in phase 2 trials such as those
we have investigated in this work, subjects are typically
followed closely and the study protocol adhered to. But
when planned and actual visits deviate from one another
there will be benefits of modeling time continuously. For
the conventional MMRM method, the information about
a dose level in relation to other doses is also not considered,
which DR-MMRM amends.

As the same model (Emax without sigmoidicity) was used
for both simulation and estimation, the results are possibly
different in terms of power, precision and accuracy than
they would be if another model had been used for simula-
tion (e.g. simulating with sigmoidicity but estimating with-
out, or an even more misspecified model). It should be
noted that if a sigmoid model had been used for both sim-
ulation and estimation, the comparison with conventional
MMRM probably would be less favorable. However, this
does not affect the conclusions regarding DR-MMRM ver-
sus DR-EOS. Also, both the DR-EOS and DR-MMRM
were implemented with the same dose-response model to
make a fair comparison. The same argument as before can
be reiterated regarding the number of doses – more doses
could have been studied but would likely not alter this
comparison. The dose-response was equally well charac-
terized already with three doses and, besides, it is uncom-
mon to have a large number of doses in phase 2 trials.

The drug effect was simulated to give a rather large
(40%) reduction in UACR, which is more than the 30%
reduction recently suggested as a meaningful clinical im-
provement [16, 23]. This affects the sample size in this
setup so that studies are smaller than they would be in
reality, but again, would not alter the comparison of the
investigated methods.

CONCLUSIONS

All three methods (dose-response on end-of-study data, con-
ventional MMRM and dose-response MMRM) predicted the
outcome at the end of the study with good accuracy. When
MMRMmethods are warranted, for instance when there is a
highly variable placebo response, the precision of MMRM
models could be improved by adding a dose-response rela-
tionship. The precision was mostly improved for the lower
dose arms. This method can aid in the general understanding
of the dose-response characteristics of a compound and in-
crease confidence in the dose(s) to bring forward to the next
stage in drug development.
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