Skip to main content
Log in

Interaction Studies Between Indomethacin Nanocrystals and PEO/PPO Copolymer Stabilizers

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

The lack of effective screening methods and systemic understanding of interaction mechanisms complicates the stabilizer selection process for nanocrystallization. This study focuses on the efficiency of stabilizers with various molecular compositions and structures to stabilize drug nanocrystals.

Methods

Five structurally different polymers were chosen as stabilizers for indomethacin nanocrystals. The affinity of polymers onto drug surfaces was measured using surface plasmon resonance (SPR) and contact angle techniques. Nanosuspensions were prepared using the wet-ball milling technique and their physico-chemical properties were thoroughly characterized.

Results

SPR and contact angle measurements correlated very well with each other and showed that the binding efficiency decreased in the order L64 > 17R4 > F68 ≈ T908 ≈ T1107, which is attributed to the reduced PPO/PEO ratio and different polymer structures. The electrostatic interactions between the protonated amine of poloxamines and ionized indomethacin enhanced neither the affinity nor the properties of nanosuspensions, such as particle size and physical stability.

Conclusions

A good stabilizer should have high binding efficiency, full coverage, and optimal hydrophobic/hydrophilic balance. A high affinity combined with short PEO chains (L64, 17R4) caused poor physical stability of nanosuspensions, whereas moderate binding efficiencies (F68, T908, T1107) with longer PEO chains produced physically stable nanosuspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3:785–96.

    Article  CAS  PubMed  Google Scholar 

  2. Müller RH, Gohla S, Keck CM. State of the art of nanocrystals - special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm. 2011;78(1):1–9.

    Article  PubMed  Google Scholar 

  3. Moschwitzer JP. Drug nanocrystals in the commercial pharmaceutical development process. Int J Pharm. 2013;453(1):142–56.

    Article  PubMed  Google Scholar 

  4. Shegokar R, Müller RH. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm. 2010;399(1–2):129–39.

    Article  CAS  PubMed  Google Scholar 

  5. Lindfors L, Forssen S, Westergren J, Olsson U. Nucleation and crystal growth in supersaturated solutions of a model drug. J Colloid Interf Sci. 2008;325(2):404–13.

    Article  CAS  Google Scholar 

  6. Lee J, Choi JY, Park CH. Characteristics of polymers enabling nano-comminution of water-insoluble drugs. Int J Pharm. 2008;355(1–2):328–36.

    Article  CAS  PubMed  Google Scholar 

  7. Lai F, Sinico C, Ennas G, Marongiu F, Marongiu G, Fadda AM. Diclofenac nanosuspensions: influence of preparation procedure and crystal form on drug dissolution behaviour. Int J Pharm. 2009;373(1–2):124–32.

    Article  CAS  PubMed  Google Scholar 

  8. Xiong R, Lu W, Li J, Wang P, Xu R, Chen T. Preparation and characterization of intravenously injectable nimodipine nanosuspension. Int J Pharm. 2008;350(1–2):338–43.

    Article  CAS  PubMed  Google Scholar 

  9. Douroumis D, Fahr A. Stable carbamazepine colloidal systems using the cosolvent technique. Eur J Pharm Sci. 2007;30(5):367–74.

    Article  CAS  PubMed  Google Scholar 

  10. Cerdeira AM, Mazzotti M, Gander B. Miconazole nanosuspensions: influence of formulation variables on particle size reduction and physical stability. Int J Pharm. 2010;396(1–2):210–8.

    Article  CAS  PubMed  Google Scholar 

  11. Dolenc A, Kristl J, Baumgartner S, Planinsek O. Advantages of celecoxib nanosuspension formulation and transformation into tablets. Int J Pharm. 2009;376:204–12.

    Article  CAS  PubMed  Google Scholar 

  12. Mauludin R, Müller RH, Keck CM. Development of an oral rutin nanocrystal formulation. Int J Pharm. 2009;370:202–9.

    Article  CAS  PubMed  Google Scholar 

  13. Mauludin R, Müller RH, Keck CM. Kinetic solubility and dissolution velocity of rutin nanocrystals. Eur J Pharm Sci. 2009;36:502–10.

