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Abstract
Scores from observational measures of teaching have recently been put to many uses 
within school systems, including communicating a standard of practice and provid-
ing teacher feedback, identifying teachers for professional development, monitoring 
system equity, and making employment decisions. In each of these uses, observa-
tion scores are interpreted as representing some aspect of the enacted instruction or 
teachers’ capacity to enact instruction, as seen through the observation systems lens 
for understanding teaching quality. The quality of these interpretations, or the extent 
to which observation scores are composed of a signal that accurately reflects the 
interpretation, has important implications for the overall validity of uses of observa-
tion systems. Starting from an explicit conceptualization of instruction, this paper 
combines generalizability theory and hierarchical linear modelling approaches to 
decompose observation scores to explore the extent to which scores from observa-
tion systems are composed of signal, error, and bias across four different uses (i.e., 
teacher feedback, professional development, monitoring system equity, and employ-
ment decisions) of scores. We show that the quality of observation scores may 
depend more on what scores are interpreted as representing (i.e., the proposed use) 
than on the specific observation rubric being used. Further, we show that rater errors 
and biases are a major threat to any attempt to interpret observation scores as captur-
ing the observation system’s understanding of teaching quality. We discuss implica-
tions for using scores from observation systems.
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1 Introduction

Efforts to directly measure teaching quality have a long history, arising from 
the process–product research of the 1970–1980s (e.g., Brophy, 1973; Brophy & 
Good, 1984; Emmer et al., 1979). Modern approaches arising from this tradition 
have come to be called observation systems (ObsSys). ObsSys are used in many 
ways, including comparing enacted instruction across settings (e.g., Martinez 
et al., 2016; OECD, 2020; Praetorius et al., 2019), providing feedback to teachers 
(e.g., Cohen et al., 2016; Kraft & Hill, 2020), and teacher evaluation (e.g., Kraft 
& Gilmour, 2017; Steinberg & Donaldson, 2016). Recent work on ObsSys high-
lights several challenges that call into question the appropriateness of these uses, 
including critiques of the lack of conceptualization of teaching (e.g., Charalam-
bous & Praetorius 2020), mismatches between measurement approaches and 
underlying conceptualizations of teaching quality (e.g., White et  al., 2022) and 
high rater error (e.g., Bell et al., 2014). These challenges raise the need to care-
fully consider how well scores from ObsSys support their intended uses.

This paper addresses the following research question: To what extent are scores 
from ObsSys composed of signal, error, and/or bias across four common uses of 
observation scores? In addressing this question, the paper empirically explores 
the validity of common interpretations of scores from ObsSys that are tied to spe-
cific score uses, highlighting how an explicit conceptualization of teaching can 
identify multiple distinct factors that influence enacted instruction and factors 
that could contribute either useful signal, error, and/or bias. We then model, in 
two ObsSys, the extent to which scores from ObsSys are composed of signal, 
error, and/or bias when scores are used for different purposes, providing evidence 
towards the validity of different interpretations of scores from ObsSys. The paper 
highlights several important points. First, the proposed interpretations of scores 
have an important impact on the quality of scores, possibly more than the specific 
ObsSys being used. Second, across all uses, rater error contributes a large amount 
of potential bias. Only after better understanding the nature of rater error’s contri-
bution to scores can one effectively judge the validity of different uses.

2  A conceptualization of teaching and its measurement

We start by presenting a basic conceptualization of instruction and its measure-
ment, which allows us to consider the various contributors to observation scores. 
Figure  1 shows this paper’s conceptualization, which is based on the didactic 
triangle (Klafki, 2000) (often termed instructional triangle in the US context; 
Cohen et  al., 2003). Teachers’ skills and knowledge, students, and the instruc-
tional context (e.g., lesson goals, content) each influence teachers’ choices in 
what and how to teach, all of which contribute to determining the enacted instruc-
tion. The enacted instruction is observed through the lens of raters’ understanding 
of the observation rubric to generate estimates of observed teaching quality or 
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observation scores. The explicit assumption here is that observation scores are 
not direct or clear reflections of either enacted instruction or teacher capacities 
but arise in the complex interplay of students, content, and teachers, as filtered 
through a specific observation system’s understanding of teaching quality and the 
potentially distorted lens of rater perceptions. One cannot, then, simply interpret 
observation scores as directly representing any particular construct, but observa-
tion scores represent a complex interplay of several factors (i.e., students, instruc-
tional contexts, teachers, raters).

Each factor represented on the left-hand side of Fig.  1 has the potential to 
impact observation scores. The instructional context includes all features asso-
ciated with lessons that might impact enacted instruction, including time of year, 
day of the week, the lesson content and learning goals, aspects of the curriculum, 
and many other factors (e.g., Bohn et al, 2004; Casabianca et al., 2015). Organiza-
tional and curricular structures, as well as the nature of different subject areas or 
learning goals, may lead instruction to be systematically different across features of 
the instructional context (Kelcey & Carlisle, 2013). Students are conceptualized as 
active contributors to the quality of enacted instruction through their participation in 
instructional routines and their cognitive engagement with the content of instruction 
(or lack thereof; Cohen et al., 2003). This contribution of students is reciprocal, as 
teachers may also choose instructional approaches based on their perception of stu-
dent capacities (e.g., The New Teacher Project [TNTP], 2018). Last, teacher capaci-
ties, which include all stable characteristics of teachers, most notably their skills, 
knowledge, and repertoires, are assumed to directly impact enacted instruction both 
through the choice of what to teach and the skill with which instruction is enacted.

