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ABSTRACT

Purpose To evaluate and model the pharmacokinetic and phar-
macodynamic behavior in rats of FG-3019, a human monoclo-
nal antibody targeting connective tissue growth factor (CTGE).
Methods I'G-3019, human CTGF (rhCTGF), or the N-
terminal domain of rhC'TGF were administered intravenously
to rats and concentrations of these proteins as well as endog-
enous CTGF were determined by immunoassays. FG-3019,
or "®Ilabeled FG-3019, and human CTGF (thCTGF) were
co-administered to assess the impact of CTGF on the elimi-
nation rate and tissue localization of FG-3019, which was
further characterized by immunohistochemical analysis. A
PK/PD model for target-mediated elimination of FG-3019
was developed to fit the kinetic data.

Results FG-3019 exhibited non-linear pharmacokinetics in
rats. Circulating concentrations of the N-terminal half of
CTGF increased after dosing with FG-3019, reached maximal
levels after 1-5 days, and returned toward baseline levels as FG-
3019 cleared from the circulation, whereas the concentration of
intact CTGF was unaflected by administration of FG-3019. Co-
administration of thC'TGF dramatically enhanced the rate of
FG-3019 elimination, redistributing the majority of '*IHabeled
FG-3019 from the blood to the liver, kidney, spleen and adrenal
gland. FG-3019 co-administered with C'TGF was found along
the sinusoids of the liver and adrenal glands, the capillaries of the
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kidney glomeruli and in the spleen. A pharmacokinetic model
for target-mediated elimination of FG-3019 was used to fit the
time courses of FG-3019 and endogenous CTGF plasma con-
centrations, as well as time courses of thC'TGF and rhCTGF N-
fragment after intravenous administration of these species.
Conclusions F'G-3019 is subject to target mediated elimina-
tion in rats.

KEY WORDS Connective Tissue Growth Factor - CTGF -
FG-3019 - TMDD

ABBREVIATIONS
CTGF

Connective Tissue Growth Factor

CTGF-C C-terminal half of CTGF

CTGF-N N-terminal half of CTGF

CTGF-whole Intact CTGF

lg Immunoglobulin

v Intravenous

Ky Dissociation constant

LLOQ Lower limit of quantitation

PK Pharmacokinetics

RAP Receptor associated protein

rhCTGF Recombinant human CTGF

SD Sprague—Dawley

SDS-PAGE Sodium dodecyl sulfate
polyacrylamide gel electrophoresis

INTRODUCTION

Connective tissue growth factor (CTGF, CCN2) is a member of
a small family of secreted monomeric proteins that are charac-
terized by their highly conserved disulfide bonding pattern and
organization into 3—4 domains having homology to other pro-
teins (1). The four domains of CTGF are homologous to 1) IGF-
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1 binding proteins, 2) the von Willebrand factor type C repeat,
3) the thrombospondin type 1 repeat, and 4) a cysteine knot
motif common to proteins that bind heparan sulfate proteogly-
cans (HSPGs), respectively. A protease susceptible linker (hinge
region) interconnects domains 2 and 3, which upon cleavage
produces CTGF-N (domains 1-2) and CTGF-C (domains 3—
4). GTGF-N appears to be proteolytically stable, as it is the
portion of CTGF that is commonly observed in biological fluids
like plasma or urine, whereas CTGF or CTGF-C is usually not
observed in biological fluids at appreciable concentrations (2).
Increased concentrations of CTGF have been reported in
various chronic diseases including liver fibrosis, systemic sclero-
sis, diabetic nephropathy, as well as pancreatic cancer (3).
Because of the association between elevated CTGF concentra-
tions and progression of tissue remodeling diseases, inhibition of
C'TGT has been suggested as a therapeutic target (4). FG-3019
is @ human anti-CTGF IgG1 monoclonal antibody currently
under clinical investigation as a potential therapeutic for treat-
ment of idiopathic pulmonary fibrosis, liver fibrosis and pancre-
atic cancer (5). FG-3019 was selected for clinical development
from a panel of anti-CTGF antibodies based on its ability to
recognize both human and rodent CTGF and its activity in
functional assays (6). As part of the selection process, FG-3019
and several other anti-CTGF antibodies were evaluated for
pharmacokinetic performance in rats. Antibodies specific to
human CTGF exhibited slower clearance and longer half-
lives in rats than antibodies that recognized rat as well as human
CTGF (unpublished observations), suggesting the potential for
target-mediated antibody elimination. Here we report the as-
sessment of FG-3019 PK in rats following IV administration,
which is characterized by relatively rapid dose-dependent clear-
ance and dose-dependent terminal half-life. We present addi-
tional experiments to understand the observed non-linear ki-
netics in terms of a target-mediated clearance mechanism.
These experiments include an assessment of the effect of exog-
enous C'TGF on the elimination kinetics of FG-3019 in rats, the
tissue distribution of radioiodinated FG-3019 in the absence
and presence of exogenous C'T'GF, immunohistochemical lo-
calization of unlabeled FG-3019 in rat tissues, as well as kinetic
modeling of target-mediated antibody elimination. Together
these studies show that complexes formed between FG-3019
and CTGYF i vwo are subject to extremely rapid elimination,
which dominates the pharmacokinetics at low doses, but is a
minor contributor to antibody elimination at high doses.

MATERIALS AND METHODS
FG-3019
FG 3019 is a human, recombinant DNA-derived, IgGlx

monoclonal antibody that binds to C'TGF in domain 2, with
high affinity (Kq=0.1-0.2 nM).
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Production of CTGF

Recombinant human and rat CTGF (CTGF-whole or
CTGF-W) and CTGF-N were expressed in CHO cells as
secreted proteins. The proteins were purified from concentrat-
ed conditioned media using an antibody affinity-based purifi-
cation with FG-3019-Sepharose resin followed by ion ex-
change chromatography with SP-Sepharose Fast Flow resin
(GE Healthcare).

CTGF Antibodies

Human IgG1 monoclonal antibodies expressed in CHO cells
that target the N- and C-half portions of C'TGF, respectively,
were used to assay for C'TGF forms having an intact hinge
region connecting the two halves of CTGF. The N-half-
reactive antibody binds to Domain 1 of CTGF and is referred
to as mAb-D1. The C-half reactive antibody binds to Domain
3 of CTGF and is referred to as mAb-D3. We employed a
bivalent Fab “mini” antibody targeting the N-half of CTGF
(referred to as “minibody”) that contains a dHLX dimeriza-
tion domain followed by a Myc-His peptide tag at the C-
terminus of the antibody heavy chain. The minibody was
expressed in F.coli and purified by immobilized metal ion
chromatography (custom prepared for FibroGen by AbD
Serotec (Puchheim, Germany)).

Production of Receptor Associated Protein (RAP)

Receptor associated protein (Cat. No. IRAP-514) was pre-
pared by Innovative Research, Inc. (Novi, MI). The protein
was expressed as a glutathione-S-transferase fusion protein in
E.coli and purified by glutathione-agarose chromatography.
The fusion protein was cleaved with thrombin and GST-
containing species were removed by glutathione-agarose
chromatography. RAP was further purified by heparin sepha-
rose affinity chromatography (7). The purified protein
(0.81 mg/ml based on e€ggy=0.93) was dialyzed against
20 mM ammonium bicarbonate and then lyophilized. The
final purified material was judged greater than 95% pure by
SDS-PAGE. The N-terminus of the final product has se-
quence GSYSREKN, which differs from the native N-
terminus of YSREKN due to the remnant sequence (Gly —
Ser) from the thrombin cleavage consensus sequence.

