Skip to main content
Log in

Obtaining Chitosan from Artemia Cysts and Studying its Sorption Properties

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Chitosan was isolated from Artemia cysts growing in the Aral Sea. The identity of the obtained chitosan and a reference sample was confirmed by IR spectroscopy. Its molecular weight estimated by viscometry was 162,000 Da. The degree of deacetylation determined by potentiometric titration and the specific surface area of Artemia cyst chitosan estimated using Methylene Blue dye marker were studied as the main indicators of sorption activity. Results of an investigation of the sorption properties of the obtained chitosan for fatty acids and triglycerides as compared to those of reference sorbents showed that chitosan isolated from Artemia cysts could be recommended for use as an effective enterosorbent in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. Yu. S. Ovodov, Bioorg. Khim., 24(7), 483 – 501 (1998).

    CAS  PubMed  Google Scholar 

  2. R. G. Ovodova, V. V. Golovchenko, A. Ya. Polle, et al., Current Problems with Designing New Drugs of Natural Origin: Proceedings of the Vth International Conference [in Russian], SPbKhFA, St. Petersburg (2001), pp. 260 – 261.

  3. I. M. Gnidoi, Pediatriya, No. 5, 97 – 101 (2000).

  4. R. A. A. Muzzarelli, C. Jeuniaux, and G. W. Gooday, Chitin in Nature and Technology, Plenum Publishing Corporation, New York (1986).

    Book  Google Scholar 

  5. V. S. Yeul and S. S. Rayalu, J. Polym. Environ., 21(2), 606 – 614 (2013).

    Article  CAS  Google Scholar 

  6. M. R. Bhuiyan, A. Shaid, M. M. Bashar, et al., Open J. Org. Polym. Mater., 3(4), 87 – 91 (2013).

    Article  Google Scholar 

  7. R. A. A. Muzzarelli (ed.), Natural Chelating Polymers, Pergamon Press, New York (1973), p. 83.

  8. C. K. S. Pillai,W. Paul, and C. P. Sharma, Prog. Polym. Sci., 34, 641 – 678 (2009).

    Article  CAS  Google Scholar 

  9. M. N. V. Ravi Kumar, React. Funct. Polym., 46, 1 – 27 (2000).

    Article  Google Scholar 

  10. G. A. F. Roberts, Adv. Chitin Sci., 10, 3 – 10 (2007).

    Google Scholar 

  11. H. Tajik, M. Moradi, S. M. R. Rohani, et al., Molecules, 13, 1263 – 1274 (2008).

    Article  CAS  Google Scholar 

  12. F. A. Al Sagheer, M. A. Al-Sughayer, S. Muslim, and M. Z. Elsabee, Carbohydr. Polym., 77, 410 – 419 (2009).

    Article  Google Scholar 

  13. J. Synowiecki and N. A. Al-Khateeb, Crit. Rev. Food Sci. Nutr., 43, 145 – 171 (2003).

    Article  CAS  Google Scholar 

  14. M. Hayes, B. Carney, J. Slater, and W. Bruck, Biotechnol. J., 3, 871 – 877 (2008).

    Article  CAS  Google Scholar 

  15. M. H. Struszczyk, Polimery, 47, 316 – 325 (2002).

    Article  CAS  Google Scholar 

  16. I. Aranaz, M. Mengibar, R. Harris, et al., Curr. Chem. Biol., 3, 203 – 230 (2009).

    CAS  Google Scholar 

  17. K. Kurita, K. Tomita, S. Ishi, et al., J. Polym. Sci., Part A: Polym. Chem., 31, 2393 – 2395 (1993).

    Article  CAS  Google Scholar 

  18. S. Aiba, Int. J. Biol. Macromol., 13, 40 – 44 (1991).

    Article  CAS  Google Scholar 

  19. M. X. Weinhold, J. C. M. Sauvageau, N. Keddig, et al., Green Chem., 11, 498 – 509 (2009).

    Article  CAS  Google Scholar 

  20. M. H. Struszczyk and K. J. Struszczyk, Medical Application of Chitin and Its Derivatives, Polish Chitin Society, Lotz, Poland (2007), Monograph XII, pp. 139 – 147.

  21. E. Onsosyen and O. Skaugrud, J. Chem. Technol. Biotechnol., 49, 395 – 404 (1990).

    Article  Google Scholar 

  22. N. Chandy and C. P. Sharma, Biomater. Artif. Cells Artif. Organs, 18, 1 – 24 (1990).

    Article  CAS  Google Scholar 

  23. O. Felt, P. Buri, and R. Gurny, Drug Dev. Ind. Pharm., 24, 979 – 993 (1998).

    Article  CAS  Google Scholar 

  24. A. I. Gamzazade, et al., Acta Polym., 36(8), 420 – 424 (1985).

    Article  CAS  Google Scholar 

  25. M. R. Kasaai, Carbohydr. Polym., 68(3), 477 – 488 (2007).

    Article  CAS  Google Scholar 

  26. G. V. Kashina, V. G. Shelepov, and A. I. Mashanov, Vestn. Krasnoyarsk. Gos. Agrar. Univ., No. 5, 238 – 241 (2014).

  27. G. A. Morris, et al., Carbohydr. Polym., 76(4), 616 – 621 (2009).

    Article  CAS  Google Scholar 

  28. S. Kumari, et al., Environ. Technol. Innovation, 3, 77 – 85 (2015).

    Google Scholar 

  29. M. V. Ovchinnikova, M. N. Kireev, and A. K. Nikiforov, Probl. Part. Danger. Infect. (Russian Research Anti-Plague Institute “Microbe”), No. 4, 71 – 74 (2014).

  30. M. V. Ovchinnikova, et al., Probl. Part. Danger. Infect. (Russian Research Anti-Plague Institute “Microbe”), No. 2, 83 – 86 (2015).

  31. V. E. Kamskaya, Nauchn. Obozrenie Biol. Nauki, No. 6, 36 – 42 (2016).

  32. E. E. Kuprina, E. V. Osipova, and E. V. Bachischche, Ryb. Prom-st., No. 3, 44 – 46 (2004).

  33. J. Waldstein, et al., in: Chitosan per os, R. A. A. Muzzarelli (ed.), Atec, Grottammare (2000), pp. 65 – 76.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Oshchepkova.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 55, No. 11, pp. 45 – 50, November, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oripova, M.Z., Kuzieva, Z.N., Oshchepkova, Y.I. et al. Obtaining Chitosan from Artemia Cysts and Studying its Sorption Properties. Pharm Chem J 55, 1234–1239 (2022). https://doi.org/10.1007/s11094-022-02563-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-022-02563-9

Keywords

Navigation