Beyond these factors that together determine the quality of enacted instruction 
lie factors that determine the lens that encodes enacted instruction into observa-
tion scores (i.e., the raters’ enactment of the rubric, see Fig. 1). This includes, most 
importantly, the rubric’s fixed criteria for assessing teaching quality and the systems 
that are in place to train raters on applying the observation rubric and monitor raters’ 
faithful application of the rubric. Last, raters’ background (including knowledge 

Fig. 1  Conceptualization of teaching and measuring teaching quality
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and beliefs) also impacts how raters enact the rubric (e.g., Cash et al., 2012). Ide-
ally, raters accurately and consistently score the rubric so that scores capture the 
intended understanding of teaching quality. However, evidence suggests that raters 
often introduce both random and systematic sources of error to observation scores 
(e.g., Bell et al., 2014). Table 1 defines four types of rater error that may arise, as 
well as highlighting the complications for interpreting observation scores that can 
arise from each type of rater error.

2.1  Different uses of scores involve different interpretations of what scores 
represent

We assume here that each use of observation scores rests on the interpretation of 
scores as representing a feature of classroom instruction and/or teacher capacities 
(i.e., “interpretation for use”; AERA, APA, & NCME, 2014). For example, when 
used to identify teachers for professional development, observation scores are inter-
preted as capturing teachers’ capacity to provide a certain type of instruction, such 
that teachers who struggle to enact a given type of instruction can receive support to 
build their capacity. On the other hand, when communicating a standard of practice 
and providing feedback to teachers, observation scores are interpreted as represent-
ing the quality of enacted instruction (rather than teachers’ capacity to enact instruc-
tion), such that teachers receive feedback on the strengths and weaknesses of the 
enacted instruction. Since each use of observation scores rests on different interpre-
tations of what scores represent, observation scores are differentially useful depend-
ing on the extent to which the scores represent the intended construct (i.e., the size 
of the signal, error, and bias).

2.2  Observation scores as representations of specific understandings of teaching 
quality

Users of ObsSys have many choices in which ObsSys to adopt. They could, further, 
simply rely on the professional judgement of observers rather than using a formal 
ObsSys. Considering the cost in time and resources of implementing an ObsSys 
(e.g., Bell et al., 2015), we assume that the given ObsSys was chosen because the 
way it defines and operationalizes teaching quality is thought to be particularly 
meaningful. As such, we acknowledge multiple (potentially contradictory) under-
standings of teaching quality and emphasize the importance of interpreting observa-
tion scores as representing the particular understanding of teaching quality opera-
tionalized by the chosen ObsSys.

2.3  Definitions

In line with this understanding, we define some terms, which come from signal 
detection theory, a field that emphasizes extracting useful information from noisy 
environments (Abdi, 2007). The signal is the variation in observation scores that is 
associated with the intended construct, as viewed by the understanding of teaching 
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embedded in the ObsSys. The specific nature of the signal varies for each use of 
scores and is discussed in more detail in the next section. The variation in observa-
tion scores that is not signal is further divided into bias (i.e., systematic deviations 
of scores from signal) and error (i.e., random deviations of scores from signal). The 
specific nature of bias and error varies by the use of observation scores and is dis-
cussed in the following section.

3  Multiple uses of observation scores

This section defines the nature of signal, error, and bias for each of the explored uses 
of observation scores: (i) communicating a standard of practice and providing feed-
back, (ii) identifying teachers for professional development, (iii) ensuring equitable 
access, and (iv) making employment decisions.

3.1  Communicating a standard of practice and providing feedback relative 
to this standard

This use of scores considers the observation rubric as defining instructional stand-
ards or describing the instruction that is expected of teachers (e.g., Danielson, 
2000; Kraft & Hill, 2020). In this use, the observed instruction is compared to the 
observation rubric to judge the quality of enacted instruction relative to the rubric’s 
standards. Then, observation scores are interpreted as representing the quality of 
enacted instruction as operationalized by the ObsSys. All factors impacting the 
quality of enacted instruction (see Fig. 1) are relevant considerations (i.e., signal) 
when making sense of observation scores. Errors and biases, then, are introduced 
only through the scoring process (i.e., rater errors). For example, errors could arise 
if raters fail to observe an event that leads them to assign the wrong scores while 
biases could arise if raters systematically misinterpret the observation rubric cat-
egories (see Table 1). Table 2 summarizes the definitions of signal, error, and bias 
across uses.

3.2  Identifying teachers for professional development (pd)

This use of scores identifies teachers who lack the skills and/or knowledge that 
will be addressed by a given PD offering to ensure that the offering is given 
to teachers who would benefit from it. Here, observation scores are interpreted 
as providing information about teachers’ skills and/or knowledge (see Table 2). 
For example, if little student discussion is repeatedly observed in a teacher’s 
instruction, that teacher may be recommended to a PD session on leading dis-
cussions to build their capacity to lead discussions. Since many factors other 
than teacher skills and knowledge affect observation scores (see Fig.  1), there 
are many potential sources of error or bias when using scores for this purpose. 
For example, variation in scores across lessons or classrooms would be a source 
of error since this use of scores tries to estimate teacher’s capacities to provide 
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instruction to their students. This is generally true for any variation in scores 
that is associated with the instructional context. An example of a bias for this 
use is if teachers choose to avoid certain instructional practices (e.g., discus-
sions) that they can successfully enact (due to, for example, the lesson’s learning 
goals or implicit assumptions about their students’ capacities/needs). Since, in 
this scenario, observation scores would then (incorrectly) suggest that teachers 
lack the capacity to engage in certain types of instruction (e.g., discussions).1