Pharmacokinetics of FG-3019 in Rats

Male Sprague—Dawley rats (purchased pre-cannulated from
Charles River Labs, Hollister, CA) weighing an average of
336 g were housed, two per cage, with free access to food
and water throughout the study. FG-3019 formulated at
0.01, 0.1, 1, 3 and 10 mg/ml was sterile filtered and admin-
istered (3 ml/kg or 10 ml/kg for the highest FG-3019 dose) to
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anesthetized rats through tail vein injection at 0.03, 0.3, 3, 10,
30 and 100 mg/kg. Blood samples (0.25 ml) were collected at
one pre-dose and 12 post-dose time points into lithium hepa-
rin coated tubes from a catheter implanted in the jugular vein.
Plasma was 1solated by centrifugation and stored at —80°C.
Results from multiple experiments were combined for phar-
macokinetic analysis.

Pharmacokinetics of Recombinant Human CTGF
in Rats

Procedures were similar to those for assessment of the phar-
macokinetics of FG-3019. Recombinant human CTGF
(0.253 and 0.523 mg/ml) and CTGF-N (0.127 and
0.267 mg/ml) were sterile filtered in 50 mM Tris—HCI,
800 mM sodium chloride, pH 7.5, and administered (3 ml/
kg) to obtain four groups of animals (3 rats/group) dosed at
0.76 and 1.6 mg/kg with CTGF and 0.38 and 0.80 mg/kg
with C'TGF-N (20 and 40 nmol/kg of each form of C'TGF).
Blood sample collection procedures were the same as for FG-
3019.

Measurement of FG-3019 in Rat Plasma

FG-3019 was measured by capturing with an £.coli produced
CTGF Exon-3 peptide and detecting with a goat anti-human
kappa antibody conjugated with horseradish peroxidase (Cat.
No. 2060-05, Southern Biotech, AL). All samples underwent
a minimum dilution of 10-fold in buffer, with further dilutions
made in 10% pooled lithium heparin rat plasma. Calibrators
were prepared by spiking recombinant FG-3019 into 10%
pooled rat plasma.

In samples containing high concentrations of recombinant
human CTGF and in samples from low-dose (0.03 — 3 mg/kg
FG-3019) PK experiments, FG-3019 was measured using ei-
ther a human IgG assay kit purchased from Cygnus
Technologies (Cat. No. F160), or by a similar assay in which
FG-3019 was captured with an anti-human IgG (Fc specific)
antibody (Cat. No.12136, Sigma) and detected using a goat
anti-human kappa antibody conjugated with horseradish per-
oxidase (Cat. No. 2060-05, Southern Biotech, AL). All sam-
ples underwent a minimum dilution of 5-fold in buffer, with
further dilutions made in sample diluent provided by the ven-
dor (for samples measured using the Cygnus Technologies
assay kit) or in 20% pooled lithium heparin rat plasma.
Calibrators were prepared following the vendor’s instructions
(Cygnus Technologies assay kit) or by spiking recombinant
FG-3019 into 20% pooled rat plasma.

Final values for each sample were determined based on the
average of results for multiple dilutions having values within
20% of each other. These assays were confirmed not to be
subject to interference by human CTGF.

Assays for Rat CTGF

CTGF was measured in rat plasma using one of two immu-
noassays (see Figure S1). One assay employed capture with
mAb-D3 and detection with a Domain 2 reactive minibody
conjugated with alkaline phosphatase. This assay detects
forms of CTGF that have an intact hinge region connecting
Domains 2 and 3, and is referred to as a W-C'TGF assay.
Calibrators were prepared by spiking recombinant rat
CTGF into pooled rat plasma. The second assay employed
capture with the Domain 2 reactive minibody followed by
detection with FG-3019 and a goat anti-human kappa anti-
body conjugated with horseradish peroxidase (Cat. No. 2060—
05, Southern Biotech, AL). Calibrators were prepared by spik-
ing recombinant rat C'TGF-N into pooled rat plasma. This
assay (the N+W-CTGFT assay) detects forms of CTGI con-
taining Domain 2, which includes the N-terminal half of
CTGF and full length CTGF. Neither of the two CTGF
assays 1s subject to interference by FG-3019.

Assay for rhCTGF in Rat Plasma

Plasma from rats dosed with recombinant human CTGF were
assayed for CTGF using two ELISAs specific to human
CTGF (see Figure S1). To measure CTGF, standards, sam-
ples and quality control samples were added to 96-well plates
coated with 5 pg/ml mAb-D3. After washing the plates, hu-
man CTGF was detected by incubation for 1.5 h with
500 ng/ml alkaline phosphatase-labeled mAb-D1 followed
by color formation generated after addition of pNPP reagent.
mAb-D1 does not bind to rodent forms of CTGF, making this
W-CTGF assay selective for human CTGF. A second CTGF
assay (human N+W-CTGF) employed microtiter plates coat-
ed with the minibody which binds to Domain 2 of human (and
rat) CTGF. Human CTGF was then detected using the hu-
man specific alkaline phosphatase-labeled mAb-D1. This N+
W-CTGF assay detects both intact thCTGF and the N-
terminal fragment of rhCTGF. Calibrator data for each of
the ELISA methods described above were fit to 4-parameter
logistic equations.

FG-3019 Pharmacokinetics in Rats Following Injection
of CTGF or CTGF-N

Six rats per group were injected through the tail vein with FG-
3019 (3 mg/kg, dose volume 3 ml/kg). Approximately 10 min
after dosing with FG-3019 (Figure S2), animals were dosed
with buffer, or equimolar amounts of CTGF or CTGF-N
(3 ml/kg). Blood samples (0.2 ml) were collected pre-study,
5 min before injection of CTGF, and then 5 min, 15 min,
0.5h,1h,3h,7h,24h,48h, 3, 5, and 8 days after injection
of CTGF. Each group was divided into two sub-groups of
three animals, with blood sampling conducted at alternating
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time points so that no animals had more than four blood
samplings over a 24-h period. A 0.25 ml priming blood sam-
ple was collected prior to the 0.20 ml blood samples. The
0.25 ml priming sample was re-injected into the animal to-
gether with 0.2 ml of 10 U/ml heparinized saline after each
blood sample collection. Blood was centrifuged at 3510Xg for
10 min and the plasma collected and stored at —80°C.

FG-3019 Pharmacokinetics in Rats Co-Dosed
with Different Amounts of CTGF

Three rats per group were injected through the tail vein
with FG-3019 (3 mg/kg, dose volume 3 ml/kg).
Approximately 10 min after dosing with FG-3019
(Figure S3), rats were injected through the tail vein with
bolus doses of CTGF (or buffer), at molar ratios of
CTGF:FG-3019 equal to 0:1, 0.5:1, 1:1 and 2:1 (3 ml/
kg). Blood samples (0.20 ml) were collected into lithium
heparin coated tubes pre-study, 5 min before the dose of
CTGF, and at 3 min, 6 min, 0.5, 6, 24, 48 and 144 h
after the dose of C'TGF. Blood samples (0.2 ml) were
collected and processed as described above.

FG-3019 Pharmacokinetics in Rats Co-administered
with RAP and CTGF

Rats were cannulated through the right jugular (for blood
collection) and left femoral veins (for dose administration)
and allowed to recover at least 48-h after surgery before initi-
ation of dosing. FG-3019 was administered to conscious ani-
mals (=3 or 4 per group; 1.5 ml/kg) (Figure S4), followed
10 min later by RAP (or vehicle; 0.9 ml), which was followed
immediately by CTGF (or vehicle; 1.5 ml/kg). Catheters were
flushed with 0.15 ml of sterile saline after each administration
of each test article. Blood samples (0.2 ml) were collected and
processed as described above.

