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Abstract
This study investigates the relation between cold atmospheric pressure plasma (CAPP) 
effect on seeds and the plasma parameters. As a source of CAPP, the diffuse coplanar sur-
face barrier discharge (DCSBD) generated in nitrogen, ambient air, and oxygen at atmos-
pheric pressure was used. Results of germination and the level of DNA damage of soybean 
seeds (Glycine max L.) treated in plasma and plasma gaseous products showed that the 
most advantageous is the use of ambient air plasma treatment. The water contact angle 
(WCA) of samples treated directly in plasma was significantly smaller than that of samples 
treated with gaseous products. Using attenuated total reflectance Fourier transform infrared 
spectroscopy (ATR-FTIR), we did not observe significant changes between the spectra of 
individual samples, what indicates that there is no damage on the surface of the samples 
during the treatment, only the binding of polar groups. The method of optical emission 
spectroscopy (OES) and Fourier transform infrared spectroscopy (FTIR) were used to 
study the plasma parameters. The most radiant system observed in ambient air and nitrogen 
plasma is the second positive system of nitrogen N2

�

C3 ∏

u → B3 ∏

g

�

 . FTIR measure-
ments showed the presence of reactive oxygen and nitrogen species  O3,  NO2,  N2O, NO, 
 HNO2 depending on the working gas. Finally, it can be assumed that the positive effect of 
plasma on the seed is caused not only by the individual components of the plasma, but also 
by their synergistic effect, while the ratio of the individual active particles as well as the 
plasma exposure to the seeds are important.
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Introduction

Cold plasma (CP) generally represents a  good alternative way for treatment of thermo-
sensitive materials such as biological seeds to improve their properties. CP has different 
effects on seeds such as a disinfecting and sterilizing effect [1, 2]; improvement of germi-
nation, growth parameters and metabolism of plant seeds [3, 4]. Biological materials con-
sist of living cells; therefore, it is important to study the interaction of plasma with seeds 
from many aspects.

Currently, interest in research in the field of plasma applications in agriculture is grow-
ing rapidly, and many new publications are appearing. Since this work is focused on the 
study of the effect of cold atmospheric pressure plasma (CAPP) on soybean seeds, we pro-
vide an overview (Table 1) of the selected articles dealing with the influence of CAPP on 
legume seeds. The overview is aimed at improving germination, level of DNA damage 
of seeds, seed surface diagnostics and plasma diagnostics. To achieve a positive effect of 
plasma on the biological properties of seeds, there are several important parameters such as 
plasma exposure to the seed, the uniformity of its processing or the use of a suitable work-
ing gas and plasma source, as well as the properties of the generated plasma, especially its 
homogeneity and diffusivity. The results of the studies [5, 6] show that CAPP generated 
in ambient air is the most advantageous alternative for improving the properties of plant 
seeds. The plasma generated in the air contains several reactive oxygen and nitrogen spe-
cies (RONS), which play a significant role in the interaction with the biomaterial. In addi-
tion to the beneficial effect of plasma generated in the air on the biological properties of 
seeds, the simplicity of plasma processing is also an advantage. No vacuum equipment or 
special working gas is required.

To achieve several positive effects on the seed, the plasma treatment conditions must be 
selected with respect to all the desired plasma effects. Therefore, an important part of the 
research is the monitoring of all essential properties of seeds and plasma parameters. How-
ever, it is necessary to ensure that other properties are not negatively affected, which would 
significantly reduce the quality of the seed or the effectiveness of using plasma treatment in 
achieving the set goal. An important parameter studied from a food safety point of view is 
the level of possible DNA damage.

In addition to studying the effects of plasma on seed properties, seed and plasma diag-
nostics are also important. Physical processes, the influence of plasma components on the 
surface of the processed material can be studied by various physical surface diagnostic 
methods that characterize the surface of the material in detail. Changes in surface energy 
are analysed by measuring the water contact angle (WCA), the surface free energy (SFE), 
Fourier transform infrared spectroscopy with attenuated total reflectance (ATR-FTIR) or 
X-ray photoelectron spectroscopy (XPS) to study the chemical groups present on the sur-
face of the material and scanning electron microscopy (SEM) or atomic microscopy forces 
(AFM) to observe changes in the morphology of the surface of the studied material [7, 8].