3.3  Ensuring equitable access

This use of scores seeks to measure the enacted instruction experienced by students 
within student sub-groups and then compare the measured level of enacted instruction 
across sub-groups. The desire here is that different sub-groups of students will have expe-
rienced equal levels of enacted instruction. Here, observation scores are interpreted as 
representing the average quality of the enacted instruction for a sub-group of students, as 
interpreted through the ObsSys’s lens (see Table 2).2 For example, a school system may 
compare the average observation scores from all schools with over 10% of immigrant stu-
dents to all schools with less than 10% of immigrant students to determine whether immi-
grant students receive equally effective instruction as non-immigrant students.

The aggregation here creates challenges that are not present in the feedback use, 
despite both uses interpreting scores as representing enacted instruction. For exam-
ple, imagine that writing instruction was observed more often in schools with many 
immigrant students and that writing lessons typically received lower observation 
scores. If this difference in the frequency of writing instruction reflected a difference 
in schools’ enacted curriculum (Polikoff & Porter, 2014), the difference in observa-
tion scores would reflect actual differences in the enacted instruction received by 
students (i.e., be a part of the signal). However, if the difference in the frequency 
of writing instruction were driven by some schools observing proportionally more 
writing lessons (e.g., because those schools were trying to improve the quality of 
writing instruction), this would reflect a sampling bias and the difference in scores 
associated with differences in writing instruction would reflect error (if non-system-
atic) or bias (if systematic). Without knowing whether there are differences in the 
enacted curriculum across sub-groups, interpreting the variation in scores associated 
with the instructional context, then, can be challenging in this use of ObsSys.

3.4  Employment decisions: hiring, bonuses, tenure, etc.

This use of scores seeks to identify teachers with specific skills and/or knowledge in 
order to provide an evidence base with which to make employment decisions (e.g., 

1 Note that this might not reflect a bias if the PD was oriented to changing teachers’ beliefs about when, 
where, and why to use specific instructional practices (e.g., discussion), as opposed to the skill-focused 
PD that we emphasize.
2 We assume throughout that the chosen observation system characterizes teaching quality equally well 
for all sub-groups of students, but this assumption should be questioned (c.f. Milanowski, 2017).
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Dee & Wyckoff, 2015). Note that employment-based decisions often combine data 
from multiple sources. This paper focuses solely on assessing the contribution to 
overall scores that come from ObsSys under the assumption that each part of a com-
posite score should be independently examined. In this use, observation scores are 
interpreted as representing teachers’ capacity to enact rubric-aligned instruction (see 
Table 2).

Employment decisions at different levels of a school system may interpret 
scores differently (implying that signals vary across different uses within this 
category). For example, a school-level system will likely interpret scores as 
capturing teachers’ capacity to enact high-quality instruction within the given 
school while a statewide system will likely interpret scores as capturing teach-
ers’ average capacity to enact high-quality instruction in schools across the 
state, a far broader interpretation of scores that is more challenging to defend. 
For example, research suggests that most of the race gap in observation scores 
occurs between schools (Steinberg & Sartain, 2021). This between-school race 
gap would not affect interpretations of scores at the within-school level (since 
the race gap is negligible within-schools) but points to a potential bias in scores 
when scores are interpreted as capturing teachers’ capacity to enact rubric-
aligned instruction across all schools in the state. Similarly, research suggests 
that between-school differences in scores may be driven mostly by rater error 
(Cowan et  al., 2022), further complicating between-school interpretations of 
observation scores.

Since observation scores are interpreted as providing information about 
teacher capacities and beliefs while enacted instruction is determined by many 
factors, there are many potential sources of error for this use of scores. For 
example, the non-random sampling of lessons may lead teachers to be observed 
in different instructional contexts (e.g., reading vs. writing lessons) so variation 
in the instructional context is likely to reflect error (i.e., be unrelated to teacher 
capacities; though note the discussion of the enacted curriculum above). Other 
sources of variation in scores are less clear-cut. Consider the variation in scores 
associated with student characteristics (e.g., Campbell & Ronfeldt, 2018; Stein-
berg & Sartain, 2021). If this variation is caused by how easy it is to teach some 
students,3 that variation would be bias since it is driven by student factors and 
not teachers’ knowledge and skills. However, that variation could be the result 
of teacher sorting (e.g., Goldhaber et al., 2015), such that teachers with higher 
levels of skill and knowledge happen to teach specific groups of students (i.e., 
the relationship between student characteristics and observation scores is exog-
enous; White, 2023), in which case the variation in scores associated with stu-
dent characteristics would be part of the signal (i.e., accurately reflect teacher 
capacities).

3 One might, for example, propose that students with more prior knowledge are more receptive to 
instruction than other students and/or that students have a pre-existing tendency to actively engage 
with content. Either of these or other causes might make it decidedly easier to teach some students 
than others.



