Skip to main content

Advertisement

Log in

Synthesis, Antimicrobial, and DNA-Binding Evaluation of Novel Schiff Bases Containing Tetrazole Moiety And Their Ni(II) and Pt(II) Complexes

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Ni(II) and Pt(II) complexes of tetrazole-containing Schiff bases were synthesized and characterized by physicochemical and various spectroscopic studies. To examine its potential as a candidate anticancer drug, the binding properties of ct-DNA were investigated. The characteristic binding constant (Kb) and binding mode of the complexes with calf thymus DNA (ct-DNA) were determined using absorption titration (1.99 – 76.71 × 104 M-1). According to the kinetic and thermodynamic parameters, the binding constant and spontaneity of the Pt(Tet-SalH) complex were found to be larger. The well-diffusion method was used to deduce the antibacterial potency of Schiff bases and their complexes. All these substances have been examined for antibacterial activity against pathogenic strains and antifungal activity. Only complex [Pt(3,5-Br-Sal-Tet)H2O]Cl∙H2O showed activity against all the microorganisms studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. S. Sayed, S. Dawood, S. Ibrahim, et al., Biointerface Res. Appl. Chem., 10(6), 6936 – 6963 (2020).

    Article  Google Scholar 

  2. D. E. Reichert, J. S. Lewis, C. J. Anderson, Coord. Chem. Rev., 184(1), 3 – 66 (1999).

    Article  CAS  Google Scholar 

  3. D. Nartop, P. Gürkan, N. Sarı, et al., J. Coord. Chem., 61(21), 3516 – 3524 (2007).

    Article  Google Scholar 

  4. N. Sarı, N. Pişkin, H. Öğütcü, et al., Med. Chem. Res., 22(2), 580 – 587 (2013).

    Article  Google Scholar 

  5. K. C. Emregül, E. Düzgün, O. Atakol, Corros. Sci., 48(10), 3243 – 3260 (2006).

    Article  Google Scholar 

  6. J. Zhang, S.Wang, Y. Ba, et al., Eur. J. Med. Chem., 178, 341 – 351 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Y. Yıldırır, M. F. Us, N. Çolak, et al., Med. Chem. Res., 18(2), 91 – 97 (2009).

    Article  Google Scholar 

  8. C.-X Wei, M. Bian and G.-H. Gong, Molecules., 20(4), 5528 – 5553 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. G. I. Koldobskii, V. A. Ostrovskii and B. V. Gidaspov. Chem. Heterocycl. Compd., 16(7), 665 – 674 (1980).

    Article  Google Scholar 

  10. S. Yavuz, O. Aydın, S. Çete, et al., Med. Chem. Res., 19(2), 120 – 126 (2010).

    Article  CAS  Google Scholar 

  11. R. L. Siegel, K. D. Miller, A. Jemal, et al., Ca: Cancer J. Clin., 66(1), 7 – 30 (2016).

    Google Scholar 

  12. A. Di Lorenzo, M. T. Bedford, FEBS Lett., 585(13), 2024 – 2031 (2011).

    Article  PubMed  Google Scholar 

  13. A. R. Katritzky, C. A. Ramsden, E. F. V. Scriven, R. J. K. Taylor, Comprehensive Heterocyclic Chemistry III, Vol. 6: Other Five-membered Rings with Three or more Heteroatoms, and their Fused Carbocyclic Derivatives (2008), pp. 257 – 423.

  14. Y. Tao, J. R. Li, Z. Chang, et al., Cryst. Growth Des., 10(2), 564 – 574 (2010).

    Article  MathSciNet  CAS  Google Scholar 

  15. N. Fischer, T. M. Klapötke, S. Scheutzow, et al., Cent. Eur. J. Energ. Mater., 5(3 – 4), 3 – 18 (2008).

    CAS  Google Scholar 

  16. J. Vanco, Z. Sindelar, Z. Dvorak, et al., J. Inorg. Biochem., 142, 92 – 100 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. R. Bera, B. K. Sahoo, K. S. Ghosh, et al., Int. J. Biol. Macromol., 42(1), 14 – 21 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. S. Niloufar, D. S. Farzad, B. Sima, et al., J. Biomol. Struct. Dyn., 37(2), 359 – 371 (2019).

    Article  Google Scholar 

  19. D. Nartop, B. Demirel, M. Güleç, et al., J. Biochem. Mol. Toxicol., 34(2), e22432 (2019).

    Article  PubMed  Google Scholar 

  20. S. Koçoğlu, H. Öğütcü, Z. Hayvalý, Res. Chem. Intermed., 4(45), 2403 – 2427 (2019).

    Article  Google Scholar 

  21. S. Rubab, S. Bahadur, U. Hanif, et al., Biocatal. Agric. Biotechnol., 31, 101894 (2021).

    CAS  Google Scholar 

  22. I. Sakıyan, E. Logoglu, S. Arslan, et al., Biometals, 17(2), 115 (2004).

    Article  PubMed  Google Scholar 

  23. A. A Popov, V. M. Senyavin, A. A. Granovsky, Fuller. Nanotub. Carbon Nanostruct., 12(1 – 2), 305 – 310 (2005).

    Article  ADS  Google Scholar 

  24. D. Sinirliogglu, A. E. Müftüoglu, A. Bozkurt, J. Polym. Res., 20, 242 – 250 (2013).

    Article  Google Scholar 

  25. R. M. Silverstein, G. C. Bassler, T. C. Morrill, Spectrometric identification of organic compounds, 4. Edition Jhon Wiley and Sons Inc USA (1981).

  26. G. C. Percy, D. A. Thornton, J. Inorg. Nucl. Chem., 34(11), 3357 – 3367 (1972).

    Article  CAS  Google Scholar 

  27. S. Yavuz, Y. Unal, O. Pamir, et al., Arch. Pharm., 34(6), 455 – 462 (2013).

    Article  Google Scholar 

  28. Y. Yildirir, O. Pamir, S. Yavuz, et al., J. Heterocycl. Chem., 50(S1), E93 – E99 (2013).

    Article  CAS  Google Scholar 

  29. E. H. Blackburn, Nature, 408, 53e56 (2000).

  30. S. Artandi, S. L. Chang, S. Lee Alson, et al., Nature, 406, 641 – 645 (2000).

  31. Y. Sun, Y. Lu, M. Bian, et al., Eur. J. Med. Chem., 211, 113098 – 113105 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. T. C. Johnstone, K. Suntharalingam, S. J. Lippard, Chem. Rev., 116(5), 3436 – 3486 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. J. Afzal, N. Ullah, Z. Hussain, et al., Matrix Science Pharma, 1(2), 17 – 19 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sarı.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulular, M., Sarı, N., Han, F. et al. Synthesis, Antimicrobial, and DNA-Binding Evaluation of Novel Schiff Bases Containing Tetrazole Moiety And Their Ni(II) and Pt(II) Complexes. Pharm Chem J 57, 1609–1620 (2024). https://doi.org/10.1007/s11094-024-03056-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-024-03056-7

Keywords

Navigation