The obtained results from the surface diagnostics should correlate with the characteris-
tics of the plasma; therefore, plasma diagnostics is an important part. Plasma diagnostics 
is essential for better understanding the mechanism of plasma impact on the seed surface 
and for controlling the safety of the plasma treated seeds. In general, diagnostic methods 
can be divided into electrical and optical diagnostics and corpuscular analysis [15]. The 
electrical method of plasma study is the measurement of volt-ampere characteristics, time 
development of current and voltage waveforms or frequency, which allows estimating 
the power supplied to the plasma. Optical diagnostics provides information about plasma 
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composition, temperatures and velocities or densities of various types of particles obtained 
by detecting radiation emitted from the plasma or radiation absorbed by the plasma. Elec-
trically charged particles (ions) can be detected and analysed by the corpuscular method 
based on the energetic or mass separation of particles under the influence of an electric or 
magnetic field. The choice of a suitable diagnostic method depends mainly on the plasma 
source and the working gas. As it is still not completely clear what mechanisms are respon-
sible for the positive effects of plasma on the seeds, this process needs to be thoroughly 
investigated. During the interaction of the plasma with the seed surface, several physical, 
chemical and biochemical factors are applied that participate in this process [16]. The sur-
face of the seed is a natural polymer that varies depending on the seed type, and the plasma 
is a mixture of various types of charged or neutral particles and radiation, so the interaction 
of the plasma with the seed surface is a very complex problem [17].

The physical factors that play a role in the interaction of plasma with the seed surface 
are heat, UV radiation and electromagnetic fields or mechanical disturbances that can 
induce further changes following this initial interaction. The results of the research so far 
[18–23] point to the hypothesis that the heat generated during the plasma burning does 
not significantly influence the characteristics of the seeds by itself. However, to a certain 
extent, it can contribute to improving the permeability of the seed coat. Manifesting the 
effect of UV radiation on seeds requires longer irradiation than the time of plasma treat-
ment, therefore it is assumed that UV radiation in plasma does not directly significantly 
affect the properties of the seed [16]. Electric field positively affects germination [24, 25], 
but also causes oxidative stress [26]. The magnetic field has a positive effect on the prob-
ability of germination or growth parameters and can also change the redox state of plants, 
probably due to an increase in hydrogen peroxide  (H2O2) concentration in the seed, by 
changing photosynthesis or alleviating drought stress or increasing mineral content [27, 
28]. Electromagnetic fields as well as UV radiation can also participate in the formation of 
RONS in the plasma, which participate in the interaction of the plasma with the seed [16]. 
Mechanical damage to the surface can lead to improved water absorption and subsequently 
to improved germination, but it is not yet clear whether the increased permeability occurs 
only due to mechanical changes on the seed surface, or whether it is a combination of 
mechanical and chemical mechanisms or a purely chemical effect [16]. The question is also 
whether the increased water absorption by the seed depends on the plasma treatment, the 
type of seed or both factors. At the detailed study of the seed surface, it was found that the 
lipid layers are subject to chemical oxidation [9, 29], the efficiency of which may depend 
on the concentration of individual types of reactive particles in the plasma. Oxygenic par-
ticles in the plasma highly oxidized the outer layers of quinoa seeds, and nitrogen species 
can be adsorbed [30]. Better absorption of nutrients (e.g. potassium) into the interior of the 
seed when in contact with water was also demonstrated after seed plasma treatment [31]. 
Thus, an important factor in plasma treatment is also the choice of a suitable working gas, 
which plays a role in the composition of the plasma. To improve germination, the presence 
of oxygen is necessary, and for better plant growth, the most effective gases are oxygen, 
nitric oxide, and nitrogen [32]. From the previous research on the effects of plasma on 
seeds, it appears that the main factor for achieving a positive effect of plasma treatment is 
the setting of optimal plasma parameters as well as the properties of plasma-treated seeds.