 Educational Assessment, Evaluation and Accountability

1 3

3.5  Section summary

Different uses of scores are supported by different interpretations of observation 
scores. Different interpretations, in turn, imply that different aspects of observation 
scores are signal, error, or bias (see Table  2). The first takeaway of this paper is 
the need to be clear and explicit about how one is interpreting observation scores 
(i.e., defining the signal) and how this interpretation supports a proposed use of 
those scores. Only after doing so can one appropriately turn to consider the potential 
sources of error and bias that might impact the extent to which an observation score 
supports a given use.

Recall again that this paper explores the extent to which observation scores accu-
rately reflect the construct that scores are interpreted as representing. Since observa-
tion scores are interpreted in order to support each proposed score use (AERA, APA, 
& NCME, 2014), the interpretation of observation scores is an important aspect of 
a full validity argument supporting a given use of scores, but it is only one aspect. A 
full consideration of the validity of any given use of observation scores would need 
to examine potential impacts of the proposed use. Further, some validity arguments 
might not propose interpretations of scores but focus solely on the consequences of 
the proposed use. In this case, the current paper has little relevance. For example, 
in teacher evaluation systems, it is widely accepted that principals assign scores to 
balance a wide range of different (unknown) goals (Halverson et al., 2004), obscur-
ing any clear interpretation of scores. However, the validity of providing feedback to 
teachers with such scores is still advocated based on the face validity of the process 
and the positive consequences of the given use (Halverson et al., 2004). Despite this 
limitation, the time and cost of implementing an ObsSys (e.g., Bell et  al., 2015) 
mean that most uses of observation scores will (at least implicitly) seek to interpret 
scores as representing a specific construct.

4  Methods

This section introduces the data and analysis approaches. These approaches were 
designed to decompose observation scores into signal, bias, and error when using 
observation scores across a range of purposes.

4.1  Understanding Teacher Quality (UTQ)

Data comes from secondary analyses of a research project meant to evaluate ObsSys 
called the Understanding Teaching Quality project (UTQ; Casabianca et al., 2015). 
In the UTQ project, 458 volunteer mathematics and English language arts teach-
ers in grades 6–8 in three large, southeastern US school systems were observed in 
2009–2011. All 228 teachers who taught English are used in analyses presented 
in this paper. Teachers were observed teaching up to four lessons (two lessons for 
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each of the two classrooms). Each video was scored using the Classroom Assess-
ment Scoring System (CLASS; Pianta et al., 2010) and the Framework for Teaching 
(FFT; Danielson, 2000).

Twelve former teachers were recruited as raters and underwent standard train-
ing and certification for both CLASS and FFT (and one other protocol). Rater cali-
bration exercises were held weekly (once every 3 weeks for each protocol). During 
these low-stakes exercises, raters watched and discussed scores in a common video, 
receiving feedback on scoring and documenting rater scoring accuracy across time. 
Rater agreement was tested by randomly selecting 25% of videos (one per teacher) 
to double-score. Following standard protocols, CLASS was scored using 15-min 
segments (usually three per lesson) and FFT was scored using 30-min segments 
(usually 1 segment per lesson). All data in this paper is aggregated to the lesson 
level (across segments), both to align data across CLASS and FFT and under the 
premise that the equal-interval segmentation is a way of estimating average teaching 
quality in a lesson (c.f., White et al., 2022).

Two different data sets from the UTQ project were analyzed: first, the full data 
set, which includes the scores assigned by raters during normal scoring, and sec-
ond, the calibration data set, which includes the scores assigned independently by 
raters prior to participating in calibration meeting discussions. The calibration data 
is unique because it contains master scores, which we interpret as estimates of the 
score that would have been assigned had the rater perfectly applied the observation 
rubric. Further, raters scored the same video multiple times in the calibration data, 
allowing us to distinguish between systematic rater errors (i.e., errors made repeat-
edly across scoring occasions) and random rater errors (i.e., errors not made repeat-
edly across scoring occasions).

One cannot empirically identify the complete contribution of students, the 
instructional context, and teacher capacities to the quality of enacted instruction, as 
measured by the ObsSys. Rather, there is a need to use proxy measures to empiri-
cally explore the relative contribution of each factor. The assumption here is that the 
variation in observation scores that is systematically related to the proxy measures 
represents variation that is driven by the factor those proxy measures represent. The 
instructional context factor used the following proxy measures: the semester of the 
observed lesson (Fall or Spring); the classroom’s grade level; the time of day, the 
month, and the day of the week of the lesson; and curriculum indicators captur-
ing whether the lesson focused on grammar, literature, reading comprehension, and 
writing. The student factor used the following proxy measures (all measured as a 
percentage at the classroom level): English language learners, students in special 
education, students with gifted status, students on free-reduced price lunch, Asian 
students, African American students, White students, and multi-racial students. 
The classroom averaged prior test score on the district standardized test was also 
used. Over-fitting was avoided by using the first two principal components in regres-
sion models (Greco et  al., 2019), which accounted for 39% and 15% of the vari-
ance, respectively. The teacher capacity factor used the following proxy measures: 
highest educational degree, whether the teacher was certified in their subject area, 
whether the teacher was certified to teach middle school, years of experience, a con-
tent knowledge measure called Teacher Knowledge Assessment System (TKAS; 
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Phelps et  al., 2014), value-added scores from the current year, and teacher value-
added scores from the previous year (see Lockwood & McCaffrey, 2012 for value-
added specifications). Over-fitting was again avoided by using the first two principal 
components, which accounted for 24% and 18% of the variance, respectively.