Preparation of ['**I1]-FG-3019

['*1]-FG-3019 (~2 mCi/mg) was prepared by Vitrax
Radiochemicals (Placentia, CA) by chemical
radioiodination of FG-3019. The radioiodinated anti-
body was checked for its ability to bind CTGF by com-
parison with non-radioiodinated FG-3019 in a direct
ELISA based on solid phase capture by CTGF Exon-3
peptide, which corresponds to Domain 2 of CTGF. The
radioiodinated and non-iodinated antibodies yielded
comparable dilutional behavior in the ELISA. The
['*1]-FG-3019 was diluted to 2 mCi/mg with non-
radioiodinated FG-3019 in 0.9% saline prior to
injection.
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Tissue Distribution and Excretion Analysis of ['*n
-FG-3019 in Rats

The following procedures were conducted at QPS, LLC
(Newark, DE). Five rats were placed on study and were given
water containing Nal (10 mg/ml) beginning at least 48 h be-
fore test article dosing and during the study. Body weights of
each animal were determined prior to and on the day of
dosing. The radioactive concentration and homogeneity of
the dose formulation was determined before and after dosing
using gamma counting analysis. Each animal received a single
tail vein injection of the formulation, which contained ['*T]-
FG-3019 1n a vehicle of 0.9% saline to achieve the target dose
of 10 mg/kg and a radioactivity dose of 20 nCi/kg at a dose
volume of 5 ml/kg. One animal each was assigned to be eu-
thanized at 0.25, 2, 6, and 24 h post-dose. One additional
animal, which was given an IV dose of 5 mg/kg of rhCTGF
approximately 10 min after the administration of ['*’I]-FG-
3019, was euthanized at 0.25 h after the dose of ['*’T}-FG-
3019 (5 min after administration of thCTGF). At the sched-
uled times, animals were deeply anesthetized via isoflurane
inhalation, a blood sample was obtained via cardiac puncture,
and the animals were euthanized by freezing in a hexane dry-
ice bath for quantitative whole body autoradiographic
(QOWBA) analysis. The animals were not perfused prior to
freezing. Whole blood, plasma (KoEDTA anticoagulant),
urine, feces, cage wash and wipes as well as carcasses were
collected and stored at —70°C.

After removing the pinna, distal limbs, hair and tail, the
frozen carcasses were embedded in 2% (w/v) carboxymethyl-
cellulose and frozen into a block prior to sectioning. Internal
quality control and calibration standards (blood fortified with
['®1] sodium iodide) were placed into the frozen blocks prior
to sectioning to control for section thickness and image cali-
bration. Several sections approximately 40 pm thick were tak-
en in the sagittal plane using a cryostat microtome set to
—20°C. Sections were dehydrated prior to exposure to
phosphorimaging screens. The exposed screens were scanned
using a Molecular Dynamics Typhoon 9410 Phosphor
Imager and data acquired as counts per mm”. Tissue concen-
trations of radioactivity were determined by interpolation
from a standard curve based on the calibration standards
and expressed in terms of pCi/gram, which was converted
to microgram equivalents of [ ’I]-FG-3019 per gram of tissue
based on the specific activity of [ *I] -FG-3019. A single, best
representative section was used from each animal for determi-
nation of tissue concentrations of radioactivity.

Immunohistochemical Localization of FG-3019
and CTGF

Rats received a 3 mg/kg tail vein injection of FG-3019 follow-
ed 10 min later by a 1.52 mg/kg injection of rhCTGF
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(CTGF:FG-3019 molar ratio of 2:1) or buffer. Control ani-
mals were dosed with the FG-3019-vehicle followed 10 min
later by buffer. Animals (=2 per group) were harvested
5 min after CTGF (or buffer) administration. The lungs were
perfused with ice cold saline from the right ventricle for ap-
proximately 1 min. The animals were then perfused from the
left ventricle with ice cold saline for 3 min followed by 10%
buffered formalin for 3 min. The following tissues were har-
vested and stored in 10% buffered formalin: one liver lobe,
both kidneys, both adrenal glands, spleen, cardiac ventricles
and lungs. The lungs were stored inflated with 10% buffered
formalin. Immunohistochemistry was performed on formalin-
fixed, paraffin-embedded tissue sections. For antigen retrieval,
specimens were boiled in TRIS/EDTA buffer (10 mM Tris
Base, 1 mM EDTA Solution, 0.05% Tween 20, pH 9.0) for
20 min. Between incubations, slides were washed three times
in TBST-buffer (Teknova, Hollister, CA). A specific anti-
human CTGF mouse monoclonal antibody produced at
FibroGen was used for CTGF detection and a rabbit anti-
human IgG (Jackson Immunoresearch Lab, West Grove,
PA) was used to detect FG-3019. A tyramide signal amplifica-
tion system (T'SA-kit, Perkin Elmer) was used for CTGF im-
munostaining and EnVision + system (DAKO, Carpinteria,
CA) was used for FG-3019 immunostaining according to the
manufacturer’s instructions. Peroxidase-diaminobenzidine
was used as chromogen. Slides were cover-slipped with an
aqueous mounting media (Cytoseal XYL, VWR, Visalia,
CA).

Non-Compartmental Pharmacokinetic Analysis

The PK parameters were estimated by a non-compartmental
pharmacokinetic analysis using Phoenix WinNonlin™ 6.2
(Pharsight, A Certara™ Company, Mountain View, CA).
Nominal sampling times were used to estimate all pharmaco-
kinetic parameters unless the deviation (scheduled vs actual)
was 10% (or greater) where the actual time of sample collec-
tion was used. The PK parameters reported consist of Ci,.
(maximum plasma concentration), AUC;,¢ (area under the
concentration time curve based on extrapolation to infinity),
AUC;,¢/Dose (dose normalized area under the curve), ClI
(clearance, corresponding to the overall rate of elimination
of FG-3019 from plasma), V,, (volume of distribution during
the terminal phase), V (volume of distribution during the
steady-state), and t; s9 (terminal half-life corresponding to the
log-linear slope of the observed terminal phase of the
concentration-time profile). All PK parameters values were
reported to three significant figures (Table S1).

Compartmental Pharmacokinetic Modeling

A pharmacokinetic (PK) model was designed to describe the
time courses of plasma concentrations of FG-3019 (Ab) and its

targets CTGF (W) and the N-fragment of CTGF (N). The
model assumes that both W and N are constitutively produced
at zero-order rates kyy and ky, and cleared by first-order pro-
cesses CLyy and Cluy, respectively. They also distribute to
peripheral tissues W-p- and N at distributional clearance rates
CLgw and CLgy, respectively. CTGT is cleared from the tis-
sues at the first-order clearance rate CLyy. The antibody is
cleared from the circulation at the first-order clearance rate
CLy;, and distributes to the peripheral tissue compartment
Abr at clearance rate CLqgap,. Ab binds to the target species
W and N at second-order rate constants k,vw and k,,n and
forms complexes AbW and AbN, respectively. The complexes
dissociate to single molecule species Ab and W, and Ab and N
at first-order rates kg and kg, respectively. The complexes
AbW and AbN distribute to the tissue compartments AbWr-
and AbNy at the first-order clearance rates CLgapw and
CLgapN, respectively. The complex AbWr is eliminated from
the tissues at the first-order clearance rate CLapywr. The bind-
ing and dissociation of the antibody, CTGF, and CTGF-N in
the tissues were neglected. See the Supplemental section for
the mathematical description of the model.

Concentrations were expressed in nM units using the mo-
lecular weights of 38 kD for CTGF, 19 kD for N-fragment,
and 75 kD for FG-3019. The latter accounts for the two bind-
ing sites per molecule of 150 kD IgG protein. The measure-
ments below limit of quantification were ignored. Mean data
were used for analysis. All data sets analyzed were fit simulta-
neously using the maximum likelthood estimator. Precision of
the parameters was expressed as percent coefficient of varia-
tion. The goodness of fit was assessed by overlaying the ob-
served data with model predictions and from the correlation
coeflicients between observed and predicted values for each
dose group. Nonlinear regression was performed by ADAPT
5 (8).

