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Abstract
The dynamic behaviors of prebiotic reaction networks may be critically important to 
understanding how larger biopolymers could emerge, despite being unfavorable to form in 
water. We focus on understanding the dynamics of simple systems, prior to the emergence 
of replication mechanisms, and what role they may have played in biopolymer formation. 
We specifically consider the dynamics in cyclic environments using both model and exper-
imental data. Cyclic environmental conditions prevent a system from reaching thermody-
namic equilibrium, improving the chance of observing interesting kinetic behaviors. We 
used an approximate kinetic model to simulate the dynamics of trimetaphosphate (TP)-
activated peptide formation from glycine in cyclic wet-dry conditions. The model predicts 
that environmental cycling allows trimer and tetramer peptides to sustain concentrations 
above the predicted fixed points of the model due to overshoot, a dynamic phenomenon. 
Our experiments demonstrate that oscillatory environments can shift product distributions 
in favor of longer peptides. However, experimental validation of certain behaviors in the 
kinetic model is challenging, considering that open systems with cyclic environmental con-
ditions break many of the common assumptions in classical chemical kinetics. Overall, our 
results suggest that the dynamics of simple peptide reaction networks in cyclic environ-
ments may have been important for the formation of longer polymers on the early Earth. 
Similar phenomena may have also contributed to the emergence of reaction networks with 
product distributions determined not by thermodynamics, but rather by kinetics.
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Introduction

How organic monomers developed into polymers capable of replication, metabolism, and 
other key behaviors of life remains unknown. Repeated reactions, such as those produced 
from cycling a sample between wet and dry conditions, can promote the formation of more 
complex molecules (Lahav and Chang 1976; Ross and Deamer 2016), but also tend to 
produce intractable tars that would be unlikely to support continuous replication (Shapiro 
2000). Life-like behavior probably emerged in at least partially open systems that were 
able to exchange materials and energy with their environment (Wagner et al. 2019; Baum 
2018). Open systems allow fresh reactants to be supplied while removing side products 
from previous reactions. Removing products from a system can also decrease the overall 
system complexity by favoring products that form quickly, potentially avoiding the forma-
tion of tars and supporting the proliferation of catalytic or autocatalytic reactions (Martin 
and Horvath 2013; Colón‐Santos et al. 2019). Experiments with open systems have been 
performed using various mixtures of organic molecules (Lahav et  al. 1978; Maio et  al. 
2021; Bartolucci et al. 2022), and some have suggested the possible emergence of function, 
though the details of those functions remain ambiguous (Doran et al. 2019; Vincent et al. 
2019). Some dynamic phenomena, such as sustained oscillations, are only thermodynami-
cally possible in open systems (Wagner et al. 2019).

Another significant feature of open systems in the origins of life is that they can remain 
away from thermodynamic equilibrium indefinitely. One of the hallmarks of a life-like 
system is that it should remain out of equilibrium with its environment, meaning that life 
almost certainly originated in far-from-equilibrium conditions (Eigen and Schuster 1977; 
Pross 2003; Pascal et al. 2013; Mamajanov et al. 2014). The kinetic behavior of systems 
which are far from equilibrium may have provided the driving force necessary for the 
emergence of organization from an unordered system (Prigogine 1978; Astumian 2019). 
Chemical reaction networks in far-from-equilibrium conditions may exhibit overshoot, a 
dynamic phenomenon in which a species passes through its equilibrium point one or more 
times before actually reaching it (Jia et  al. 2014). Overshoot is a kinetically driven phe-
nomena and has been associated with the ability of biochemical systems to recover their 
original state after a perturbation (Jia and Qian 2016; Ma et al. 2009).

Nonlinear dynamics can emerge in relatively simple chemical reaction networks and 
lead to complex behaviors in open or partially open systems (Epstein and Showalter 1996), 
but these behaviors have not been extensively explored to evaluate their significance to the 
chemical origins of life. Computational models of replenished systems have been inves-
tigated, but many of the existing models either assume the presence of an autocatalytic 
network, are deliberately vague about the identities of the molecules and mechanisms 
involved, or both (Kindermann 2005; Walker et al. 2012; Wynveen et al. 2014; Peng et al. 
2020). The inclusion of chemical replicators increases the diversity of potential dynamics 
in a model system, but these approaches gloss over the question of how chemical replica-
tors arose in the first place.