4.2  Augmented generalizability theory (GT) models

Our main analytic approach is augmented GT models (Casabianca et  al., 2015), 
which blend typical GT models (Brennan, 2001) with the hierarchical linear mod-
elling (HLM; Raudenbush & Bryk, 2001) approach of examining the decrease in 
the size of variance components after adding fixed effects in the model. Analyses 
were done using package lme4 (Bates et al., 2015) in R (R Core Team, 2020). This 
lets us examine the extent to which each measurement facet is associated with the 
three focal factors: the instructional contexts, students, and teacher capacities. The 
variation associated with each measurement facet is then recast as a source of signal, 
error, and/or bias based on the discussion in the section “Multiple uses of observa-
tion scores” and summarized in Table  2 (for further details on this approach, see 
White, 2022).

Models run on the full data set use the assigned score as the outcome measures 
while calibration data models use the assigned score minus the master score as the 
outcome measure. Then, the calibration models purely decompose rater error and 
are not like other GT models. Their goal is to distinguish between the four types 
of rater error that are described in Table  1, especially the systematic versus non-
systematic types of rater error.

The augmented GT models decompose scores into components that capture sig-
nal, error, or bias for a given use of scores. However, several uses of scores involve 
aggregating scores across many observations to estimate classroom-level, teacher-
level, or school-level teaching quality. Under the assumption that the modelled fac-
ets are normally distributed and random (i.e., teachers are observed in a randomly 
selected instructional context in each observation), aggregating across a facet will 
decrease that facet’s contribution to the variance of scores. Note that some system-
atic errors cannot be averaged across to reduce their impact on the resulting scores. 
For example, the lesson and segment facets in the calibration model capture bias 
made by all raters, so the influence of this systematic error cannot be reduced by 
aggregating across more raters.

For the use of communicating a standard of practice, the feedback was assumed 
to be focused on a single lesson observed by one observer. For identifying teachers 
for PD and making employment decisions, scores were assumed to be aggregated 
across four lessons observed by a total of 2 raters. For ensuring equitable access, 
scores were assumed to be aggregated to the school level with ten teachers in each 
school and each teacher observed across two lessons with a different observer in 
each lesson. Note that the number of lessons and raters that we aggregate across is 
based on formal recommendations (e.g., Kane et al., 2012) but involves more lesson 
observations and raters than are typically available in practice-based settings (e.g., 
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Steinberg & Donaldson, 2016), which again should, if anything, introduce conserva-
tive biases, making results overly optimistic about score quality.

5  Results

5.1  Variance decomposition of scores

Table 3 presents the main results of the augmented GT models. The columns under 
“variance associated with each facet” show the variance in observation scores asso-
ciated with each facet for each data set. Note that the calibration data models only 
estimated facets associated with rater error to provide a more detailed look into rater 
accuracy while the full data models examined variation in scores across schools, 
teachers, classrooms, and lessons, as well as rater agreement. The last set of columns 
looks at the percentage of variance within each facet that is explained by the three 
factors impacting enacted instruction (see Fig. 1). Appendix A replicates Table 3 for 
each dimension of FFT and CLASS.

When examining Table 3, note that the variance decomposition estimates for the 
main models fall within the expected range given past work (e.g., Kane et al., 2012; 
Mantzicopoulos et al., 2018), though differences in model specification and analytic 
choices (e.g., whether to aggregate to the lesson level before analyses) make precise 
comparisons with past work difficult. There may, though, be somewhat less varia-
tion in scores across teachers/schools and more residual variation than in past stud-
ies (Bell et al., 2014). We know of no prior studies that have tried to systematically 
explore the extent to which proxy measures explain school facets or that decompose 
the accuracy of rater scoring in data with master scores so we cannot state whether 
these analyses align with past work.

Table  3 shows that a large percentage of the variation in the school facet is 
explained by the proxy measures for student, teacher capacity, and the instructional 
context. This implies that school-level average observation scores are highly related 
to both school demographics and the observed instructional contexts within the 
school (see also Steinberg & Sartain, 2021). A fair amount of the teacher facet is 
related to proxy measures for the instructional context and students, suggesting that 
within-school differences in scores across teachers are associated with the types of 
students each teacher teaches and the instructional context in which teachers were 
observed.

When looking at the rater and residual facets, which were estimated in both the 
full data and calibration models, we see that these facets are both smaller in the cali-
bration data. Since the calibration data captures rater accuracy (i.e., distance from 
the master score) while the full data captures only rater agreement, we use the rater 
error estimates from the calibration data models in the next section. Since these esti-
mates are lower, this should again only potentially introduce conservative biases, 
making rater error seem less problematic than it is.
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5.2  Signal, systematic error, and random error across uses of scores