RESULTS
Pharmacokinetics of FG-3019 in Rats

Preliminary assessment of the PK of FG-3019 in several spe-
cies indicated relatively rapid clearance and a short terminal
half-life (not shown). To fully characterize the PK of FG-3019,
its plasma concentration in rats was measured following IV
doses ranging from 0.03 to 100 mg/kg (Fig. 1). The apparent
terminal phase was more rapid at low than at high dose, which
1s reflected in the calculated half-life (T’ /9) values that ranged
from 1.36 days at 0.03 mg/kg to 7.31 days at 100 mg/kg
(Table S1). Clearance (Cl) decreased with increasing FG-
3019 dose from 90.6 ml/kg/day to 8.9 ml/kg/day over the
0.03-100 mg/kg dose range. Consistent with the dose-
dependent decrease in Cl, the dose-normalized AUC
(AUGC;,,/Dose) increased with dose level. The non-linearity
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Fig. | Plasma concentration time courses for FG-3019 in male rats. The
mean plasma concentration of FG-3019 is expressed in ng/ml (right axis) and
in nanomolar binding site concentration (MW = 75,000) (left axis). FG-3019
doses administered were 0.03 mg/kg (n = 3) (open squares), 0.3 mg/kg
(n = 3) (solid squares), 3 mg/kg (n=9) (solid triangles), 10 mg/kg (n = 6)
(open triangles), 30 mg/kg (n = 6) (open circles) and 100 mg/kg (n = 6) (solid
circles). Error bars reflect standard deviations. Solid curves are from fits of the
data using a pharmacokinetic model.

of the rat pharmacokinetic parameters with the dose of FG-
3019 indicates a role of a saturable process in the elimination
mechanism.

Effect of FG-3019 on Circulating CTGF in Rats

Endogenous CTGF plasma concentrations were essentially
unchanged upon dosing with FG-3019. Pre-dose concentra-
tions were uniformly below the 5.6 ng/ml lower limit of quan-
titation. For the high dose group there was only one time point
(0.5 h) for which all three test animals had quantifiable W-
CTGT concentrations, averaging 10+ 3 ng/ml (not shown).
In contrast, plasma concentrations of C'TGF-N detected by
the N+W-CTGF assay rose substantially after dosing with
FG-3019 (Fig. 2). Both the maximum level and the time to
maximum N+W-CTGF level were dose dependent, with
Cinax N+W-CTGF concentrations of 32, 77 and 197 ng/ml,
and T,,., times of 24, 48 and 120 h for the 10, 30 and
100 mg/kg FG-3019 doses, respectively. CTGF concentra-
tions for the 0.03, 0.3 and 3 mg/kg dose level were not deter-
mined. Since C'TGF-whole concentrations were unaffected by
FG-3019 dosing, the increase in signal measured by the N+
W-CTGF assay corresponds to accumulation in the plasma of
CTGF-N. It should be noted that the CTGF-N in circulation
after dosing with FG-3019 is expected to be mostly complexed
with FG-3019 due to the excess concentration of circulating
antibody.
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Fig. 2 Rat plasma concentrations of endogenous CTGF following adminis-
tration of FG-3019. Male rats were administered FG-3019 at 10 mg/kg
(diamonds), 30 mg/kg (squares) or 100 mg/kg (triangles). CTGF was measured
using the N+W-CTGF assay as described in the text. Error bars are standard
deviations of the means of three animals. Concentrations of intact CTGF
measured with the W-CTGF assay are below 5 ng/ml and are not shown.
Solid curves are fits obtained from pharmacokinetic modeling. Inset: concen-
trations of FG-3019 in rats dosed at 100 mg/kg (circles,right axis) are shown
with the corresponding CTGF concentrations (triangles,left axis).

Pharmacokinetics of CTGF

The pharmacodynamic effect of FG-3019 on circulating
CTGF-N concentration raised questions about the source of
plasma CTGF-N, the mechanism for the post FG-3019 dose
increase, and the absence of this effect for CTGF-W. To begin
to address these questions and develop a PK/PD model for
FG-3019 we decided to evaluate the kinetics of CTGF itself.
We found that disappearance of recombinant human CTGF-
N from the blood following an intravenous dose (Fig. 3) was
rapid and biphasic, with average terminal phase half-life of
43.5 min. The initial phase of disappearance of plasma
CTGF-whole following intravenous injection was too fast to
allow for non-compartmental assessment. The terminal phase
had a half-life of 3.3 min, 13-fold faster than the terminal
phase half-life of CTGF-N. Thus, the elimination kinetics of
both forms of C'TGI were clearly much faster than the kinet-
ics observed for FG-3019.

Effect of Recombinant Human CTGF on FG-3019
Pharmacokinetics in Rats

In rats, thCTGF-N is eliminated from circulation rapidly, but
the endogenous N-fragment of CTGF accumulates after dos-
ing with FG-3019. This suggests that accumulation may be
due to much slower elimination kinetics for the complex of
CTGF-N with FG-3019 than for free CTGF-N. Similar ac-
cumulation of other soluble target/antibody complexes has
been reported (9,10). In contrast, the intact form of
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Fig. 3 Plasma Concentration Time Courses of Recombinant Human CTGF
in Male Rats. Top panel: rhCTGF-N was administered at 0.38 mg/kg (solid
triangles) and 0.8 mg/kg (open squares). CTGF was measured using the N+
W-CTGF assay. Bottom panel: rhCTGF was administered at 0.76 mg/kg (solid
circles) and 1.6 mg/kg (open diamonds). CTGF was measured using the W-
CTGF assay. Error bars are standard deviations from 3 animals per group.
Solid curves were obtained by a pharmacokinetic model.

endogenous CTGY did not accumulate in the circulation after
dosing with FG-3019, despite the affinity of the antibody for
CTGF (K4 = 0.1-0.2 nM, unpublished radioimmunoassay re-
sults). This indicates either that the rate of production of
C'TGF-whole into the circulation is too low to result in signif-
icant accumulation of CTGF/FG-3019 complexes, or the
complex formed between CTGF and FG-3019 is eliminated
too rapidly to allow for significant accumulation. To evaluate
these two possibilities we chose to estimate the rate of elimi-
nation of FG-3019/CTGF complexes by determining the ef-
fect of co-administered CTGF on FG-3019 pharmacokinetics.
Administration of CTGF-N to rats previously dosed with FG-
3019 had no significant effect on the level of FG-3019, or the
rate of disappearance of FG-3019 from the circulation (Fig. 4).
However, co-administration of intact C'T'GI had a profound
impact on FG-3019 kinetics.

As shown in I'ig. 4, dosing with C'TGF caused an extremely
rapid decrease of plasma FG-3019 concentration. This effect
was C'TGF dose-dependent, such that 23%, 50% and 93%

decreases in FG-3019 concentration 6 min after injecting
CTGT were seen at the low, middle and high CTGF:FG-
3019 ratios, respectively. After the initial rapid drop in FG-
3019 concentration the elimination rate of FG-3019 was in-
distinguishable from the rate of FG-3019 elimination in ani-
mals that were not injected with CTGT. It appeared that the
mnjected thCTGF was complexing with FG-3019 and this
complex was then eliminated from the blood in the same rapid
fashion observed for thCTGF in the absence of FG-3019.
Interestingly, the impressive decrease in FG-3019 concentra-
tion triggered by administration of CTGF in 2:1 stoichiometry
to FG-3019 was followed six hours later by a small, but repro-
ducible increase in FG-3019 concentration. This may have
resulted from dissociation of the antibody from CTGF, or
from antibody recycling.

CTGF has been reported to bind to the receptor LRP1,
which we thought might be responsible for the rapid elimina-
tion of CTGF and CTGF/FG-3019 complexes from the
blood. We therefore tested the effect of an inhibitor of LRP1
binding activity, the receptor associated protein (RAP), on
CTGF’s clearing activity toward FG-3019 (7,11). Co-
administration of 9 mg RAP per animal significantly reduced
the impact of CTGF on FG-3019 elimination kinetics, consis-
tent with involvement of LRP-1 (and/or LRP2/megalin) in
the C'TGF mediated antibody clearance (Fig. 5).