Here we will discuss the possible significance of open-system dynamics that can arise 
in chemical networks prior to the emergence of catalysis or autocatalysis. We examined the 
kinetic behavior in fed batch systems of glycine polymerizing into oligoglycine through a 
combination of wet-dry cycles and activation by trimetaphosphate (TP), an inorganic phos-
phate that significantly enhances peptide bond formation across a wide range of environmen-
tal conditions (Sibilska et al. 2018). Using parameters fitted from experimental data, a sim-
plified mass-action based ordinary differential equation (ODE) model predicts the emergence 
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of overshoot in this open system. We explored the effect that cycling between two different 
reaction mechanisms had on the system dynamics and compared model results to experi-
ments. The experimental results support the idea that oscillations can alter the selectivity to 
favor certain products. However, our work highlights the difficulty of evaluating kinetics in 
open systems, specifically where reactions are driven by drying into the solid state.

Methods

Experimental Methods

We performed several cyclic, multi-day experiments to compare with model predictions. 
Samples were prepared as 1 mL samples containing 0.1 M glycine, 0.1 M TP, and 0.15 M 
NaOH, and heated with the caps open at 90 °C for 24-h intervals. Since reaction rate param-
eters depend on the environment, we kept the initial conditions of each cycle as close to those 
conditions as possible; this required keeping the trimetaphosphate and base conditions close to 
their initial conditions, since they are not explicitly included in the model. To maintain these 
conditions without causing continuous accumulation of TP, base, or their byproducts, we used 
an iterative strategy, recreating samples using peptide standards to match the concentrations 
measured after each cycle (Fig. 1a). This ensured complete replacement of TP and base. To 
keep the amino acid to TP ratio constant, we also adjusted the total glycine species balance 
with each cycle by adding glycine monomers to compensate for any glycine lost to side prod-
ucts, such as 2,5-diketopiperazine or glycine oligomers with a length of seven or above, which 
we did not quantify. Although this may underestimate the significance of side-products, this 
experimental setup adheres most rigorously to the assumptions of the model.

Compartmentalization or adherence to solid surfaces can allow some molecules to be 
diluted less rapidly than others in an open system, but complete removal of waste and 
replacement of activating molecules, as occurs in iterative replenishment, is probably too 
idealized to be physically realistic in an origins of life context. Therefore, we also per-
formed a set of experiments using batch replenishment, in which the reaction products 
from one cycle were directly transferred into the subsequent cycle (Fig. 1b). This process is 
a discontinuous analog of what would occur in a continuously stirred tank reactor (CSTR), 
where side-products from reactions can build up over time. This approach to replenishment 
is a more realistic representation of flow in open systems insofar as we might expect all the 
molecules to be equally affected by the flow rate.

For the batch replenishment experiments, all samples were initially 1 mL samples and 
contained 0.1 M glycine, 0.1 M TP, and 0.15 M NaOH. Samples were heated at 90 °C with 
the caps open for 24 h to allow them to dry, then rehydrated with 1 mL water and vortexed 
until the solid was fully dissolved. The term ‘replenishment rate’ refers to the percentage 
of fresh material that is replaced in each subsequent cycle; for example, a 75% replenish-
ment rate indicates that 250 μL of the dissolved reaction product is transferred to the next 
generation, and 750 μL of a solution of 0.1 M glycine, 0.1 M TP, and 0.15 M NaOH solu-
tion is added. In practice, the glycine, TP, and NaOH solutions were stored separately and 
mixed only during the preparation of the subsequent cycles to prevent them from reacting 
in storage. We compared the results of multiple replenishment rates – 50%, 75%, and 90%.