Despite the large number of works devoted to the given issue, it is still not clear enough 
how the mechanism of plasma effect on plant seed takes place. Therefore, our work is 
focused on investigating the connections between plasma parameters and effect of plasma 
treatment on seeds. Diffuse coplanar surface barrier discharge (DCSBD) was used as 
a source of CAP plasma, and soybean seeds as the object of plasma interaction. Plasma 
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effect on seeds depends on many factors as a plasma source, working gas, type of seed or 
plasma treatment time. In general, ambient air as a working gas is the most advantageous. 
In our experiments, ambient air, and oxygen and nitrogen as the main compounds of ambi-
ent air, were used as working gases for the better understanding the plasma-seed interaction 
mechanism in air plasma. Not only the plasma effect on the soybean seeds was studied, 
but also the effect of plasma gaseous products, without direct contact with active plasma 
area on seeds. Seed surface characteristics (WCA, ATR-FTIR spectra) as well as plasma 
parameters (composition of plasma gaseous products and plasma radiation, temperatures) 
were investigated.

Materials and Methods

Plasma Source

CAPP used in our experiments for treatment of different materials was generated by 
DCSBD discharge. The basis of the construction of the discharge is a pair of comb-
shaped parallel electrodes located in one plane under the surface of the dielectric 
 (Al2O3 with a purity of 96%) (Fig. 1a) [33, 34]. The electrodes are powered by high 
voltage (peak-to-peak 20  kV) with a frequency of ~ 15  kHz (HV generator VF 700, 
Lifetech, CZ) and isolated and cooled by dielectric oil flowing system. Thanks to the 
cooling of the electrodes, it is possible to ensure continuous burning of the discharge 
at room temperature and at the same time supply the electrodes with a high input 
power of up to 400 W. Typical voltage and current waveforms of a DCSBD plasma 
source burning in ambient air at an input power of 400 W and a frequency of 15 kHz, 

Fig. 1  a Scheme of DCSBD discharge configuration with electrodes situated below the surface of the die-
lectric, b Typical voltage and current waveforms of DCSBD plasma generated in ambient air at an input 
power of 400 W and a frequency of 15 kHz, c Soybean seeds putting in plasma of DCSBD, d Soybean seed 
in DCSBD plasma without the cover (left) and with the cover (right)
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measured with a Rogowsky ring (Pearson Electronic, model 4100) using two Tektronix 
P6015A high-voltage probes, recorded with a Tektronix TDS 2024B oscilloscope, are 
shown in Fig. 1b [35].

The DCSBD discharge formation mechanism is very complex and is influenced 
by several parameters such as electrode geometry, permittivity of the dielectric and 
coefficient of secondary emission of electrons from the dielectric, power supply, etc. 
[34]. The plasma covers the dielectric surface with a macroscopically homogeneous 
thin layer and is composed of many microdischarges. The active area of the plasma 
on the dielectric surface is (80 × 200)  mm2. Individual microdischarges are formed in 
the shape of the letter H and move rapidly along the surface of the dielectric along 
the electrodes. The formation of microdischarges in terms of size and intensity also 
depends on the used working gas. The homogeneity of the plasma increases with 
increasing supply voltage with the diffuse part of the discharge glowing more com-
pared to the filamentary part of the discharge. The effective thickness of the plasma 
layer in air was measured using a CCD camera and estimated to be approximately 
0.3 mm [33] and the volume plasma energy density to be on the order of 100 W/cm−3.

Plasma Treatment, Germination and DNA Damage

Soybean seeds (Glycine max L.) cv. Nížina, obtained from the Central Agricultural 
Inspection and Testing Institute in Bratislava, were treated in DCSBD plasma gener-
ated at atmospheric pressure in oxygen (O), ambient air (A) and nitrogen (N) at differ-
ent exposure times (30, 60, 90, 120 s) at the input power of 400 W.

After treating the seeds in plasma (see Fig. 1c), germination and a degree of DNA 
damage of plasma treated soybean seeds were evaluated. Total germination (germi-
nated seeds with at least 5 mm long seminal root), full germination 1 and 2 (germi-
nated seeds with seminal roots and at least 5  mm long hypocotyls) were calculated 
according to the formulas:

and the level of DNA damage was determined by Comet Assay [6]. The plasma seed 
treatment procedure and after-treatment experiments were described in more detail in 
the work [6]. The biological parameters were statistically evaluated using the ANOVA, 
where statistical significance was assigned to individual data using a one-step mul-
tiple comparison of the averages of the 95% LSD test. The statistical significance of 
the results in the graphs is indicated by different letters. When assessing the effect of 
plasma seed treatment, we compare not only changes in individual parameters based 
on the data, but also based on the statistical significance compared to the control.