This section combines the conceptual view of teaching and discussion of different 
uses of observation scores with the augmented GT models just discussed. Using the 
discussion of the various uses of scores from ObsSys, we break down the extent to 
which scores, after aggregation, are composed of signal, systematic error, or ran-
dom error across the four discussed uses. A note on the interpretation of findings is 
important first. The percentage of the score attributable to signal can also be inter-
preted as the reliability of the scores (under a given interpretation) for the given pur-
pose (i.e., since reliability is the percentage of non-error variation in scores). Then, 
traditional standards would expect signal to be about 70% of scores for low-stake 
uses and 80% of scores for high-stake uses (i.e., reliability is 0.7 or 0.8; Kane et al., 
2012). However, most uses of reliability do not consider bias and even low levels 
of bias can make scores untenable for specific uses, even if reliability is high. For 
example, when using scores to examine if minoritized and non-minoritized students 
receive equal levels of teaching quality, a small bias that leads classrooms with more 
non-minoritized students to score higher than classrooms with fewer non-minor-
itized students can lead scores to be problematic, even if score reliability is high 
(e.g., Campbell & Ronfeldt, 2018). Then, interpretations of scores are most defensi-
bly used for a given purpose when bias is near zero and signal is over 70–80%. That 
said, this paper focuses only on the interpretation of scores as capturing the intended 
construct, so one cannot make clear conclusions about the validity of specific uses 
of scores because if specific interpretations of scores are not justifiable, then new 
interpretations of scores can be built to support those uses.4

Note that uncertainties in the causal explanation of the observed association 
between the three factors and scores lead, on occasion, to some portion of the vari-
ance in scores to be an unknown combination of signal and error. Figure 2 shows the 
results of this decomposition across the four discussed uses of scores. The variation 
in scores labelled “bias or signal” in identifying teachers for PD is the variability in 
scores associated with students. When this variability is driven by teachers’ choice 
in what to teach, this variability may be bias since teachers who are simply choos-
ing to not enact specific practices based on their belief in what is best for students 
may not benefit from skill-focused PD offerings. Otherwise, this variability is sig-
nal. The variation in scores labelled “random error or signal” for ensuring equitable 
access is driven by factors related to the instructional context. When this variation 
is associated with sampling errors, it is random error and when it is associated with 
true differences in the enacted curriculum across student sub-groups, it is signal. 

4 An example of a new interpretation includes arguing that it is not important to measure the rubric-
intended understanding of teaching quality, but that measuring raters’ idiosyncratic understandings of 
teaching quality is acceptable. In this case, the rater errors and biases might be understood as signal that 
represents raters’ idiosyncratic understandings of teaching quality (note that under this interpretation, 
scores are not necessarily comparable across or even within raters). A second example of a new inter-
pretation includes arguing that using scores has led to a specific positive impact, such that the further use 
of scores is justified regardless of what scores represent. Comparisons of scores are also not necessarily 
valid under this interpretation.
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For the employment decision use, variation in scores labelled “signal or bias” is the 
variability associated with between-school differences in scores and the between-
teacher variation in scores associated with student characteristics. If this is due to 
the systematic sorting of teachers within and across schools, it is signal; otherwise, 
it is bias (as this would imply teachers’ scores are dependent on the school within 
which they teach). For each of these cases where it is unclear whether scores are sig-
nal or bias/error, it would be, in principle, possible to adjust scores (using our proxy 
measures) to remove this variation. Such adjustments would remove this source of 
variation from scores completely. If this variation is signal, such a removal would 
introduce bias. If this variation is bias/error, such a removal would improve the qual-
ity of scores.5

The clearest pattern across the uses shown in Fig. 2 is that rater error, especially 
systematic types of rater error, is often quite large. The ensuring equitable access 
use assumes scores are aggregated across ten teachers, each of whom is observed 
in two lessons with two separate raters scoring (but each rater observing separate 
lessons). It is commonly accepted that aggregating scores across this many lessons 
and raters will lead to reliable scores (e.g., Kane et al., 2012). However, the analyses 
presented here show that when accounting for rater accuracy rather than just rater 
agreement and when distinguishing systematic versus non-systematic rater errors, 
rater biases can still make up more than 10% of the variation in scores and random 
error driven by raters can still make up more than 15% of the variation in scores. To 
our knowledge, this is the first article to explore score quality in terms of rater accu-
racy rather than rater agreement. The nature of this rater error, then, has important 
implications for the validity of all interpretations of observation scores, a point that 
we take up in the discussion.

A second important result shown in Fig. 2 is that a modest portion of scores, in 
many, but not all uses, are composed of variability that could be either useful signal 
or some form of error. For example, in the statewide program to identify and retain 
teachers with high skills, the variability in scores from ObsSys that is associated 
with student characteristics and between-school differences could be either signal or 
bias. It is bias if teachers’ scores are dependent upon the school that they teach in or 
the students that they teach. It is signal if the associations are driven by teacher sort-
ing (i.e., if there is no direct causal connection between students/schools and scores). 
This finding suggests that there is a real need to examine and study scores carefully 
to understand the degree to which each explanation fits, as this would be vital to 
determining the accuracy of interpretations of scores and help address questions of 
when to adjust scores to try to remove these sources of error/bias.

Last, the amount of signal and error in scores varies considerably across the dif-
ferent uses and across the two rubrics. The variation in scores that is signal ranges 

5 One could calculate the improvement in quality by readjusting percentages based on the amount of 
variation in scores removed. For example, 19% of the variation in scores is either Bias or Signal when 
CLASS scores are used for identifying teachers for professional development. Adjusting scores to 
remove this variation would remove this 19%, leaving 81% of the total variation in scores. Dividing the 
remaining percentages by 0.81 to bring the total variation back up to 100% would show the results for the 
adjusted scores under the assumption that the removed variation in scores was, in fact, error/bias.
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Fig. 2  Augmented GT theory results for each use of scores
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from 23 to 54% for CLASS scores and 23 to 45% for FFT scores. There is more var-
iation in the level of signal across the different interpretations of scores than across 
CLASS and FFT. Scores from ObsSys seem to be differentially valid based on dif-
ferent interpretations. The validity of any specific interpretation of scores must be 
carefully studied and explored if that interpretation is used to justify a score use. 
Preferably, this would be done with the data from the ObsSys being used through 
replicating the types of analyses conducted here using locally agreed-upon concep-
tualizations of teaching.