    Article  CAS  PubMed  Google Scholar 

  14. Guo Y, Luo J, Tan S, Otieno BO, Zhang Z. The applications of vitamin E TPGS in drug delivery. Eur J Pharm Sci. 2013;49:175–86.

    Article  CAS  PubMed  Google Scholar 

  15. Peltonen L, Hirvonen J. Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. J Pharm Pharmacol. 2010;62:1569–79.

    Article  CAS  PubMed  Google Scholar 

  16. Van Eerdenbrugh B, Vermant J, Martens JA, Froyen L, Van Humbeeck J, Augustijns P, et al. A screening study of surface stabilization during the production of drug nanocrystals. J Pharm Sci. 2009;98(6):2091–103.

    Article  PubMed  Google Scholar 

  17. Sepassi S, Goodwin DJ, Drake AF, Holland S, Leonard G, Martini L, et al. Effect of polymer molecular weight on the production of drug nanoparticles. J Pharm Sci. 2007;96(10):2655–66.

    Article  CAS  PubMed  Google Scholar 

  18. Lee J, Lee SJ, Choi JY, Yoo JY, Ahn CH. Amphiphilic amino acid copolymers as stabilizers for the preparation of nanocrystal dispersion. Eur J Pharm Sci. 2005;24(5):441–9.

    Article  CAS  PubMed  Google Scholar 

  19. Lee MK, Kim S, Ahn CH, Lee J. Hydrophilic and hydrophobic amino acid copolymers for nano-comminution of poorly soluble drugs. Int J Pharm. 2010;384:173–80.

    Article  CAS  PubMed  Google Scholar 

  20. Moghimi SM, Hunter AC. Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends Biotechnol. 2000;18(10):412–20.

    Article  CAS  PubMed  Google Scholar 

  21. Alvarez-Lorenzo C, Sosnik A, Concheiro A. PEO-PPO block copolymers for passive micellar targeting and overcoming multidrug resistance in cancer therapy. Curr Drug Targets. 2011;12(8):1112–30.

    Article  CAS  PubMed  Google Scholar 

  22. Alvarez-Lorenzo C, Rey-Rico A, Sosnik A, Taboada P, Concheiro A. Poloxamine-based nanomaterials for drug delivery. Front biosci (Elite ed). 2010;2:424–40.

    Article  Google Scholar 

  23. Chiappetta DA, Sosnik A. Poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles as drug delivery agents: Improved hydrosolubility, stability and bioavailability of drugs. Eur J Pharm Biopharm. 2007;66(3):303–17.

    Article  CAS  PubMed  Google Scholar 

  24. Knoll W. http://www2.mpip-mainz.mpg.de/groups/knoll/software.

  25. Liu P, De Wulf O, Laru J, Heikkilä T, Van Veen B, Kiesvaara J, et al. Dissolution studies of poorly soluble drug nanosuspensions in non-sink conditions. AAPS PharmSciTech. 2013;14:748–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Pardeike J, Müller RH. Nanosuspensions: a promising formulation for the new phospholipase A(2) inhibitor PX-18. Int J Pharm. 2010;391:322–9.

    Article  CAS  PubMed  Google Scholar 

  27. Pardeike J, Strohmeier DM, Schröedl N, Voura C, Gruber M, Khinast JC, et al. Nanosuspensions as advanced printing ink for accurate dosing of poorly soluble drugs in personalized medicines. Int J Pharm. 2011;420(1):93–100.

    Article  CAS  PubMed  Google Scholar 

  28. Watanabe A. A trial production of a table of the optical crystallographic characteristics of crystalline drugs including crystal habits (study of crystalline drugs by means of a polarizing microscope. XIX Yakugaku zasshi. 2002;122(8):595–606.

    Article  CAS  Google Scholar 

  29. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev. 2005;105(4):1103–69.

    Article  CAS  PubMed  Google Scholar 

  30. Gustafsson SS, Vrang L, Terelius Y, Danielson UH. Quantification of interactions between drug leads and serum proteins by use of “binding efficiency”. Anal Biochem. 2011;409(2):163–75.