total germination (% ) =
number of germinated seeds

number of seeds
.100%

full germination 1(% ) =
number of full germinated seeds

number of seeds
.100%

full germination 2(% ) =
number of full germinated seeds

number of germinated seeds
.100%
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Comparison of Plasma Treatment and Plasma Gaseous Products Treatment

An additional experiment represents the comparison of germination of plasma treated 
and DCSBD plasma gaseous products treated soybean seeds, without plasma radia-
tion. Soybean seeds were bought from the local supermarket. Seeds were treated in 
the plasma generated in air, by the means described upper in the part about the plasma 
treatment, and in the gaseous products generated by air DCSBD plasma. Treatment of 
the seeds in plasma gaseous products were realized behind the discharge in a small, 
closed dose with the input and the output of the plasma gaseous products (Fig. 2).

Ambient air from the compressor was carrying into the glass cover with the plasma at 
the flow rate of 3 L/min. Subsequently, the plasma gaseous products flowed through the 
closed dose with soybean seeds. The dose with seeds was moved manually for homoge-
neous treatments of the seeds. 30 seeds per one treatment was used and each variant was 
repeated three times with exposure times 20 and 30 s.

Seed Surface Diagnostics

Water Contact Angle

Changes in wettability of soybean seeds were evaluated by the measurement of the 
WCA. Drop Shape Analysis DSA30 (Krüss GmbH) connected to a computer with 
appropriate software for calculating the WCA was used. The measurements were taken 
immediately after the seed plasma treatment with exposures of 0, 60 and 120 s. A drop 
of distilled water with a volume of 2 μl was put onto the seeds surface using automatic 
system and consequently WCA was determined using the software for measurement the 
contact angle on curved surfaces. The resulting WCA were determined as the average of 
10 measurements corresponding to measurements on 10 samples of soybean seeds with 
statistical evaluation.

ATR‑FTIR Chemical changes on seeds surface caused by the plasma treatment were deter-
mined using attenuated total reflectance—FTIR spectroscopy (ATR-FTIR). For these sur-
face diagnostics, the spectrometer Bruker Optics Vector 22 with the additional device Pike 
MIRacle™ with the diamond crystal was used. Measurements were performed in the range 
(4000–500)  cm−1 using the spectrometer resolution of 4   cm−1 after the plasma treatment 
with exposures of 0, 60 and 120 s.

Fig. 2  Plasma gaseous products treatment of soybean seeds behind the DCSBD discharge
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Plasma Diagnostics

Optical Emission Spectroscopy

The optical emission spectra of the DCSBD plasma were measured using the experimen-
tal set-up illustrated in Fig. 3. Plasma was generated at the input power of 400 W inside 
the reactor chamber, through which the working gas (nitrogen, ambient air or oxygen) was 
flowing with a flow rate of 3 L/min. The radiation from the plasma passed through the 
quartz window on the top of the reactor chamber, the lens (f = 8 cm) and the aperture (hole 
with a diameter of 0.7 cm) into the optical fibre (Avantes FC-UV200-2-SR, F1000 UV–VIS 
SR) connected to the spectrometer. The distance of the lens from the ceramic surface and 
the fibre from the lens was ~ 8 cm. The aperture between the lens and the fibre was placed 
at a distance of ~ 4 cm from the lens. For spectrum measurements, two types of spectrom-
eters (AvaSpec-2048 TEC (Thermo-Electric-Cooled) with the range of ~ (300–400) nm and 
the resolution of 20 px/nm and StellarNet EP 2000 with the range of ~ (200–1100) nm and 
the resolution of 2 px/nm) were used. The radiation from the plasma was collected from 
the plasma volume in the shape of a cone with a circular base on the dielectric surface with 
a diameter of ~ 1.5 cm.

From the measured optical emission spectra, we subsequently determined systems emit-
ted in the plasma and calculated vibrational and rotational temperatures of the plasma. To 
estimate the vibrational temperatures, the program Spectrum Analyzer 1.8 [36], which cal-
culates the temperatures from the relative intensities of the peaks, was used. The rotational 
temperatures were determined by comparing the shape of the peaks in the measured spec-
trum with the peaks of the simulated spectra in the Specair 3.0 program [37].

