Skip to main content

Advertisement

Log in

Iontophoretic Transdermal Sampling of Iohexol as a Non-Invasive Tool to Assess Glomerular Filtration Rate

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To explore the potential of non-invasive reverse iontophoresis transdermal extraction of iohexol as a marker of glomerular filtration rate.

Methods

A series of in vitro experiments were undertaken to establish the feasibility of iohexol reverse iontophoresis and to determine the optimal conditions for the approach. Subsequently, a pilot study in paediatric patients was performed to provide proof-of-concept.

Results

The iontophoretic extraction fluxes of iohexol in vitro were proportional to the marker subdermal concentration and the reverse iontophoretic technique was able to track changes dynamically in simulated pharmacokinetic profiles. Reverse iontophoresis sampling was well tolerated by the four paediatric participants. The deduced values of the iohexol terminal elimination rate constant from transdermal reverse iontophoresis sampling agreed with those estimated by conventional blood sampling.

Conclusions

Reverse iontophoretic transdermal extraction fluxes mirrored the subdermal concentration profiles of iohexol, a relatively large neutral marker of glomerular filtration both in vitro and in vivo. The efficiency of extraction in vivo was well predicted by the in vitro model used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Filler G, Yasin A, Medeiros M. Methods of assessing renal function. Pediatr Nephrol. 2014;29(2):183–92.

    Article  PubMed  Google Scholar 

  2. Stevens LA, Levey AS. Measured GFR as a confirmatory test for estimated GFR. J Am Soc Nephrol. 2009;20(11):2305–13.

    Article  PubMed  Google Scholar 

  3. Schwartz GJ, Furth SL. Glomerular filtration rate measurement and estimation in chronic kidney disease. Pediatr Nephrol. 2007;22(11):1839–48.

    Article  PubMed  Google Scholar 

  4. Francoz C, Glotz D, Moreau R, Durand F. The evaluation of renal function and disease in patients with cirrhosis. J Hepatol. 2010;52(4):605–13.

    Article  CAS  PubMed  Google Scholar 

  5. Schwartz GJ, Furth S, Cole SR, Warady B, Munoz A. Glomerular filtration rate via plasma iohexol disappearance: pilot study for chronic kidney disease in children. Kidney Int. 2006;69(11):2070–7.

    Article  CAS  PubMed  Google Scholar 

  6. Schwartz GJ, Work DF. Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol. 2009;4(11):1832–43.

    Article  PubMed  Google Scholar 

  7. Prigent A. Monitoring renal function and limitations of renal function tests. Semin Nucl Med. 2008;38(1):32–46.

    Article  PubMed  Google Scholar 

  8. Aurell M. Accurate and feasible measurements of GFR–is the iohexol clearance the answer? Nephrol Dial Transplant. 1994;9(9):1222–4.

    CAS  PubMed  Google Scholar 

  9. Stake G, Monn E, Rootwelt K, Monclair T. The clearance of iohexol as a measure of the glomerular-filtration rate in children with chronic-renal-failure. Scand J Clin Lab Inv. 1991;51(8):729–34.

    Article  CAS  Google Scholar 

  10. Lindblad HG, Berg UB. Comparative-evaluation of iohexol and inulin-clearance for glomerular-filtration rate determinations. Acta Paediatr. 1994;83(4):418–22.

    Article  CAS  PubMed  Google Scholar 

  11. Fehrman-Ekholm I, Skeppholm L. Renal function in the elderly (>70 years old) measured by means of iohexol clearance, serum creatinine, serum urea and estimated clearance. Scand J Urol Nephrol. 2004;38(1):73–7.

    Article  CAS  PubMed  Google Scholar 

  12. Pucci L, Bandinelli S, Pilo M, Nannipieri M, Navalesi R, Penno G. Iohexol as a marker of glomerular filtration rate in patients with diabetes: comparison of multiple and simplified sampling protocols. Diabet Med. 2001;18(2):116–20.

    Article  CAS  PubMed  Google Scholar 

  13. Nilsson-Ehle P. Iohexol clearance for the determination of glomerular filtration rate: 15 years’ experience in clinical practice. eJIFCC. vol 13; no 2: http://www.ifci.org/ejifcc/vol13no2/1301200105.htm

  14. Frennby B, Sterner G. Contrast media as markers of GFR. Eur Radiol. 2002;12(2):475–84.

    Article  PubMed  Google Scholar 

  15. Kennedy RM, Luhmann J, Zempsky WT. Clinical implications of unmanaged needle-insertion pain and distress in children. Pediatrics. 2008;122 Suppl 3:S130–3.

    Article  PubMed  Google Scholar 

  16. Young KD. Pediatric procedural pain. Ann Emerg Med. 2005;45(2):160–71.

    Article  PubMed  Google Scholar 

  17. Leboulanger B, Guy RH, Delgado-Charro MB. Reverse iontophoresis for non-invasive transdermal monitoring. Physiol Meas. 2004;25(3):R35–50.

    Article  PubMed  Google Scholar 

  18. Delgado-Charro MB. Sampling substrates by skin permeabilization. In: Murthy MT, editor. Dermatokinetics of therapeutic agents. Boca Raton: Taylor and Francis Publishers; 2011. p. 149–74.

    Chapter  Google Scholar 

  19. Leboulanger B, Aubry JM, Bondolfi G, Guy RH, Delgado-Charro MB. Lithium monitoring by reverse iontophoresis in vivo. Clin Chem. 2004;50(11):2091–100.

    Article  CAS  PubMed  Google Scholar 

  20. Chase HP, Roberts MD, Wightman C, Klingensmith G, Garg SK, Van Wyhe M, et al. Use of the GlucoWatch biographer in children with type 1 diabetes. Pediatrics. 2003;111(4):790–4.