The kinetic data for FG-3019, rhCTGF and rhCTGF-N
together with the effect of CTGF on FG-3019 PK and the
pharmacodynamic effect of FG-3019 on CTGF concentra-
tions indicate that when CTGF and CTGF-N are secreted
from tissues they share different fates upon encountering
FG-3019. CTGF-N binds to FG-3019 and takes on the rela-
tively slow elimination kinetics of free antibody while intact
CTGF binds to FG-3019 and causes the antibody to be rap-
idly eliminated, presumably through the same pathway as free
CTGF. To explore this model further we defined a kinetic
model and fit the relevant kinetic data as described below.

Pharmacokinetic Modeling of Target-Mediated
Elimination of FG-3019

A pharmacokinetic model (Fig. 6) was designed to account for
the data presented above. For simplicity, we elected to confine
antibody/C'TGF binding reactions in this model to the central
compartment (z.e. plasma), with uptake and elimination of the
complex between antibody and CTGF through a tissue com-
partment. This is in distinction to a model where antibody
distributes into tissues, binds to locally produced C'TGYF, and
then undergoes target-mediated elimination as an antibody/
CTGF complex without returning to the central compart-
ment. In this model, the following steps constitute the target-
mediated clearance pathway: binding of antibody (Ab) to
CTGF (W) in the central compartment, distribution of the
Ab-CTGF complex to tissues (AbWr) at rate CLgapw,
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Fig. 4 Effect of Co-administered 140
CTGF on FG-3019
pharmacokinetics. The amount of
FG-3019 (expressed as percent of
initial level remaining) is shown
versus time after administration of
CTGF or other components.
Components co-administered
were: buffer (open circles); CTGF-N
(solid diamonds); CTGF at 0.5:1
molar ratio with FG-3019 (solid
squares); CTGF at |:| molar ratio
with FG-3019 (solid triangles);
CTGF at 2:1 molar ratio with FG-
3019 (solid circles). FG-3019 was
administered at — 10 min. CTGF
was added at time zero.Error bars
reflect the standard deviation of
mean values.

120 -

100 -

80

60

FG-3018 Percent Remaining

40 1

20

S
o

N
o

8
—@—
Ho—

o]
(=}

I
o

FG-3019 Percent Remaining
= 3

—
-0.2 0 02 0.4 06 0.8 1 1.2
Time, hrs

o

followed by elimination of the Ab-CTGF complex from the
tissue compartment at a rate CLapw. The time course for the
initial rapid phase of thCTGF disappearance (Fig. 3) could
not be fit due to lack of data points. Therefore, the 1= 0 plas-
ma concentration of CTGF was set equal to the extrapolated
¢= 0 concentration from the N-fragment kinetics analysis, and
the initial rapid phase for CTGT was forced to be very rapid
in the modeling by setting CLyy =10 L/h.
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Fig. 5 Effect of Co-administered RAP on CTGF mediated elimination of FG-
3019. The level of FG-3019 (expressed as percent of initial level) is shown
versus time after administration of CTGF (squares), or RAP (9 mg) immediately
followed by CTGF (triangles). CTGF was administered at a 2:| molar ratio to
FG-3019. CTGF or (RAP + CTGF) was administered at time zero, 10 min
after FG-3019. Error bars reflect standard deviation of mean values.
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The PK model involved a large number of parameters that
could not be resolved from the available data. To avoid prob-
lems with the model identifiability, some parameters were as-
sumed to be equal and some processes were considered as very
rapid. The distributional clearances for W and the complex
AbW were assumed to be fast and set as
CLgqw = CLgapw = 10 L/h with Vpwr = V. This assump-
tion was based upon the observation that exogenously added
CTGF resulted in very rapid elimination of FG-3019 from cir-
culation (Fig. 4) and the very rapid clearance of rhCTGT (Fig. 3).
The binding of FG-3019 to target was considered rapid. To
avoid introducing a rapid binding approximation that would
require overly complex equations (12) we enforced this assump-
tion by setting the dissociation rate constants
Komy = komy = 100 h™L. We assumed that the complex of G-
3019 bound to N-fragment follows the distribution kinetics of
free FG-3019, CLgapn = CLgap and Vapnt = Vapr. This as-
sumption was based upon the observation that exogenously
added C'TGF-N did not result in very rapid elimination of FG-
3019 from circulation (Fig. 4). The tissue clearance rates of W
and AbW were set equal, CLyy = CLApwr. Also the clearance
rates of W and N from the plasma were assumed to be the same,
CLyy = CLy. While this assumption is not strictly correct based
on the data shown in Fig. 3, the plasma clearance of W and N
are so much faster than free Ab that the difference between CLyy
and CLy should not matter. The non-target mediated clearance
rates from the plasma compartment of antibody-bound forms of
CTGTF were set equal to the free antibody clearance rate,
CLyp, = CLapw = CLapN- It was also assumed that endogenous
and recombinant forms of CTGF are kinetically identical.
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Ab=FG-3019
W=CTGF

N = N fragment of CTGF

Fig. 6 Schematic diagram of the PK model of target mediated disposition of FG-3019. The model assumes that both CTGF (W) and CTGF-N (N) are
constitutively produced at zero-order rates ky and ky;, and cleared by first-order processes CLyy and CLy,, respectively. They also distribute to peripheral tissues
Wrand Nrat distributional clearance rates CLgy and Clyn, respectively. CTGF is cleared from the tissues at the first-order clearance rate CLyy+ The antibody,
FG-3019, is cleared from the circulation at the first-order clearance rate CLa, and distributes to the peripheral tissue compartment Abrat clearance rate Clya,. Ab
binds to the target species Wand N at second-order rate constants ke and ke and forms complexes Abyy and Aby,, respectively. The complexes dissociate to
single molecule species Ab and W, and Ab and N at first-order rates komy and ko, respectively. The complexes Abyy and Aby distribute to the tissue
compartments Abyrand Abyrat the first-order clearance rates Clgapw and Clyapn, respectively. The complex Abyyt is eliminated from the tissues at the
first-order clearance rate CLapwr: The binding and dissociation of the antibody, CTGF, and CTGF-N in the tissues were neglected.

Three datasets were simultaneously analyzed. The first
data set comprised the observed C'TGF plasma concentra-
tions following injections of thCTGF or CTGF-N (Fig. 3).
The assays do not detect the endogenous rat C'TGF; there-
fore, both W and N were set to 0. The second data set
comprised the plasma concentrations of FG-3019 (total of
free and CTGF-complexed forms) following administration
of the antibody (Fig. 1). Plasma samples for measurements
were collected for up to 504 h. The third data set was com-
prised of the total combined plasma concentrations of en-
dogenous CTGF-N plus CTGF (free and antibody-bound)
following injection of FG-3019 (Fig. 2). We did not include
data for the effect of exogenous rhCTGF on FG-3019 ki-
netics (Fig. 4) because the model treats FG-3019 as a mono-
valent species with 75 kDa molecular weight, whereas
rhCTGF added to FG-3019 at stoichiometric ratios will
form significant amounts of complex having a 2-to-1 ratio
of thCTGF to the bivalent 150 kDa FG-3019 molecule. We
also did not include data for the inhibition by RAP of the
CTGF clearing effect (Fig. 5) because we lacked data on
RAP kinetics in rat.