Fourier Transform Infrared Spectroscopy

The composition of plasma gaseous products and its concentrations were determined using 
FTIR spectroscopy according to the experimental set-up in Fig. 4. As in the case of optical 
emission spectroscopy, DCSBD plasma was generated at the input power of 400 W inside 
the reactor chamber, through which the working gas (nitrogen, ambient air or oxygen) was 
flowing with a flow rate of 3 L/min. Plasma gaseous products were detected at the reactor 
outlet. The plasma gaseous products from the reactor were carried out through an approxi-
mately 50 cm long connecting tube into a glass cuvette located in a Bruker Optics Vector 
22 FTIR spectrometer. The cuvette with a length of 10 cm and a volume of 31  cm3 was 
equipped with germanium windows through which the infrared beam passed in the FTIR 

Fig. 3  Experimental apparatus 
for optical emission spectroscopy 
of DCSBD plasma: 1—gas input, 
2—chamber, 3—plasma, 4—gas 
output, 5—quartz glass, 6—lens, 
7—aperture, 8—attachment of 
the fibre, 9—optical fibre, 10—
spectrometer, 11—computer
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spectrometer. Measurements were performed in the range (4000–500)  cm−1 using the spec-
trometer resolution of 2  cm−1. The molecules present in gaseous products of plasma were 
identified from the measured FTIR spectra.

Results and Discussion

Germination and DNA Damage

An example of 5-day old soybean seedlings (after 5 days from the beginning of cultiva-
tion) is illustrated in Fig. 5. Since in the case of nitrogen plasma (variants 90 and 120 s) the 
seedlings germinated very poorly, they are not included in the picture.

The results of testing the germination percentage of soybean seeds (Fig. 6) after plasma 
treatment showed the greatest increase in the N60 and O30 variants. Long exposure to 
nitrogen and oxygen plasma (variants N90, N120 and O120) negatively affected the ger-
mination percentage of soybean seeds (in N120 variant, the decrease in germination was 

Fig. 4  Experimental apparatus for FTIR spectroscopy of gaseous products of DCSBD plasma: 1—gas 
input, 2—chamber, 3—plasma, 4—plasma gaseous product output into the cuvette, 5—cuvette, 6—spec-
trometer, 7—gas output from the cuvette, 8—computer.

C O30 O60 O90 O120 A30 A60 A90 A120  N30 N60

Fig. 5  Five-day-old soybean seedlings grown from seeds treated in nitrogen (N30, N60), ambient air (A30, 
A60, A90, A120) and oxygen (O30, O60, O90, O120) DCSBD plasma at different treatment times (30, 60, 
90, 120 s) and at input power of 400 W. C—control (soybean seedling without plasma treatment)
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almost threefold). A slight increase was observed in air plasma (variants A30, A60), oxy-
gen plasma (O60, O90) and nitrogen plasma (variant N30), but these positive changes in 
germination were not statistically significant compared to the untreated control (C). More 
detail results about plasma regulation of soybean seeds germination it can be found in the 
work of Švubová et al. [6].