All samples were analyzed using fluorenylmethyloxycarbonyl chloride (FMOC) derivati-
zation and high-performance liquid chromatography (UV-HPLC) for improved retention and 
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quantitation, as in our previous work (Boigenzahn and Yin 2022; Boigenzahn et al. 2023). 
FMOC derivatization was used to improve the retention time and signal strength of the pep-
tide analytes. For the FMOC derivatization procedure, 25 μL of sample was diluted with 75 
μL milliQ water and mixed with 100 μL 0.1 M sodium tetraborate, which acted as a buffer. 
Finally, 800 μL 0.0391 M FMOC dissolved in acetone was added to each sample, equating 
to 25% excess FMOC to possible amino acid.

Between cyclic transfers and prior to derivatization, samples were vortexed at maxi-
mum speed until there were no visible solids remaining (Pulsing Vortex Mixer, Fis-
cher Scientific), usually approximately two minutes. pH was measured using an Apera 
Instruments PH8500-MS Portable pH microelectrode. For the batch replenishment sam-
ples, the pH at the start of each heating cycle was measured using duplicate samples 
prepared from the remaining material after the volume needed for HPLC analysis and 
transfer to subsequent generations was removed. Since a small amount of sample tends 
to stay on the pH probe due to surface tension, the use of duplicate samples prevented 
effects due to volume changes.

Fig. 1  Methods of experimental replenishment
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Derivatized samples were analyzed using a Shimadzu Nexera HPLC with a C-18 col-
umn (Phenomenex Aeris XB-C18, 250  mm × 4.6  mm, 3.6μL) and quantified using cali-
bration curves generated from laboratory standards (Supplemental Section 1). All analysis 
was carried out using Solvent A: milliQ water with 0.01 v/v trifluoroacetic acid (TFA) and 
Solvent B: acetonitrile with 0.01% v/v TFA. Replenished samples with serial transfer were 
analyzed using the following gradient: 0–3 min, 30% B; 3–16 min, 30–100% B, 16–19 min, 
100% B; 19–21 min, 100–30% B; 21–24 min, 30% B. Iteratively recreated samples were 
analyzed using the following gradient for improved resolution of  G6: 0–3  min, 30% B; 
3–16 min, 30–70% B, 16–19 min, 70% B; 19–21 min, 70–30% B; 21–24 min, 30% B. The 
solvent flow rate was 1 mL/min. Peak integration was performed in LabSolutions with the 
‘Drift’ parameter set to 1000.

Materials

All materials were of analytical grade purity and used without additional purification. 
Materials were obtained from the following suppliers: Glycine and triglycine  (G3) from 
Alfa Aesar (Heysham, LA3 2XY, England), diglycine, TP and TFA from Sigma-Aldrich 
(St. Louis, MO, USA), tetraglycine  (G4), pentaglycine  (G5), and hexaglycine  (G6) from 
Bachem (Torrance, CA, USA), acetone and sodium hydroxide from Fisher Scientific (Fair 
Lawn, NJ, USA), acetonitrile from VWR International (Radnor, PA, USA), and FMOC 
from Creosalus (Louisville, KY, USA).

Model Formulation

Peptide concentrations were modeled using mass-action ordinary differential equations 
(ODEs) for four reversible reactions that describe how a single amino acid (glycine) forms 
peptides of up to four amino acids in length (Scheme 1). Although we observed and quan-
tified  G5 and  G6 in our experiments, their empirical concentrations are low during the 
time frame that used to estimate parameters for the network, so we chose to exclude them 
and instead focus on species that could be clearly quantified (Boigenzahn and Yin 2022). 
Parameters were estimated from experimental data according to the procedure outlined in 
(Boigenzahn et al. 2023). As in Boigenzahn et al. (2023), the effects of volume change due 
to drying and the presence of any reaction intermediates were excluded for simplicity.