6  Discussion

This paper argued that uses of observation scores are often premised on inter-
preting observation scores as representing a specific construct (typically teach-
ing or teacher quality), as seen through the rubric’s lens. We argue for the need 
for users of ObsSys to (even more) explicitly define the intended interpretation 
of scores. This is because the validity of a use of observation scores is often 
justified (in part) through the interpretation of scores as representing a specific 
construct (i.e., interpretation for use; AERA, APA, & NCME, 2014) and differ-
ent uses imply different interpretations of scores. This paper’s results show that 
the quality of observation scores (i.e., the extent to which scores represent the 
intended construct) can vary widely across interpretations. In fact, we find more 
variation in the quality of scores across interpretations than across ObsSys. This 
does not downplay the importance of selecting an appropriate ObsSys but rather 
highlights the importance of interpretations.

The intended interpretation of scores determines whether the various con-
tributors to scores are either signal, error, or bias, which in turn determines the 
quality of scores. This is an important point for both research and practice, as 
it remains common practice to calculate overall summaries of the reliability 
and concurrent/predictive validity of observation scores, evaluating the quality 
of scores based on these standard summaries (e.g., Kane et  al., 2012; Panay-
ioutou et  al., 2021). The fallacy of relying on overall summaries of reliability 
and concurrent/predictive validity can be seen by examining differences in the 
quality of scores across this paper’s proposed interpretations, through research 
highlighting the impact of specific errors and biases on estimates of score reli-
ability/validity (e.g., van der Lans, 2018; White & Ronfeldt, 2022), and through 
modern validity theory’s emphasis on considering specific uses of scores (e.g., 
AERA, APA, & NCME, 2014; Brennan, 2001).

6.1  Using observation scores based on the proposed interpretations

None of the proposed interpretations of scores resulted in high-quality representa-
tions of the intended constructs (i.e., signal/reliability over 70%/0.7 and bias near 
0%). This is a more negative overall assessment of scores compared to past studies 
(e.g., Kane et al., 2012; Mantzicopoulos et al., 2018), but see Kelly et al., (2020). 



1 3

Educational Assessment, Evaluation and Accountability 

Our more negative assessment is driven by the fact (1) that we explored rater accu-
racy rather than rater agreement (which unearthed previously hidden types of rater 
error) and (2) that we identified additional sources of error and bias in scores by 
considering the relative contributions of students, teachers, and the instructional 
context in light of a specific intended interpretation of scores. This study, then, argu-
ably provides a more detailed and nuanced understanding of the quality of observa-
tion scores (for the proposed uses) than past studies.

While the generalizability of these empirical results should be examined (see 
discussion below), a strict interpretation of these findings would suggest that none 
of the suggested interpretations of scores is defensible. This does not, though, rule 
out using observation scores for the discussed (or other) uses but suggests the need 
to develop alternative interpretations of scores to support the proposed uses. Given 
the high levels of rater error, the most tempting interpretation would be to consider 
raters as providing their own, idiosyncratic judgement (i.e., reinterpreting scores as 
capturing raters’ understanding of teaching quality rather than the ObsSys’s under-
standing of teaching quality). This reinterprets rater error as capturing useful sig-
nal, transforming regions of rater error in Fig.  2 from error/bias to signal. This 
shift in the intended construct, though, would remove the comparability of scores 
across raters since such comparability is based on raters scoring the same construct. 
For example, for the use of “communicating a standard of practice and providing 
feedback to teachers,” interpreting scores as capturing raters’ unique perspectives 
implies that all of the variation in scores is signal but raises important questions 
about whether a clear standard of practice is being communicated since each rater 
has different understandings of this standard. In this way, through considering alter-
native interpretations of scores, readers can use Fig. 2 to reason about how the qual-
ity of scores shifts across interpretations. That said, readers are better off replicating 
analyses seen here in the local context of specific score uses, treating the results of 
this paper as a simple demonstration that observation score quality for specific inter-
pretations of scores could be quite low.

Another way of shifting the interpretation of scores would be through more care-
ful measurement. For example, when identifying teachers for a professional devel-
opment on leading discussions, observers can focus on observing lessons where 
teachers intend to lead discussions, removing the variation in scores labelled “bias 
or signal” and improving the overall quality of score interpretations by controlling 
for the factor of teachers’ choice in what to teach. The overall takeaway, then, is the 
importance of carefully considering the different sources of error and bias under a 
given interpretation of scores, which allows one to either plan for ways of control-
ling those sources of error and bias (e.g., through sampling lessons) or adjusting 
intended interpretations so that scores better represent the intended construct. Addi-
tionally, there is a need to replicate results in local settings.