Study of the DNA damage (Fig. 7) showed a different degree of DNA damage of soy-
bean sprouts depending on the plasma treatment conditions. The soybeans without plasma 
treatment were used as a negative control (NC) and soybeans treated with zeocin (a radi-
omimetic that creates breaks in DNA) as a positive control (PC). In the case of plasma 
treatment in air, DNA damage was at the level of NC at A30 and slightly increased at 
A60, A90 and A120. Seed treatment in oxygen plasma caused DNA damage at the level 
of air plasma except for O60, where DNA damage was higher. Nitrogen plasma caused the 
greatest DNA damage at both N30 and N60. DNA damage detected by the alkaline comet 
test is a primary DNA damage in the form of single- and double-strand breaks [38]. Typi-
cally, DNA breaks can be repaired relatively quickly by triggering repair mechanisms in 
the plant as a spontaneous response to its damage [39]. However, under excessive stress, 
repair mechanisms of plant cells are saturated and primary DNA damage persists and can 
lead to cell death [40]. Based on this, nitrogen plasma likely induced such severe stress that 
resulted in higher levels of DNA damage in soybean sprouts and probably led to inhibited 
germination of the N120 variant (Fig. 6). Nonetheless, the DNA damage detected by the 
comet assay could be repaired and do not have any lasting adverse effects on the plant 
organism, as was observed in the variants treated with air or oxygen plasma and at lower 
exposures of nitrogen plasma. Similar results were obtained in previous studies on pea [5, 
41], barley [42] and soybean [6] seeds in which lower plasma exposures that induce pri-
mary DNA damage have no or even beneficial effects on seed germination. The higher 
levels of DNA damage in the N30 and N60 variants were likely due to the higher dose of 
UV radiation and specific amounts of reactive particles in nitrogen plasma [5] that could 
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Fig. 6  Germination of soybean seeds before and after plasma treatment depending on the working gas and 
duration of plasma treatment. C—control (germination of soybean seeds without a plasma treatment). N30, 
N60, N90, N120—germination of soybean seeds treated in nitrogen plasma at 30, 60, 90, 120 s. A30, A60, 
A90, A120—germination of soybean seeds treated in ambient air plasma at 30, 60, 90, 120 s. O30, O60, 
O90, O120—germination of soybean seeds treated in oxygen plasma at 30, 60, 90, 120 s
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attack DNA strands, leading to the formation of DNA breaks [43] detectable in the comet 
assay. Kyzek et al. [44] found that plasma treatment of seeds can even reduce DNA dam-
age caused by zeocin. Thus, organisms are probably able to handle even the slightly higher 
levels of DNA damage detected by the comet assay.

Germination of Plasma Treated and Plasma Gaseous Products Treated Soybean 
Seeds

In Fig. 8, we demonstrate the results of an additional experiment where we evaluated the 
effect of plasma gaseous products (PGP) and plasma (P) treatment in ambient air (A) on 
soybean seeds germination. Our results showed that plasma gaseous products and plasma 
treatment in exposition 20 s appear to slightly stimulate total soybean seed germination. 
After recalculating the full germination 1 (full germinated seeds/number of seeds) and 2 
(full germinated seeds/number of germinated seeds), we can conclude that variants P A20 
and PGP A20 had a markedly positive (increase about 20%) effect on the monitored param-
eters compared to the untreated control (C).

Seed Surface Diagnostics

The WCA measurements on soybean seeds surface showed a significant reduction of 
contact angles values in case of plasma treatment compared to the reference sample 
(sample with the treatment time 0 s) (Fig. 9a). The values of WCA for different working 
gases were similar. Slight changes were also noticed after the plasma gaseous products 
treatment of soybean seeds (Fig. 9b). While the WCA after the nitrogen plasma gaseous 
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Fig. 7  Degree of DNA damage of three-day-old soybean seedlings before and after plasma treatment 
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products treatment slightly decreased, the oxygen plasma gaseous products slightly 
improved the values of WCA. The WCA of the soybean seeds samples treated in the 
gaseous products of the ambient air plasma varies at the level of the control sample. 
Decreasing the contact angle is a consequence of increasing hydrophilicity of the sam-
ple surface and in contrast increasing contact angle reflects increasing hydrophobicity. 
Improved hydrophilicity leads to higher water absorption by the seed, which can result 
in improved seed germination and growth parameters, however, at higher plasma doses, 
water absorption is increased to such an extent that can lead to inhibition of germination 
or suffocation of the embryo [6].
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total germination full germinated
seeds/number of seeds

full germinated
seeds/number of germinated

seeds

%
C PGP A20 PGP A30 P A20 P A30

Fig. 8  Germination of soybean seeds: C—germination of untreated seeds; P A20, P A30—germination 
of seeds treated in atmospheric pressure ambient air plasma at 400 W with the exposure of 20 and 30 s; 
PGP A20, PGP A30—germination of seeds treated in gaseous products of atmospheric pressure ambient air 
plasma at 400 W with the exposure of 20 and 30 s.

