Skip to main content
Log in

Synthesis, Antimicrobial Activity, α-Amylase Inhibitory Tests and Molecular Docking Studies of Thiazole Based Hydrazones Derived from 2-acyl-(1H)-indene-1,3(2H)-diones

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

A series of new thiazole based hydrazones have been synthesized and their antimicrobial and α-amylase (type-II diabetes) inhibitory activities have been evaluated. The structures of synthesized derivatives were elucidated by various spectral techniques including FTIR, NMR and mass spectrometry. Antibacterial activity tests were performed against two Gram-positive (Bacillus subtilis and Staphylococcus aureus) and two Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial strains. Two fungal strains (Candida albicans and Aspergillus niger) were taken for testing antifungal activity. Among the tested derivatives, compound 3d was found to be the most potent against all tetsed bacterial and fungal strains. The α-amylase inhibitory activity of all compounds was also assayed using the starch iodine method. Derivatives 3j and 3k exhibited the best inhibitory activity against α-amylase enzyme with IC50 values of 0.26 ± 0.06 and 0.32 ± 0.02 μM, respectively, in comparison to acarbose (IC50 = 0.11 ± 0.00 μM) as standard reference. The results of the biological activity evaluation were confirmed by docking studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. E. A. Nyenwe, T. W. Jerkins, G. E. Umpierrez, and A. E. Kitabchi, Metabolism, 60, 1 – 23 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. J. E. Gerich, Endocr. Rev., 19, 491 – 503 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. E. Bonora, and M. Muggeo, Diabetologia, 44, 2107 – 2114 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. X. Qin, L. Ren, X. Yang, et al., J. Struct. Biol., 174, 196 – 202 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. P. M. de Sales, P. M. de Souza, L. A. Simeoni, et al., J. Pharm. Pharm. Sci., 15, 141 – 183 (2012).

    Article  PubMed  Google Scholar 

  6. Y. He, B. Wu, J. Yang, et al., Bioorg. Med. Chem. Lett., 13, 3253 – 3256 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. V. Moudgal, T. Little, D. Boikov, and J. A. Vazquez, Antimicrob. Agents Chemother., 49, 767 – 769 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M. S. Al-Saadi, H. M. Faidallah, and S. A. Rostom, Arch. Pharm., 341, 424 – 434 (2008).

    Article  CAS  Google Scholar 

  9. P. C. Lv, K. R. Wang, Y. Yang, et al., Bioorg. Med. Chem. Lett., 19, 6750 – 6754 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. F. Chimenti, B. Bizzarri, E. Maccioni, et al., Bioorg. Med. Chem. Lett., 17, 4635 – 4640 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. A. Cukurovali, I. Yilmaz, S. Gur, and C. Kazaz, Eur. J. Med. Chem., 41, 201 – 207 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. S. K. Bharti, G. Nath, R. Tilak, and S. K. Singh, Eur. J. Med. Chem., 45, 651 – 660 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. S. Rollas and S. Kucukguzel, Molecule, 12, 1910 – 1939 (2007).

    Article  CAS  Google Scholar 

  14. H. N. Dogan, A. Duran, S. Rollas, et al., Bioorg. Med. Chem., 10, 2893 – 2898 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. R. Kalsi, M. Shrimali, T. N. Bhalla, and J. P. Barthwal, Indian J. Pharm. Sci., 41, 353 – 359 (2006).

    Google Scholar 

  16. L. Popiolek, A. Biernasiuk, and A. Malm, Phosphorus Sulphur, 190, 251 – 260 (2015).

    Article  CAS  Google Scholar 

  17. L. Popiolek, A. Biernasiuk, and A. Malm, J. Heterocycl. Chem., 53, 479 – 486 (2016).

    Article  CAS  Google Scholar 

  18. F. Hueso-Urena, A. L. Penas-Chamorro, M. N. Moreno-Carretero, et al., J. Chem. Crystallogr., 29, 283 – 286 (1999).

    Article  CAS  Google Scholar 

  19. A. Ozdemir, G. Turan-Zitouni, Z. A. Kaplancikli, and Y. Tunali, J. Enzyme Inhib. Med. Chem., 24, 825 – 831 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. G. Kucukguzel, A. Kocatepe, E. De Clercq, et al., Eur. J. Med. Chem., 41, 353 – 359 (2006).

    Article  PubMed  Google Scholar 

  21. U. Ashiq, R. Ara, M. Mahroof-Tahir, et al., Chem. Biodivers., 5, 82 – 92 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. S. Rollas, N. Gulerman, and H. Edeniz, Farmaco, 57, 171 – 174 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. J. R. Dimmock, S. C. Vasishtha, and J. P. Stable, Eur. J. Med. Chem., 35, 241 – 248 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. P. C. Lima, I. M. Lima, K. C. Silva, et al., Eur. J. Med. Chem., 35, 187 – 203 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. R. Todeschini, A. L. P. de Miranda, K. C. M. da Silva, et al., Eur. J. Med. Chem., 33, 189 – 199 (1998).