6.2  Implications and meaning of rater error

This paper examined the extent to which observation scores can be interpreted as 
capturing the rubric-intended understanding of teaching quality. As noted previously, 
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under this interpretation, deviations between raters’ scores and the master scores are 
either error or bias. This accounts for most of the variation in observation scores. In 
some ways, this is surprising, as our focus on rater accuracy rather (than rater agree-
ment) identified important new sources of rater error that were hidden in past stud-
ies. That is, all raters score calibration data wrong in the same way. The high level 
of shared bias could be due to challenges in rater training, complexities in scoring 
calibration videos, ambiguities in the rubrics, etc. Of particular interest is whether 
this same error is present in other data sources or whether this is a strange quirk of 
the UTQ data. We have run similar analyses on the calibration data for the Measures 
of Effective Teaching (MET; Kane et al., 2012) data set (White & Ronfeldt, 2022), 
which found the same shared bias in calibration data across the 100 + MET raters, 
though the size of this shared rater effect was smaller than in the UTQ data. Rater 
error is likely worse when ObsSys are used by school systems (e.g., teacher evalu-
ation systems) because of a lack of training and monitoring of raters (Steinberg & 
Donaldson, 2016) and the multiple goals that administrators balance when assigning 
scores (Halverson et al., 2004), which likely leads scores to be less reflective of the 
intended vision of teaching quality (White & Ronfeldt, 2022).

For users of observation systems, the takeaway from the high observed level of 
rater error in this study and the high levels of rater error in past studies (e.g., Bell et al., 
2014; Halverson et al., 2004) is to interpret scores as capturing raters’ understanding 
of teaching quality (as provided through the observation rubric) rather than as captur-
ing the rubric-intended understanding of teaching quality. This limits how observa-
tion scores can be used, as scores are no longer comparable across raters under this 
interpretation (i.e., this interpretation assumes that raters apply idiosyncratic standards 
when scoring), but it likely represents the only defensible interpretation of scores, at 
least unless/until one can provide strong evidence that raters score accurately. Jus-
tifications for using scores, under this new interpretation, would have to rely on the 
observer’s ability to provide meaningful scores rather than how scores represent the 
rubric-intended understanding of teaching quality.

The apparent need to interpret observation scores as capturing only raters’ judge-
ments rather than the rubric-intended understanding of teaching quality raises impor-
tant questions about the need for ObsSys, as ObsSys are thought to be useful based on 
their ability to provide a common framework and language for understanding teaching 
(i.e., measuring the intended construct is a key argument for the usefulness of ObsSys; 
e.g., Bell et al., 2019; Klette, 2023). Further, as we have argued, we see little justifica-
tion for the high cost of adopting and implementing an ObsSys, except insofar as that 
ObsSys provide a useful lens for understanding teaching quality.

6.3  Statement on generalizability

As with every study, this study needs replication in other data sets, with other 
ObsSys, and in data from practice settings. The UTQ data comes from a 
research study that specifically hired and trained raters to provide scores (Casa-
bianca et al, 2015). Most uses of scores from ObsSys come from practice-based 
applications of ObsSys. We can make some predictions as to the differences that 
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would be expected when using scores from practice-based systems, namely rater 
error may be more problematic due to the weaker controls over rater error and 
scores may be less representative of the ObsSys’s intended vision of teaching 
quality due to the multiple goals administrators balance when assigning scores 
(Halverson et al., 2004; Steinberg & Donaldson, 2016). This would suggest that 
our results present an overly optimistic picture of the support the proposed inter-
pretations have.

Problematically, ObsSys in school settings often do not capture the sort of data 
necessary to replicate the analyses conducted here. Even the Network for Educator 
Effectiveness (Wind et al., 2018), which does more to explore the quality of scores 
than most practice-based settings, collects comparable scores from principals only 
outside of the school context, where principals are not balancing multiple goals 
when scoring. Such collection of data on score quality from non-typical scoring sit-
uations raises the risk that the conclusions about the quality of scores do not apply 
to the scores used in practice. Without a greater emphasis on collecting better data 
to explore the comparability of scores across settings and raters, the field is stuck 
extrapolating from research data like UTQ with little empirical evidence for the rea-
sonableness of such extrapolation. Where possible results here should be replicated 
in local settings.

7  Conclusion

The results of this paper highlight the importance of being explicit about the 
intended interpretation of observation scores and how these interpretations sup-
port specific uses of scores. It is only after establishing an intended interpretation of 
scores that the quality of scores can be properly interpreted since many factors con-
tribute to observation scores and each factor could be signal, error, or bias depend-
ing on the intended interpretation of scores. In fact, we found that the specific inter-
pretation of scores was more important for evaluating score quality than the ObsSys 
that were used. Across all interpretations, though, the analyses presented here raise 
cautions about interpreting observation scores as capturing anything other than 
raters’ idiosyncratic impressions of teaching quality. Comparisons of the research-
based data source used in this study and practice-based ObsSys, which often lack 
rater monitoring mechanisms (Steinberg & Donaldson, 2016), suggest that inter-
pretations of observation scores as capturing the rubric intended understanding of 
teaching quality are unlikely to be defensible. This implies that the validity argument 
supporting uses of scores may have to rely on interpretations of scores as reflect-
ing raters’ idiosyncratic impressions of teaching quality, though such conclusions 
should be replicated in practice-based settings. Importantly, these results should not 
be used to dismiss the use of ObsSys, as ObsSys could be justified through other 
interpretations of scores or the practical benefits of their use. However, the results 
here do suggest some healthy skepticism about claims that ObsSys accurately meas-
ure their intended understanding of teaching quality and validity arguments that rely 
(implicitly or explicitly) on such interpretations of scores.
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