Scheme 1  Reaction network for 
peptide formation and hydrolysis. 
ODEs and parameters are detailed 
in Supplemental Section 2



162 H. Boigenzahn et al.

1 3

In Boigenzahn and Yin (2022), we described two mechanisms of trimetaphosphate (TP) 
activated peptide formation, which are differentially dependent on pH and water activity. 
We fit two sets of parameters to the network in Scheme  1, representing the two differ-
ent reaction mechanisms. Briefly, Mechanism 1 occurs in alkaline conditions and proceeds 
readily in water (Chung et al. 1971), and Mechanism 2 occurs in neutral conditions and 
proceeds as the sample approaches the solid state due to drying (Yamanaka et al. 1988). 
Mechanism 1 lowers the pH of the samples when it occurs, so samples containing amino 
acids and TP dried in alkaline conditions naturally transition from Mechanism 1 to Mecha-
nism 2. This transition can be used to explore how environmental oscillations can alter 
kinetic behavior within a reaction network. The code and data for this manuscript can be 
found at https:// github. com/ haboi genza hn/ Cyclic- Envir onmen ts.

Initial Parameter Estimation

To estimate parameters for each mechanism, we selected experimental data in which one 
mechanism strongly dominated over the other. The parameters for Mechanism 1 were gener-
ated based on 8-h time courses obtained from 0.1 M glycine or 0.05 M diglycine (GG) heated 
at 90 °C with 0.1 M trimetaphosphate and 0.15 M base without drying (closed caps). Addi-
tional data came from the first four hours of equivalent experiments that were allowed to dry 
(open caps), since during the early stages of drying there is still bulk water present such that 
Mechanism 1 dominates (Boigenzahn and Yin 2022). Finally, to predict behavior in second and 
subsequent drying cycles while minimizing the number of experiments required, we included 
peptide concentrations from the first four hours of only the first day of iterative experiments. 
We deliberately kept the time span of the training data relatively short so that later experimental 
cycles could be used to assess the predictive accuracy of the model.

The parameters for Mechanism 2 were estimated from 0.1 M glycine and 0.1 M TP with 
and without 0.15 M base, starting after the samples had been drying for 4 h and including 
the next 20 h. Additional results from samples of 0.1 M glycine dried with 0.1 M TP and 
0.15 M base were prepared and measured after 4 h of heating in 24-h intervals for up to 
72 h to improve the long-term estimates of Mechanism 2. Finally, several measurements 
from the first day of the iterative experiments were also taken after the first four hours of 
heating and included in the training data for Mechanism 2. The specific fitted parameter 
values for Mechanism 1 and Mechanism 2 are detailed in Supplemental Section 2.

Results and Discussion

To evaluate the accuracy of the model predictions using separate parameters for Mecha-
nism 1 and Mechanism 2, we compared the predictions to peptide concentration profiles 
measured in Boigenzahn and Yin (2022) (Fig. 2). We used the assumption that Mechanism 
1 occurred during the first 4 h and Mechanism 2 accounted for the following 20 h after 
verifying the timing of this transition by testing parameters fit to alternative timings (Sup-
plemental Section 3). Although the model tended to slightly underestimate peptide forma-
tion, we determined that this could be interpreted as a conservative estimate of the rates of 
polymer formation, and was acceptable for the behaviors we were aiming to explore.

https://github.com/haboigenzahn/Cyclic-Environments
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We used these parameters to model peptide formation in a cyclic environment and 
observed that for certain combinations of parameters and initial conditions, the average 
yield of the longer glycine polymers exceeded the ‘thermodynamic equilibrium’ pre-
dicted by the fitted parameters of either mechanism (Fig. 3). It should be noted that the 
model system was formulated with the same structure as mass action kinetics models 
and each parameterized model inherently has a fixed-point attractor, or a state which the 
system approaches as time approaches infinity. In an ideal mass action kinetics system, 
the attractor is equivalent to the concentrations of the species at thermodynamic equi-
librium. However, since the reference model is not a true mass-action representation of 
the system, we will henceforth use the term ‘attractor’ when referring to the steady state 
solutions to the model system; this allows us to distinguish the mathematical predictions  
from the simplified model from concepts of true thermodynamic equilibrium.