    Article  CAS  PubMed  Google Scholar 

  31. Mende S, Stenger F, Peukert W, Schwedes J. Mechanical production and stabilization of submicron particles in stirred media mills. Powder Technol. 2003;132:64–73.

    Article  CAS  Google Scholar 

  32. Sezgin Z, Yüksel N, Baykara T. Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs. Eur J Pharm Biopharm. 2006;64(3):261–8.

    Article  CAS  PubMed  Google Scholar 

  33. Bilgili E, Afolabi A. A combined microhydrodynamics-polymer adsorption analysis for elucidation of the roles of stabilizers in wet stirred media milling. Int J Pharm. 2012;439:193–206.

    Article  CAS  PubMed  Google Scholar 

  34. Alvarez-Lorenzo C, Gonzalez-Lopez J, Fernandez-Tarrio M, Sandez-Macho I, Concheiro A. Tetronic micellization, gelation and drug solubilization: Influence of pH and ionic strength. Eur J Pharm Biopharm. 2007;66(2):244–52.

    Article  CAS  PubMed  Google Scholar 

  35. Liu P, Rong X, Laru J, Van Veen B, Kiesvaara J, Hirvonen J, et al. Nanosuspensions of poorly soluble drugs: preparation and development by wet milling. Int J Pharm. 2011;411:215–22.

    Article  CAS  PubMed  Google Scholar 

  36. Chaubal MV, Popescu C. Conversion of nanosuspensions into dry powders by spray drying: a case study. Pharm Res. 2008;25(10):2302–8.

    Article  CAS  PubMed  Google Scholar 

  37. Verma S, Kumar S, Gokhale R, Burgess DJ. Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening. Int J Pharm. 2011;406:145–52.

    Article  CAS  PubMed  Google Scholar 

  38. Sarkar B, Venugopal V, Tsianou M, Alexandridis P. Adsorption of pluronic block copolymers on silica nanoparticles. Colloid Surf A. 2013;422:155–64.

    Article  CAS  Google Scholar 

  39. Bergaya F, Lagaly G. Developments in Clay Science. Oxford: Elsevier; 2012.

    Google Scholar 

  40. Goodwin DJ, Sepassi S, King SM, Holland SJ, Martini LG, Lawrence MJ. Characterization of polymer adsorption onto drug nanoparticles using depletion measurements and small-angle neutron scattering. Mol Pharm. 2013;10:4146–58.

    Article  CAS  PubMed  Google Scholar 

  41. Malmsten M, Linse P, Cosgrove T. Adsorption of PEO-PPO-PEO block copolymers at silica. Macromolecules. 1992;25:2474–81.

    Article  CAS  Google Scholar 

  42. Lambert O, Jada A, Dumas P. Adsorption of triarm starblock copolymers based on polystyrene, poly(ethylene oxide) and poly(e-caprolactone) at the solid-solution interface. Colloid Surf A. 1998;136:263–72.

    Article  CAS  Google Scholar 

  43. Jain TK, Erokwu B, Dimitrijevic S, Flask CA, Labhasetwar V. Magnetic resonance imaging of multifunctional pluronic stabilized iron-oxide nanoparticles in tumor-bearing mice. Biomaterials. 2009;30(35):6748–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge The Finnish Funding Agency for Innovation (TEKES, Finland; NanoForm project 40187/11) China Scholarship Council and The Academy of Finland for financial support. M.Sc. May Mah from University of Otago and M.Sc. Dongfei Liu from University of Helsinki are acknowledged for valuable discussion and suggestions, and Dr. Petri Ihalainen for providing the AFM image of the indomethacin layer precipitated on the SPR sensor slide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leena Peltonen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Viitala, T., Kartal-Hodzic, A. et al. Interaction Studies Between Indomethacin Nanocrystals and PEO/PPO Copolymer Stabilizers. Pharm Res 32, 628–639 (2015). https://doi.org/10.1007/s11095-014-1491-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1491-3

Key Words

Navigation