    Article  CAS  Google Scholar 

  26. A. Imramovsky, S. Polanc, J. Vinsova, et al., Bioorg. Med. Chem., 15, 2551 – 2559 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Y. Janin, Bioorg. Med. Chem., 15, 2479 – 2513 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. S. A. M. El-Hawasch, W. A. E. Abdel, and M. A. El-Dewellawy, Arch. Pharm. Chem. Life Sci., 339, 14 – 23 (2006).

    Article  Google Scholar 

  29. M. T. Cocco, C. Congui, V. Lilliu, and V. Onnis, Bioorg. Med. Chem., 14, 366 – 372 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. J. Savini, I. Chiasserini, V. Travagli, et al., Eur. J. Med. Chem., 39, 113 – 122 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. A. Bijev, Lett. Drug Des. Discov., 3, 506 – 512 (2006).

    Article  CAS  Google Scholar 

  32. G. A. Silva, I. M. M. Casta, F. C. F. Brito, et al., Bioorg. Med. Chem., 12, 3149 – 3158 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. M. T. Abdel-Aal, W. A. El-Sayed, and E. H. El-ashry, Arch. Pharm. Chem. Life Sci., 339, 656 – 663 (2006).

    Article  CAS  Google Scholar 

  34. A. Walcourt, M. Loyevsky, D. B. Lovejoy, et al., Int. J. Biochem. Cell Biol., 36, 401 – 407 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. A. S. El-Tabl, F. A. Aly, M. M. E. Shakdofa, and A. M. E. Shakdofa, J. Coord. Chem., 63, 700 – 712 (2010).

    Article  CAS  Google Scholar 

  36. V. I. Nikulin, N. Y. Lugovskaya, and N. N. Sveshnikov, Pharm. Chem. J., 28, 13 – 15 (1994).

    Article  CAS  Google Scholar 

  37. L. B. Kilgore, J. H. Ford, and W. C. Wolfe, Ind. Eng. Chem., 34, 494 – 497 (1942).

    Article  CAS  Google Scholar 

  38. Y. Liu, A. Saldivar, and J. Bess, Biochemistry, 42, 8862 – 8869 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. L. Shapiro, K. Geiger, L. Freedman, J. Org. Chem., 25, 1860 – 1865 (1960).

    Article  CAS  Google Scholar 

  40. S. N. Dhawan, S. Dasgupta, S. Mor, and S. C. Gupta, Indian J. Heterocycl. Chem., 2, 155 – 158 (1993).

    CAS  Google Scholar 

  41. K. N. Sawhney and T. L. Lemke, J. Org. Chem., 48, 4326 – 4329 (1983).

    Article  CAS  Google Scholar 

  42. S. Mor and S. Nagoria, Chem. Biol. Interface, 5, 389 – 400 (2015).

    CAS  Google Scholar 

  43. R. Mohil, D. Kumar, and S. Mor, J. Hetrocyclic. Chem., 51, 203 – 211 (2014).

    Article  CAS  Google Scholar 

  44. M. A. Mosaddik and M. E. Haque, Phytother. Res., 17, 1155 – 1157 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Z. Xiao, R. Storms and A. Tsang, Anal. Biochem., 351, 146 – 148 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. M. Duhan, R. Singh, M. Devi, et al., J. Biomol. Struct. Dyn. DOI: 10.1080 / 07391102.2019.1704885 (2019)

  47. MarvinSketch 19.19.0 (2019), ChemAxon (http://www.chemaxon.com).

  48. E. F. Pettersen, T. D. Goddard, C. C. Huang, et al., J. Comput. Chem., 25, 1605 – 1612 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. O. Trott and A. J. Olson, J. Comput. Chem., 31, 455 – 461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Dassault Systèmes BIOVIA, Discovery Studio Visualizer v17.2.0.16349, Dassault Systèmes: San Diego (2016).

Download references

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Funding

The authors are grateful to the University Grants Commission (New Delhi, India) [Sr. No. 2061610093 Ref. No.19/06/2016(i)EU-V, dated 26-12-2016] and the Council of Scientific and Industrial Research (New Delhi, India) [CSIR no. 09/752(0060)/2016-EMR-I] and [CSIR no. 09/752(0104)/2019-EMR-I] for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mor.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mor, S., Khatri, M., Sindhu, S. et al. Synthesis, Antimicrobial Activity, α-Amylase Inhibitory Tests and Molecular Docking Studies of Thiazole Based Hydrazones Derived from 2-acyl-(1H)-indene-1,3(2H)-diones. Pharm Chem J 56, 925–934 (2022). https://doi.org/10.1007/s11094-022-02728-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02728-6

Keywords

Navigation