Model parameters obtained from data fitting are listed in
Table I and graphical results are shown as solid curves
superimposed onto the experimental data in Figs. 1, 2 and
3. The model fits of the antibody plasma concentration (com-
bined free antibody and antibody/CTGF complexes) shown
in Fig. | exhibit patterns characteristic of target-mediated dis-
position (13). The initial phase corresponds to rapid tissue
distribution. For high doses, this is followed by a plateau due
to saturation of the target-mediated clearance pathway, which
1s followed by a faster terminal elimination phase as the target-
mediated pathway becomes predominant at lower antibody
concentration (14). The fits of combined plasma concentra-
tions for species detected by the N+W-CTGF assay (Fig. 2)
are dominated by the total of CTGF-N and antibody/CTGF-
N complex. Calculated CTGF 1s included in the sum since the
immunoassay detects this species, but concentrations of
CTGF are in fact negligible. The combined concentration
of free and bound CTGF-N starts at a low baseline value,
reaches a peak and returns to the baseline. Such behavior is
characteristic for target-mediated drug disposition when the
clearance of the drug-target complex is slower than the
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Table | Calculated

Model Parameter Values Farameter Estimate Cvo%

and Their Coefficients of

Variation VL 0.01512 6.3
Clw Lh 0.09243 3.7
Vsl 0.1160 13.0
Clws Lh 1.380 9.5
Clgw Lh 10 FIXED
Cly,Lh 0.09243° NA
Vit L 0.04458 .5
Clgn, Lh 0.07998 94
Kow nM 23.97 18.0
Ko, NM 5121 15.0
Ko D' 100 FIXED
komao h! 100 FIXED
Cwo, "M 0.02591 15.6
Cro, M 0.6572 10.6
Clap Lh 0.0001321 6.4
Vapt L 0.01363 12.5
Clgan, LN 0.0005692 27.7
Clapw Lh 0.0001331° NA
Cluaows Lh 10 FIXED
Clapn Lh 0.0001321° NA
Clgapn, LA 0.0005692° NA
Clapwr Lh 1.380° NA
ks nmol/h 0.03382° 13.5
kny, nmol/h 0.06075¢ 10.2
*Cly = Clyw
®Clas = Clasw = Claon
“Claaon = Clgas

¢ Clapwr = Clwr

€ secondary parameter

clearance of the free target (15). Only the lowest dose data at
late time points were slightly over-predicted with r*=0.94,
with the remaining data well described by the model
(r?=0.97-0.98).

The estimated central volume V = 50.4 ml/kg (for a 0.3 kg
animal) 1s close to the reported rat plasma volume of 39.6 ml/
kg (16). The estimated central compartment clearance rate for
FG-3019, CLap, is 0.1355 ml/h (0.45 ml/h/kg for a 0.3 kg
animal) compared with a published plasma clearance rate of
0.8 ml/h/kg for '*’I-labeled human IgG in rats (17).
Estimated baseline plasma concentrations of CTGF and
CTGF-N were 0.0259 and 0.657 nM (0.98 and 12.5 ng/ml),
respectively, whereas the measured concentrations at baseline
were below the LLOQ) of 5.6 ng/ml for CTGF and below the
LLOQ of 11 ng/ml for the sum of CTGF and CTGF-N.
Calculated production rates of CGTGF and CTGF-N (kyy
and ky) were 0.034 and 0.061 nmol/h, respectively. Since
CTGF-N is derived from CTGF, the total estimated rate of
CTGF production per animal is the sum of these rates,
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0.095 nmol/h, which is equivalent to 0.29 mg/kg/day. The
model-estimated antibody binding constants (Kg) for CTGF
and CTGF-N were 24 and 51 nM, respectively. The value for
CTGF is 120-fold larger than the Ky obtained from i vitro
studies employing '*I-labeled CTGF (unpublished data).
The value for CTGF-N is 3-fold larger than measured by a
surface plasmon resonance kinetic method. However, similar
discrepancies have been reported for other antibodies, sug-
gesting that i vitro K4 measurements in buffer using
radioiodinated human CTGF overestimate the effective i vivo
binding affinity of endogenous rat CTGF (18).

Dose-Dependence of Target-Mediated Elimination

The degree to which target-mediated antibody elimination is
responsible for the overall clearance of FG-3019 was estimat-
ed by simulating the elimination rate of FG-3019/CTGF
complex from the tissue compartment over time and compar-
ing this to the simulated combined central compartment elim-
nation rates for all FG-3019 containing species. The integrat-
ed areas under the simulated curves correspond to the amount
of antibody eliminated. Figure 7 shows the percentage of an-
tibody that is cleared by the target-mediated pathway. For
doses at or below 3 mg/kg, target-mediated clearance is the
major pathway for antibody climination. In 300 g rats, an IV
dose of 3 mg/kg FG-3019 corresponds to a G, plasma
concentration of approximately 1 pM. Thus, at plasma con-
centrations below 1 pM, target-mediated elimination domi-
nates FG-3019 clearance, while at higher concentrations it
contributes less. At the highest dose tested (100 mg/kg),
7.4% of the FG-3019 dose was eliminated by the target-
mediated pathway. In a subject with disease that may
be producing and shedding more CTGF, target-
mediated elimination would be expected to play a
larger role in the clearance of FG-3019. Similarly,
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Fig. 7 Dose-dependence of target-mediated elimination of FG-3019. The
percent target-mediated elimination was estimated by modeling rates of elim-
ination of FG-3019 from tissue and central compartments.
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the terminal elimination rate would be expected to be higher,
in proportion to the increased rate of CTGF shedding.

Rat Tissue Distribution of '°I-FG-3019 and Effect
of CTGF

The complex between FG-3019 and C'T'GF 1s rapidly elimi-
nated from the blood. To identify the site(s) where rhCTGF
causes FG-3019 to be redistributed, radio-iodinated FG-3019
(['*’1]-FG-3019) was prepared and examined for its distribu-
tion in rat tissues in the absence and presence of thCTGF
using quantitative whole body autoradiography (QWBA).

Gamma counting of urine, feces and cage wipe materials
from animals dosed with ['*I]-FG-3019 alone showed that
0.8%, 1.7% and 23.7% of the dosed radioactivity was excret-
ed from animals euthanized at 2, 6 and 24-h post dose, re-
spectively. Concentrations of ['*’T]-FG-3019 determined by
gamma counting in blood and plasma are shown in Table II.
['*°T)-FG-3019 concentrations were approximately half as
high in the blood as plasma, indicating that ['*T]-FG-3019
1s restricted to the non-cellular portion of blood. The rat dosed
with CTGF had 6.2- and 3.9-fold lower [ *I]-FG-3019 con-
centrations in plasma and blood, respectively, than the corre-
sponding rat which was not dosed with CTGF. This large
decrease in ['*’I]-FG-3019 concentration is consistent with
the effect of CTGF on plasma concentrations of non-
radioactive FG-3019 observed in the studies described previ-
ously. The blood/plasma ratio (0.708) in the rat dosed with
CTGF was higher than in the animals not dosed with CTGF,
suggesting that the CTGF/FG-3019 complex associates
slightly more with the cellular components of blood than
FG-3019 in the absence of C'TGF.

Whole-body autoradiograms showing patterns of radioac-
tivity distribution in tissues from rats euthanized at 0.25 h are
illustrated in Fig. 8. Tissue concentrations of radioactivity are
listed in Table I1. Note that animals were not perfused prior to
QWBA, so tissue concentrations of radioactivity include ra-
dioactivity in the blood content of each tissue. Radioactivity
was widely distributed in rats dosed with [ *°I]-FG-3019 alone
(rat #1, 3, 4 and 5). The highest concentrations of radioactiv-
ity (>50 pg equivalent/g) were found in blood, lung and ad-
renal medulla. Concentrations in the central nervous system,
bone, skeletal muscle, white fat, and eye lens were the lowest of
all tissues (6.2 pg equiv/g). Most tissues had relatively high
concentrations of drug-derived radioactivity at 24 h post dose
and concentrations ranged from 53.4 pg equivalent/g in
blood to 2.4 pg equivalent/g in white fat. The tissues of the
central nervous system, seminal vesicles, skeletal muscle, eye
lens, urinary bladder, and the contents of the alimentary canal
had concentrations of radioactivity below the lower limit of
quantitation at 24 h post-dose.