Many simple chemical reactions exhibit monotonic kinetics in all species. In such sys-
tems, the maximum yield of each species is limited by the level of the attractor. In the 
system predicted by our model,  G3 and  G4 surpass the attractor of both Mechanism 1 
and Mechanism 2 due to a dynamic phenomenon called overshoot. Overshoot is a non-
monotonic behavior which occurs in a wide variety of systems, including biological and 
man-made control networks (Ogata 1995; Jia et al. 2014; Chen et al. 2016). Systems with 
overshooting kinetics will eventually return to the attractor, however, in this example the 
environmental cycling between the two mechanisms cause overshoot to occur repeatedly.

Fig. 2  Comparison of two-step model to analogous experimental data. Experimental data is from Boigenzahn 
and Yin (2022)
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Mathematical Definition of Overshoot

Consider a high-dimensional system with many chemical species. Overshoot occurs when 
a system passes through the coordinates of its stable point in any dimension before the 
stable point is reached. For a mathematical definition of overshoot, consider a dynamical 
system whose state at time t is given by a vector of real numbers x(t) such that

where F(x) is the rate vector for the system. Assume the system has at least one stable 
fixed-point x , such that

Starting from an initial condition in the vicinity of the fixed point x(0) , the system over-
shoots in dimension j if there exists a time t ∈ (0,∞) for which the state at t is further away 
from but lies in the same direction of the fixed point as the initial condition,

(1)
dx

dt
= F(x)

(2)F
(
x
)
= 0.

(3)
|||
xj(0) − x

j

|||
<
|||
xj(t) − x

j

|||
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(
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j
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(
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Fig. 3  Cycling conditions where the average yield of  G3 and  G4 at steady state exceeds the value of the 
attractor due to overshoot. The model is initialized with 0.1 M G. The approach of each mechanism to its 
attractor in a non-cyclic system is shown for comparison. The cyclic trajectory alternates between 4 h of 
Mechanism 1 and 20 h of Mechanism 2. Parameters are estimated from experimental data
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This characterization provides a straightforward algorithm for determining if a dynami-
cal system is capable of overshooting in any direction around a stable fixed point. First, 
discretely sample a small sphere centered around the stable fixed point. Then from each 
point on the sphere, integrate the dynamical system backwards in time and track the dis-
tance of the state from the fixed point. If the maximum distance is not monotonic in any 
dimension, then the system overshoots.

Significance of Overshoot

It should also be noted that whether overshoot occurs in an experimental system can be 
restricted by thermodynamics. All reactions still must obey the Second Law of Thermody-
namics, so systems which are close to thermodynamic equilibrium will rarely overshoot. 
Overshoot requires a system to be under kinetic control, which is more likely in systems 
which are further from equilibrium (Epstein and Showalter 1996).

Overshoot depends on the kinetic reaction network and initial conditions of a system. 
In the example with alternating mechanisms shown in Fig. 3, Mechanism 2 approaches its 
attractor monotonically for a system initialized with pure glycine monomer, but the forma-
tion of diglycine by Mechanism 1 creates initial conditions where Mechanism 2 tends to 
overshoot  G3 and  G4. One factor is that Mechanism 1 hydrolyzes some of the longer poly-
mers produced, but also generates more GG. Repeated cycles of Mechanism 1 and Mecha-
nism 2 in a 24-h pattern created a dynamic steady state for which the average yields of  G3 
and  G4 exceed the predicted attractor values for either mechanism. We also found that for 
some initial conditions, this behavior was possible using a single reaction mechanism with 
batch replenishment. This demonstrates that these dynamics can occur within a single reac-
tion mechanism, though there still needs to be oscillations (Supplemental Section 4).

To understand why it is significant that the longer species exceed the system attrac-
tors, it is useful to revisit the perspective of thermodynamic equilibrium. The formation of 
longer peptides in water is thermodynamically limited (Ross and Deamer 2016). Allowing 
samples to dry favors polymerization, but the lack of molecular mobility in the dry state 
limits the potential for long-term reactions. Overshoot provides an explanation for how sys-
tems subjected to wet-dry cycling drying could not only form and maintain populations 
of longer polymers, but could also exhibit selectivity, since the distribution of polymers 
formed depends on the reaction kinetics and the timing of the cycles. Species that form 
quickly can more easily recover from dilution or hydrolysis. In many cases there may be an 
‘optimal’ cycle timing, or resonance time, for each species, which maximizes the yield of a 
species of interest (Haugerud et al. 2023).

