Skip to main content
Log in

Designing nootropic dipeptides using an evolutionary-genetic approach

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Abstract

A novel approach to the search for the new groups of biologically active peptides is developed, which is based on the selection of point mutants with respect to noncritical amino acid residues. Using a gene site encoding the arginine vasopressin AVP(4–5) sequence, which corresponds to the pGlu-Asn-NH2 nootropic dipeptide, three point mutants with respect to Asn (pGlu-Ser-NH2, pGlu-Asp-NH2, and pGlu-His-NH2) have been synthesized. The first two peptides (corresponding to transitions of the 1st and 2nd bases, respectively) display nootropic activity in the passive avoidance test in rats at a dose of 0.1 mg/kg (i.p.). The last peptide (corresponding to a transversion of the 1st base) proved to be inactive. Both active peptides exhibit electronic and structural differences from the parent dipeptide: pGlu-Asp-NH2 bears a negative charge and contains a primary alcohol group instead of the amide moiety. Using the proposed method, it is possible to create genetically related analogs of well-known neuropeptides with substantially different structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Gudasheva, R. U. Ostrovskaya, S. S. Trofimov, et al., Khim.-Farm. Zh., 19(11), 1322–1324 (1985).

    CAS  Google Scholar 

  2. T. A. Gudasheva, R. U. Ostrovskaya, F. V. Maksimova, et al., Khim.-Farm. Zh., 22(3), 271–275 (1988).

    CAS  Google Scholar 

  3. T. A. Gudasheva and A. P. Skoldinov, Eksp. Klin. Farmakol., 66(2), 15–19 (2003).

    PubMed  CAS  Google Scholar 

  4. T. A. Gudasheva, G. G. Rozantsev, R. U. Ostrovskaya, et al., Khim.-Farm. Zh., 29(1), 15–18 (1995).

    CAS  Google Scholar 

  5. A. Dietrich and J. D. Allen, Behav. Brain Res., 87(2), 195–200 (1997).

    Article  PubMed  CAS  Google Scholar 

  6. Y. Nakayama, Y. Takano, Y. Shimohigashi, et al., Brain Res., 858(2), 416–423 (2000).

    Article  PubMed  CAS  Google Scholar 

  7. A. N. Cherepkova, N. A. Kapai, and V. G. Skrebitskii, Byull. Eksp. Biol. Med., 131(2), 167–169 (2001).

    Google Scholar 

  8. J. P. H. Burbach, G. L. Kovacs, D. DeWied, et al., Science, 221, 1310–1314 (1983).

    PubMed  CAS  Google Scholar 

  9. M. Fujiwara, Y. Ohgami, K. Inada, and K. Iwasaki, Behav. Brain Res., 83(1–2), 91–96 (1997).

    Article  PubMed  CAS  Google Scholar 

  10. E. Sausville, D. Carney and J. Battey, J. Biol. Chem, 260(18), 10236–10241 (1985).

    Google Scholar 

  11. R. Ader, J. A. W. M. Weijnen, and P. Moleman, Psychol. Sci., 26, 125–128 (1972).

    Google Scholar 

  12. A. A. Zamyatin, Special Data Bank EROP-Moscow; http://erop.inbi.ras.tu.

  13. A. P. Smirnova, S. M. Funtova, and V. V. Knyazeva, Khim.-Farm. Zh., 35(8), 32–33 (2001).

    Google Scholar 

  14. N. C. Davis, J. Biol. Chem., 223, 935 (1956).

    PubMed  CAS  Google Scholar 

  15. J. Rivier, W. Vale, R. Burgus, et al., J. Med. Chem., 16(5), 545–549 (1973).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 40, No. 1, pp. 18–22, January, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gudasheva, T.A., Trofimov, S.S., Morozova, A.A. et al. Designing nootropic dipeptides using an evolutionary-genetic approach. Pharm Chem J 40, 18–22 (2006). https://doi.org/10.1007/s11094-006-0049-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-006-0049-z

Keywords

Navigation