Tissue concentrations of radioactivity in the rat given
CTGF 10 min after the dose of ['*I]-FG-3019 were very

different from those dosed with ['*’I] -FG-3019 alone. Most
notable were the large fold increases in liver (5.87-fold), adre-
nal cortex (10-fold), adrenal medulla (3.07-fold), and kidney
cortex (1.88-fold). The tissue-to-blood radioactivity concen-
tration ratios for liver, adrenal cortex, adrenal medulla and
kidney cortex in the rat co-administered CTGF were 8.3,
10.7, 5.7 and 2.23, respectively, indicating extensive uptake
of the ['*I] -FG-3019/CTGF complex by these organs. Bone
marrow and spleen also had high tissue-to-blood concentra-
tion ratios of 1.44 and 1.29, respectively, in the rat treated
with CG'TGF. In summary, co-administration of CTGF causes
FG-3019 to distribute out of the blood and predominantly
nto liver, adrenal and kidney.

Immunohistochemical Analysis

To explore which cells might take up CTGF/antibody com-
plexes, immunohistochemical analysis was conducted on sev-
eral tissues (liver, kidney, adrenal, spleen, lung and heart) from
rats administered FG-3019 alone or with CG'TGF. In animals
treated with FG-3019 alone no staining for FG-3019 was seen
in any of the organs 15 min after injection, which is consistent
with the slow penetration of IgG into tissues and the removal
of blood by perfusion prior to tissue fixation (not shown). In
animals treated with FG-3019 in combination with CTGF,
staining for FG-3019 was observed in the sinusoids of adrenal
glands and liver and lining the capillaries of kidney glomeruli
(Fig. 9). Sparse staining was also observed in the red pulp of
the spleen. In contrast with the results in liver, adrenal glands,
kidney and spleen, co-administration of thCTGF did not
modify FG-3019 distribution to the heart and lung: no stain-
ing for FG-3019 was seen in the heart and lung of animals
treated with FG-3019 only, or with a combination of FG-3019
and C'TGF (not shown).

DISCUSSION

In rats, as well as monkeys and humans (data not shown), FG-
3019 exhibited non-linear, saturable kinetics where higher
doses of FG-3019 resulted in longer apparent terminal half-
lives, slower clearance and disproportionately higher plasma
exposure (19). Apparent terminal half-life in rats was maximal
(7.67 days) and clearance reached a minimum of 8.38 ml/
day/kg at the highest tested dose level, suggesting a saturable
climination pathway for FG-3019. This PK behavior is con-
sistent with participation of a target-mediated pathway in the
elimination of FG-3019. The potential for CTGF to mediate
antibody clearance was confirmed in co-administration exper-
iments in which exogenously added rhC'T'GF rapidly (<3 min)
and stoichiometrically eliminated FG-3019 from plasma. The
rapidity of this plasma elimination is consistent with the PK of
CTGF, which was also very rapidly eliminated from plasma
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Table Il Tissue Concentrations of Radioactivity After ['2I]-FG-3019 Administration

Tissue type Tissue Mean - g equivalents/g tissue
Rat # | Rat # 2° Rat # 3 Rat # 4 Rat # 5 Ratio
0.25h 0.25h 2h 6h 24 h Rat 2/Rat |
Vascular/ lymphatic Blood (by QWBA) [13.2 24.0 105.9 124.7 534 0.21
Bone marrow 35.6 34.5 25.1 38.9 19.5 0.97
Lymph node 6.4 4.4 19.0 14.4 9.8 0.70
Spleen 27.0 309 245 263 15.5 1.15
Thymus 10.4 2.8 9.7 1.9 77 0.27
Excretory/ metabolic Bile (in duct) NI 52.3 [15.5 NI 21.3 NC
Kidney cortex 29.8 56.1 238 27.8 14.0 1.88
Kidney medulla 35.1 24.9 28.7 316 159 0.71
Liver 339 198.9 19.9 20.6 .5 5.87
Urinary bladder 13.0 33 26.1 9.9 <20 0.25
Urinary bladder (contents) 6.3 <20 24.1 63.8 1.1 <0.32
Central nervous system Brain (cerebrum) 2.9 <20 3.2 3.7 <20 <0.68
Brain (cerebellum) 2.8 <2.0 3.7 54 <2.0 <0.70
Brain (medulla) <20 <20 2.1 2.0 <20 NC
Spinal cord 4.7 <20 3.0 34 <20 <042
Endocrine Adrenal cortex 25.8 257.7 359 34.9 25.2 10.00
Adrenal medulla 443 136.0 534 51.7 292 3.07
Pituitary gland 243 14.1 26.5 20.6 [2.1 0.58
Thyroid I5.1 7.4 14.8 259 13.5 0.49
Secretory Harderian gland 3.5 <2.0 6.4 9.0 9.4 <0.57
Pancreas 8.6 5.1 6.3 9.7 77 0.59
Salivary gland 52 2.7 9.5 1.4 9.9 0.52
Fatty Adipose (brown) 25.6 10.4 324 40.6 19.4 0.41
Adipose (white) 6.2 2.5 <20 4.7 2.4 0.40
Dermal Skin (non-pigmented) 34 2.7 52 74 74 0.79
Reproductive Epididymis 2.9 <20 6.0 10.5 .3 <0.69
Prostate gland 4.9 <2.0 8.0 74 39 <0.40
Seminal vesicles 2.5 <20 3.8 7.3 <20 <0.81
Testis 3.0 22 12.1 17.6 13.1 0.75
Skeletal/ muscular Bone 3.9 5.1 5.6 3.8 2.5 1.33
Heart 303 9.8 355 29.4 20.1 0.32
Skeletal muscle 2.1 <20 2.8 2.4 <20 <0.95
Respiratory Lung 75.2 22.9 65.0 78.2 33.8 0.31
Alimentary canal Cecum 2.7 <20 6.3 24.6 8.1 <0.74
Cecum (contents) <20 <20 <20 2.6 <20 NC
Large intestine 4.6 24 4.6 13.1 9.9 0.52
Large intestine (contents) <20 <20 <20 3.2 <20 NC
Stomach (gastric mucosa) 8.8 6.8 [2.1 30.2 55 0.77
Stomach (contents) <2.0 34 8.4 31.7 <2.0 NC
Small intestine 5.1 <20 17.2 34.4 79 <0.39
Small intestine (contents) <20 <20 8.1 16.3 <20 NC
Ocular Eye (uvea) 3.8 <2.0 [0.1 1.5 9.5 <0.52
Eye (lens) <20 <20 <2.0 <20 <20 NC

2 This animal received a 5 mg/kg dose of CTGF at approximately |0 min after ['*° [-FG-3019 administration

NI = Tissue not collected during sectioning

NC = Not calculable

Ratios of Rat 2/Rat | concentrations are bolded for values greater than 1.0 and less than 0.33.
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Fig. 8 Distribution of ['*I]-FG-3019 at |5 min after administration without or with addition of CTGF Left panel: without administration of CTGF Right panel:

with administration of CTGF 5 min before euthanasia.

after administration to rats. Together, these data indicate that
FG-3019 is subject to target-mediated elimination that con-
tributes to its unusually short half-life and fast clearance.

Monoclonal antibodies targeting soluble antigens with low
endogenous circulating concentrations relative to adminis-
tered antibody (as in the case of FG-3019) generally exhibit
dose-independent clearance (20). This is because the interac-
tion of a high concentration of antibody with a low concen-
tration of circulating antigen does not significantly affect the
overall rate of antibody clearance. Dose-dependent non-linear
elimination kinetics has been observed for antibodies targeting
soluble ligands with relatively £igh endogenous concentrations
such as IgE (21). The literature suggests that the low circulat-
ing concentrations of C’TGF result from a low production rate
in healthy animals, which increases with disease or after tissue
injury (22—24). However, the data presented here indicate that
the low plasma concentrations of CTGF normally observed
are due to rapid clearance of CGTGF, rather than slow pro-
duction. CTGF is being continuously produced and shed into
circulation at a high rate, resulting in rapid clearance of FG-
3019 due to target mediated elimination.