Repeated overshoot can allow a system to remain away from its predicted attractor 
for long periods of time, and may help provide the dynamic, non-equilibrium conditions 
that have been proposed as being critical for the origin of life (Pross 2011; Pascal et al. 
2013). Therefore, overshoot and far-from-equilibrium conditions may be mutually reinforc-
ing: overshoot pushes systems away from their attractor and alters system compositions, 
creating the potential for the system to experience overshoot again. These paired behav-
iors could begin to move the system towards a regime of kinetic control, in which product 
compositions are influenced more heavily by reaction rates than by product energy levels. 
Autocatalysis, one of the essential features of a life-like system, is an example of a behav-
ior which is strongly under kinetic control (Pross 2003).
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Overshoot has been observed in multiple experimental systems containing designed 
peptide replicators (Dadon et al. 2015; Miao et al. 2021). Similar dynamics have also been 
linked to the emergence of biochemical adaptation, which refers to the ability of a system 
to return to its original state after an environmental perturbation (Jia et al. 2014; Ma et al. 
2009; François and Siggia 2008). It is interesting that our simple system of just four revers-
ible reactions shows qualitatively similar behavior to these much more complex cases.

Experimental Comparison

Since the kinetic parameters estimated for Mechanism 1 and Mechanism 2 were primarily 
based on short term data, we wanted to determine how accurately the model captured the 
long-term behavior of the system. Therefore, we performed experiments to evaluate the 
capacity of the kinetic model to make predictions about the yields in multi-day experi-
ments. We sought to identify potential signs of nonlinear dynamics, which may include 
features like non-monotonic concentration profiles, sigmoidal growth, or evidence of mul-
tiple steady states.

Due to the various simplifications included in the model formulation, we used the 
iterative replenishment approach to replicate the model assumptions as closely as possi-
ble. While the method is somewhat contrived, it has the advantage of eliminating as many 
known confounding variables as possible to facilitate the comparison of the model and the 
experimental data. Variables not included in the model that might impact the reactivity of 
the system included the concentrations of TP, base, and orthophosphate side products.

There was reasonably good agreement between the model predictions and the experi-
mental results, especially the final yields of the peptides (Fig. 4). Significantly more  G4 
forms during the first few cycles than the model predicts (Fig. 4d), but the model underes-
timating the yield of  G4 is consistent with the results of the training data (Fig. 2). However, 
there are some discrepancies between the first few days of the model trajectories and the 
experimental results. These discrepancies could be the result of inaccuracies in parame-
ter estimation, experimental variance, or a consequence of confounding variables such as 
those caused by drying or the formation of longer polymers in the system.

One noteworthy discrepancy is that the experimentally measured maximum yield of GG 
and  G3 occurs after two days, then the yield drops in subsequent days, which is not pre-
dicted by the model (Fig. 4b, c). These experimental trajectories are notable since a non-
monotonic result would not be expected from systems with monotonic underlying kinetics. 
Non-monotonic trajectories like those observed in GG and  G3 can occur in species that are 
initially overshooting, but the overshoot is damped and decreases as the reaction cycles 
progress. However, damped overshoot behavior was not predicted by the model. Although 
GG and  G3 appear to slightly exceed their eventual final yields then gradually drop in con-
centration, this is not necessarily experimental evidence of overshoot.

Although we can evaluate the accuracy of the model and look for evidence of nonlinear 
dynamics, we cannot confirm the existence or absence of overshoot in the experimental 
system. Maintaining repeated overshoot relative to a mathematically predicted attractor 
requires an open system, but in practice overshoot is not well defined for open systems, 
since there is no experimentally measurable point which is equivalent to the attractor. In 
closed systems, the attractor represents the thermodynamic equilibrium of the system, 
but open systems violate a key principle of equilibrium, namely that there cannot be any 
exchange of energy or mass with the environment.
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Instead, the real systems reach a dynamic steady state, in which the overall species concen-
trations remain constant from cycle to cycle, but there are bonds which form and break during 
each cycle. This state may have been a precursor to the emergence of dynamic kinetic stability, 
a concept introduced by Pross to describe the behavior of systems of replicators which maintain 
their population while experiencing a continuous flux of energy (Pross 2009).