Fig. 9  Water Contact angles of soybean seeds: a treated in DCSBD plasma generated in nitrogen, ambient 
air and oxygen at 400 W, b treated in gaseous products of DCSBD plasma generated in nitrogen, ambient 
air and oxygen at 400 W
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The chemical groups present on the soybean seed surface were identified using ATR-
FTIR method. The ATR-FTIR spectra (Fig. 10) showed the presence of compounds typical 
for legumes: polysaccharides characterised by the bonds C–O, C–C, C–OH and glycosidic 
bond ((1200–800)  cm−1), lipids represented by the C-H bonds ((3000–2800)  cm−1 and 
(1460–1400)  cm−1) and proteins (amid I—1640   cm−1, amid II—1530   cm−1, amid III—
1235  cm−1; N–H—3280  cm−1) [45–49]. Peak in the region of (3500–3000)  cm−1 belongs 
to the valency vibrations of O–H [45, 46]. Deformation vibrations of bound water is shown 
at 1640  cm−1 [45, 50]. In the spectra of the samples after plasma treatment or plasma gase-
ous products treatment, any changes, that would indicate the destruction of the basic chem-
ical bonds belonging to the components forming the soybean seed coat, were not observed.

Plasma Diagnostics

Optical emission spectroscopy measurements of DCSBD plasma showed that plasma radi-
ation is dominant in UV–VIS range of wavelength ~ (300–400) nm. As we can see in 
Fig. 11, the presence of individual radiative systems in the plasma depends on the working 
gas used in plasma generation. The most intensive system observed in DCSBD plasma 
generated in nitrogen and ambient air is the second positive system of nitrogen 
N2
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 . Molecular bands of NO
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 system, the first negative system of 

nitrogen N+
2
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)

 were 
also observed. Optical emission spectra also showed the presence of atomic nitrogen N in 
nitrogen plasma and atomic oxygen O in oxygen plasma. Vibrational (Tvib) and rotational 
(Trot) temperatures calculated from the second positive system of nitrogen  N2(C-B) are 
shown in the Table 2. Significant difference between Tvib and Trot reflects the non-equilib-
rium character of the DCSBD plasma.

By measuring the FTIR spectra of gaseous products of the DCSBD discharge plasma 
at the outlet of the reactor, various RONS such as  O3,  N2O,  NO2, NO, and  HNO2 were 
detected. The presence of individual molecules in the plasma depends on the working gas 
(Fig. 12). Gaseous product of oxygen plasma was ozone molecule observed with the maxi-
mum of the peaks at 3055  cm−1, 2122  cm−1, 1124  cm−1, 1053  cm−1 and 716  cm−1. Ambi-
ent air plasma gaseous products were composed from nitrogen dioxide  NO2 (2918  cm−1, 
1628   cm−1), nitrous oxide  N2O (2236   cm−1, 1298   cm−1), nitric oxide NO (around 
1875  cm−1) and nitrous acid  HNO2 (1698  cm−1, 1264  cm−1, 852  cm−1, 791  cm−1). FTIR 
measurements of plasma gaseous products of nitrogen plasma did not show the presence of 
any molecules. To improve germination, the presence of oxygen is necessary, and for better 
plant growth, the most effective gases are oxygen, nitric oxide and nitrogen [32].

Most studies show that RONS present in plasma, whose formation and concentration 
depend on the working gas used, are the dominant factors responsible for the positive effect 
of plasma on plant growth [16]. However, it is not clear whether this effect is caused by 
reactive oxygen species (ROS), reactive nitrogen species (RNS) or a synergistic effect of 
several plasma components.

Nitrogen plasma is characterized by a high dose of UV radiation, but it can also con-
tain other reactive particles in low concentrations, which are not detectable by the used 

Fig. 10  ATR-FTIR spectra from the soybean seeds surface of untreated seeds, plasma treated, and plasma 
gaseous products treated soybean seeds. Working gas is a nitrogen, b ambient air, c oxygen. Ref. belongs to 
the sample without the treatment

▸
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Fig. 11  OES spectra of DCSBD plasma generated in nitrogen, ambient air and oxygen at an input power of 
400 W

Table 2  Vibrational (Tvib) and 
rotational (Trot) temperatures of 
DCSBD plasma generated in 
nitrogen, ambient air and oxygen 
at the input power of 400 W

Working gas Tvib (K) Trot (K)