    Article  PubMed  Google Scholar 

  21. Tamada JA, Garg S, Jovanovic L, Pitzer KR, Fermi S, Potts RO, et al. Noninvasive glucose monitoring - comprehensive clinical results. Jama-J Am Med Assoc. 1999;282(19):1839–44.

    Article  CAS  Google Scholar 

  22. Wascotte V, Rozet E, Salvaterra A, Hubert P, Jadoul M, Guy RH, et al. Non-invasive diagnosis and monitoring of chronic kidney disease by reverse iontophoresis of urea in vivo. Eur J Pharm Biopharm. 2008;69(3):1077–82.

    Article  CAS  PubMed  Google Scholar 

  23. Wascotte V, Caspers P, de Sterke J, Jadoul M, Guy RH, Preat V. Assessment of the “skin reservoir” of urea by confocal Raman microspectroscopy and reverse iontophoresis in vivo. Pharm Res. 2007;24(10):1897–901.

    Article  CAS  PubMed  Google Scholar 

  24. Leboulanger B, Fathi M, Guy RH, Delgado-Charro MB. Reverse iontophoresis as a noninvasive tool for lithium monitoring and pharmacokinetic profiling. Pharm Res. 2004;21(7):1214–22.

    Article  CAS  PubMed  Google Scholar 

  25. Farthing D, Sica DA, Fakhry I, Larus T, Ghosh S, Farthing C, et al. Simple HPLC-UV method for determination of iohexol, iothalamate, p-aminohippuric acid and n-acetyl-p-aminohippuric acid in human plasma and urine with ERPF, GFR and ERPF/GFR ratio determination using colorimetric analysis. J Chromatogr B. 2005;826(1–2):267–72.

    Article  CAS  Google Scholar 

  26. Wong DL, Baker CM. Pain in children: comparison of assessment scales. Pediatr Nurs. 1988;14(1):9–17.

    CAS  PubMed  Google Scholar 

  27. Sylvestre JP, Guy RH, Delgado-Charro MB. In vitro optimization of dexamethasone phosphate delivery by iontophoresis. Phys Ther. 2008;88(10):1177–85.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Sieg A, Guy RH, Delgado-Charro MBA. Reverse iontophoresis for noninvasive glucose monitoring: the internal standard concept. J Pharm Sci. 2003;92(11):2295–302.

    Article  CAS  PubMed  Google Scholar 

  29. Burnette RR, Ongpipattanakul B. Characterization of the permselective properties of excised human skin during iontophoresis. J Pharm Sci. 1987;76(10):765–73.

    Article  CAS  PubMed  Google Scholar 

  30. SciFinder®. https://scifinder.cas.org/scifinder. CAS by American Chemical Society. Last accesed November 2013.

  31. Leboulanger B, Guy RH, Delgado-Charro MB. Non-invasive monitoring of phenytoin by reverse iontophoresis. Eur J Pharm Sci. 2004;22(5):427–33.

    Article  CAS  PubMed  Google Scholar 

  32. Delgado-Charro MB, Guy RH. Transdermal reverse iontophoresis of valproate: a noninvasive method for therapeutic drug monitoring. Pharm Res. 2003;20(9):1508–13.

    Article  CAS  PubMed  Google Scholar 

  33. Sontum PC, Christiansen C, Kasparkova V, Skotland T. Evidence against molecular aggregates in concentrated solutions of X-ray contrast media. Int J Pharm. 1998;169(2):203–12.

    Article  CAS  Google Scholar 

  34. Falk B, Garramone S, Shivkumar S. Diffusion coefficient of paracetamol in a chitosan hydrogel. Mater Lett. 2004;58(26):3261–5.

    Article  CAS  Google Scholar 

  35. Ruddy SB, Hadzija BW. Iontophoretic permeability of polyethylene glycols through hairless rat skin: application of hydrodynamic theory for hindered transport through liquid-filled pores. Drug Des Discov. 1992;8(3):207–24.

    CAS  PubMed  Google Scholar 

  36. Yoshida NH, Roberts MS. Solute molecular-size and transdermal iontophoresis across excised human skin. J Control Release. 1993;25(3):177–95.

    Article  CAS  Google Scholar 

  37. Sieg A, Guy RH, Delgado-Charro MB. Noninvasive glucose monitoring by reverse iontophoresis in vivo: application of the internal standard concept. Clin Chem. 2004;50(8):1383–90.

    Article  CAS  PubMed  Google Scholar 

  38. Phipps JB, Gyory JR. Transdermal ion migration. Adv Drug Deliv Rev. 1992;9(2–3):137–76.

    Article  CAS  Google Scholar 

  39. Rosenbaum SE. Basic pharmacokinetics and pharmacodynamics. New Jersey: Wiley; 2011.

    Google Scholar 

  40. Sieg A, Guy RH, Delgado-Charro MB. Simultaneous extraction of urea and glucose by reverse iontophoresis in vivo. Pharm Res. 2004;21(10):1805–10.

    Article  CAS  PubMed  Google Scholar 

  41. Kulcu E, Tamada JA, Reach G, Potts RO, Lesho MJ. Physiological differences between interstitial glucose and blood glucose measured in human subjects. Diabetes Care. 2003;26(8):2405–9.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Asma Djabri was the recipient of a graduate studentship funded by the Algerian Government. The team thanks the patients and their families for their invaluable participation and input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Begoña Delgado-Charro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djabri, A., van’t Hoff, W., Brock, P. et al. Iontophoretic Transdermal Sampling of Iohexol as a Non-Invasive Tool to Assess Glomerular Filtration Rate. Pharm Res 32, 590–603 (2015). https://doi.org/10.1007/s11095-014-1488-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1488-y

KEY WORDS

Navigation