Direct measurement of the i vivo production rate of CTGF
is not feasible. However, the PK data collected for both the

antibody and its target, C'TGF, enabled construction of a
model for computation of various parameters that regulate
target and antibody elimination. Although this model repre-
sents a simplification of the synthesis and distribution of
CTGF and the result of introducing FG-3019 into circulation
with its subsequent distribution and elimination, it predicts the
PK of CTGF, CTGF-N and FG-3019 reasonably well, as
demonstrated by the fit curves in Figs. 1, 2, and 3. Using this
model, we can estimate that C'TGF is shed into circulation at a
constant rate of 0.29 mg/kg/day. In healthy rats, CTGF
mRNA expression in tissues is not significantly altered at
24-h after dosing with 100 mg/kg FG-3019, suggesting that
the constitutive rate of CTGF production is unaffected by FG-
3019 (unpublished results). It remains to be determined which
tissues contribute most to this CTGF blood production rate,
although cardiac atria have been reported to express high
concentrations of CTGF protein (25).

Once CTGF enters the circulation, its clearance appears to
be primarily through liver uptake, as demonstrated by the redis-
tribution of ['*I]-FG-3019 upon co-administration of hC'TGF.
Uptake by the liver is also consistent with its rapid elimination,
since approximately 100% of a rat’s blood flows through the liver
per minute, with about 72.5% per minute flowing through the
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Fig. 9 Immunohistochemical
Localization of FG-3019. Tissue
sections stained for FG-3019 are
shown at 10X (upper panel) and
60X (lower panel) magnification for
adrenal gland (cortex and medulla),
liver, kidney (cortex) and spleen (red
pulp) 5 min after IV administration of
CTGF to rats dosed 10 min
previously with FG-3019. Tissue
sections from animals dosed with
vehicle after FG-3019 instead of
CTGF exhibited no staining for FG-
3019.

portal vein (26). Elimination of CTGF differs from that of
CTGF-N, which in mice is primarily eliminated through glomer-
ular filtration, consistent with its low molecular weight (2).
CTGF-N is produced from CTGF by proteolytic cleavage
in the linker region. Because C'TGF is continually being made
and shed into circulation, the same is likely true for CTGF-N.
The epitope to which FG-3019 binds on CTGF is in the
second domain of CTGF-N. Therefore, when FG-3019 is
administered and binds to CTGF-N, it increases the apparent
molecular weight of CTGF-N above the renal filtration mo-
lecular weight cut-off] leading to its accumulation in circula-
tion. The accumulation of other antibody-ligand complexes in
the circulation following antibody administration has been

@ Springer

modeled successfully (27). For example hepcidin, a small pep-
tide hormone which is normally excreted by renal filtration,
accumulates in the circulation in an antibody complex (10).
The observation of increased circulating concentrations of
CTGF-N upon FG-3019 administration, coupled with the
fact that co-administration of rhCTGF-N had no impact on
the clearance of FG-3019, while whole CTGF significantly
enhanced it, indicates that the motif that mediates liver uptake
of CTGF resides in its C-half.

Several cell surface molecules have been reported to interact
with CTGF domains 3 or 4 (28). Among them, one of the most
likely candidate receptors mediating uptake of CTGF into liver
is LRP1. LRP1 is a scavenger receptor that has been reported to
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bind many ligands (29) including CTGF (30) . In the liver, LRP1
1s expressed in both hepatocytes and Kupfler cells (resident mac-
rophages) and it functions to clear plasma protein ligands (29).
LRP1 in macrophages also suppresses vascular remodeling by
modulating response to TGFp (31), which may occur at least
partially though uptake of CTGF (31). In chondrocytes, LRP1 is
thought to mediate CTGF transcytosis (32) . There are also two
closely related members of the LRP1 family that are expressed
in the adrenal gland, LRP1b (33) and kidney, LRP2/megalin
(34,35). LRP2 has been shown to bind CTGF in the kidney, and
mediate its excretion (2). Thus, the localization of these three
related scavenger receptors could account for the majority of the
rapid clearance of ['*’I]-FG-3019 upon co-administration of
rthCTGF in the QWBA experiment.

The cell surface expression of LRP1, LRP1b and LRP?2 is
aided by the endoplasmic reticulum (ER) chaperone RAP (re-
ceptor-associated protein, LRPAPI), which binds tightly to
these receptors at neutral pH preventing premature ligand
binding during folding and transport to the cell surface
(29,36). RAP is localized to the ER by a 4 amino acid sequence
at its C-terminus, but is secreted in a soluble form when these
amino acids are omitted (37). When injected into animals, RAP
1s rapidly cleared from the circulation via uptake by the liver
and kidney (7). Despite its rapid clearance, administration of the
soluble form of RAP inhibits plasma clearance of tissue type
plasminogen activator and tissue factor pathway inhibitor in
rats, presumably by interfering with binding of these factors to
LRPI and related proteins (7,38). Similarly, co-administration
of RAP with FG-3019 and rhC'TGF resulted in a measurable
slowing of the clearance of FG-3019. This observation suggests
that at least part of the clearance of CTGF (and CTGF/FG-
3019 complexes) from circulation is via binding to one or more
of these scavenger receptors. Additional experiments will be
necessary to assess the extent of CTGF clearance that is medi-
ated by LRP1 and related scavenger receptors.

Pharmacokinetic modeling of target-mediated drug disposi-
tion (TMDD) predicts that the true terminal rate of elimination
1s independent of the dose of drug administered (13). This can be
seen in the parallelism of the terminal FG-3019 disappearance
rates in the curves obtained from the kinetic model shown in
Fig. 1. However, as can also be seen in Fig. 1, sample collection
from animals administered high doses of FG-3019 was terminat-
ed too soon to establish the true terminal elimination rates. This
failure to collect samples at sufficiently late time points explains
the apparent dose-dependence of the experimentally determined
half-lives. Another interesting observation from computer
modeling is that the affinity of FG-3019 for CTGF appears to
be at least 120-fold weaker i viwo than predicted by the affinity
determined i vitro (by radioimmunoassay). This suggests that
blood flow or components in blood may weaken the antibody-
ligand interaction. As shown in Fig. 4 and previously mentioned,
co-administration of thCTGF rapidly eliminated circulating
FG-3019 in proportion to the amount of CTGF administered.

When dosed at a 2:1 molar ratio to FG-3019, CTGF caused
more than 90% of the FG-3019 in plasma to disappear from
circulation in less than 3 min. To our knowledge, the magnitude
of thCTGIs effect on FG-3019 pharmacokinetics is unprece-
dented for target-mediated antibody elimination by a soluble
ligand. Similar behavior has been described for the effect of
avidin on synthetically biotinylated IgG, but this is a special case
that is not dependent on ligand recognition through the comple-
mentarity determining regions of the antibody (39).

The ability of co-administered CTGF to trigger rapid an-
tibody elimination was also observed for two other anti-
C'TGF monoclonal antibodies that have different binding epi-
topes on C'TGF from the one recognized by FG-3019 (data
not shown). This suggests that any anti-C'I'GF antibody (or
any molecule that binds to CTGF) may be subject to target-
mediated elimination. Consequently, any tightly associated
complex between CTGF and an endogenous binding partner
might also be cleared rapidly once the complex dissociates
from the extracellular matrix and enters the circulation.

In conclusion, the unusually rapid clearance and short half-
life of FG-3019 results at least in part from target-mediated
elimination. The data suggest that C'TGF is constitutively
produced and shed into circulation at a higher rate than has
previously been appreciated. Once in circulation, CTGF ap-
pears to be removed upon passage through the liver, and in
the process facilitates clearance of anything that is bound to it.
It remains to be determined if this mechanism has a physio-
logic role in the homeostasis of any of the putative CTGIF
binding partners. However, it clearly has relevance for the
administration of any inhibitor of CTGF, which will likely
be rapidly cleared and therefore will need to be administered
at higher doses and/or more frequently than would be neces-
sary if it were not subject to target-mediated elimination.
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