Nitrogen 2150 ± 55 380 ± 30 K
Ambient air 2610 ± 225 385 ± 30 K
Oxygen – –
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Fig. 12  FTIR spectra of gaseous products of DCSBD plasma generated in nitrogen, ambient air and oxygen 
at an input power of 400 W
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methods. From the comparison with the results of soybean germination, it can be assumed 
that UV radiation can have a positive effect on the seed, however in a high dose (longer 
plasma exposure time) it has a negative effect. Since the DNA damage of soybean 
increases with the increasing amount of nitrogen in the working gas, it can be assumed that 
it is caused by UV radiation, since its intensity increases with the increasing proportion of 
nitrogen. This negative effect of UV radiation as well as reactive oxygen species on DNA 
is also confirmed by the work [5]. As it was more deeply investigated in the work [5], a 
longer time of plasma treatment of pea seeds (180 and 300 s) in pure nitrogen plasma with 
the most intense UV radiation leads to higher production of ROS (˙O2

− and  H2O2) inside 
the pea seed and thus causes oxidative stress and subsequently DNA damage.

A large amount of ozone, which is highly reactive and has strong oxidizing effects, was 
observed in the plasma generated in oxygen. In connection with the results of soybean ger-
mination, we could conclude that ozone improves these properties positively with shorter 
plasma treatment times (especially 30  s, but also 60 and 90  s), however negatively with 
longer exposure of the plasma to the seed (120 s). As it is illustrated by Fig. 9b, exposure 
to gaseous products of oxygen, i.e. mainly ozone, only a slight increase in value of WCA 
was shown which correspond to an improvement in the hydrophobicity of the seed sur-
face. Therefore, in oxygen plasma the improvement of germination is not related to the 
improvement of surface hydrophilicity, but it would be caused probably by the penetrating 
of ozone and other reactive gaseous products into the seeds and influencing the biochemi-
cal processes.

Plasma generated in ambient air mainly contains nitrogen oxides  NO2 and  N2O as well 
as UV radiation. Since the air plasma does not cause a negative effect on germination at 
the exposure times we used, it can be assumed that the intensity and duration of the UV 
radiation does not cause deterioration of the seed properties in this case. On the other 
hand, in addition to UV radiation, RONS generated in the plasma can also contribute to the 
improvement of germination.

Conclusion

This work was aimed on better understanding the mechanism of the plasma interaction 
with soybean seeds surface. The study was focused on the plasma effect on germination of 
soybean seeds and the level of DNA damage. Results showed that the germination is the 
best in the case of O30 and N60 and then A30, O60 and N30. DNA damage is the lowest in 
A30. Finally, we can state that the most advantageous is the using of ambient air plasma 
treatment what confirms our previous studies. For better understanding the plasma effect 
on seeds, it is important to study plasma compounds and its effect on seeds. Therefore, the 
experiments where the soybean seeds were treated only in plasma gaseous products with-
out UV radiation were realized. It can be concluded that plasma as well as plasma gaseous 
products applicated in short (20 s −30 s) interval had a positive effect on the full seed ger-
mination. The WCA of soybean seeds treated directly in plasma was significantly smaller 
than that of samples treated with gaseous products. Thus, we can state that plasma gaseous 
products are not directly responsible for increasing hydrophilicity caused by plasma treat-
ment. ATR-FTIR measurement indicates that there is no damage on the surface of the sam-
ples during the treatment, only the binding of polar groups. Using OES, we identified that 
the most radiant system observed in ambient air and nitrogen plasma is the second positive 
system of nitrogen N2

�

C3 ∏

u → B3 ∏

g

�

 which corresponds the most with UVA region 
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((315–400) nm). Significant difference between  Tvib and  Trot reflects the non-equilibrium 
character of the DCSBD plasma. FTIR measurement showed the presence of RONS 
(mainly  O3,  NO2,  N2O, NO,  HNO2) in the plasma, which play a role in plasma interaction 
process with seeds.

Finally, from the results, it can be assumed that the positive effect of plasma on the seed 
is not caused only by the individual components of the plasma, but also by their synergistic 
effect, while the ratio of the individual active compounds as well as the duration of the 
action are important. Of course, it should be considered that the differences in the effect of 
plasma on the surface of different types of plant seeds are also affected by the type of seed, 
its size, hardness, and other surface properties.
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