Ideally, evidence of overshoot might be found experimentally by allowing Mechanism 2 to 
continue and looking for evidence of non-monotonic behavior. However, simply allowing the 
system to continue heating indefinitely would not result in the continuation of Mechanism 2 
with its estimated rate constants, since those parameters were estimated primarily using data 
from samples likely still contained some residual water. It is therefore unsurprising that experi-
ments which were continuously heated did not show non-monotonic behavior (Fig. 5), since 
once the samples were completely dry, they were unlikely to undergo any significant hydrolysis.

When comparing the steady states reached by the iteratively cycled experiments to 
those of non-cycled experiments, we found the iterative experiments had higher yields of 
 G4, but lower yields of  G3 (Fig. 5c, d). This supports the idea that cyclic environmental 
conditions can select for certain species over others. This type of selectivity is interesting 
because it is driven primarily by kinetics, with the actual thermodynamic stability of each 
species playing a secondary role. This type of behavior may contribute to the ability of 
some chemical reaction networks to move away from thermodynamic equilibrium within 
their local environment, even in the absence of chemical replicators. Further experiments 

Fig. 4  Comparison of experimental and model results for 7 days. Plots show concentrations for a glycine, 
b diglycine, c triglycine, and d tetraglycine. Experimental data was generated using the iterative approach. 
Models use an initial condition of 0.1 M Gly. Error bars represent the sample standard deviation of experi-
mental triplicates
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using different replenishment procedures, such as varying the cycle timing to study how it 
affects selectivity, may produce valuable insights. It may also be possible to observe addi-
tional kinetic effects by diluting a species relative to the others with each cycle, creating 
artificial pressure against it.

Complete Replenishment

Since the iteratively recreated experiments are not entirely physically realistic owing 
to the complete removal of waste and replacement of food without any dilution of the 
desired products, we also investigated the behavior of the system using replenishment 
conditions in which a portion of the dissolved products from the previous cycle are 
transferred and replaced with fresh reactants, as shown in Fig. 1b. We examined three 
different replenishment rates, or three different fractions of products to be transferred 
from sample to sample and compared them to one another. This method creates a trade-
off between the costs and benefits of dilution and replenishment. High replenishment 
rates have high dilution rates, so less of the product formed in previous cycles is trans-
ferred into subsequent generations. Low replenishment rates transfer more previously 
formed products, but have limited access to fresh reactants, which is detrimental when 
the reactants include activating agents, like TP, that are needed for reactions to occur. 

Fig. 5  Replenishment affects species selectivity. Plots show concentrations for a glycine, b diglycine, c tri-
glycine, and d  tetraglycine. Samples carried out using iterative replenishment have higher yields of  G4, 
while samples that were continuously dried have higher yields of  G3. Samples were analyzed at the end of 
each 24-h cycle
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Since the model does not include the effects of reduced TP or base, it predicts higher 
peptide yields for lower replenishment rates (Supplemental Section 5).

However, when we tried these tests experimentally, we found that the opposite was 
true; higher replenishment rates had higher peptide yields (Fig. 6). This implies that the 
yield per drying is not limited by the availability of oligopeptides, but by the pH and 
concentration of TP. The difference in initial pH is particularly significant because it 
determines whether both reaction mechanisms occur during drying. There are two fac-
tors which change the pH of the samples between the initial setup and the subsequent 
replenishment steps. First, less base is added during the replenishment cycles than was 
added during the initial setup, since the samples are only replenished with a fraction 
of their original reactants. Second, some phosphate byproducts from the TP reactions 
are transferred between cycles, which changes the buffering capacity of the samples. 
The initial pH of the samples was 10.78 ± 0.06, and the pH of the samples at the start 
of the first cycle was 9.72 ± 0.06 for 90% replenishment, 9.24 ± 0.15 for 75% replenish-
ment and 7.01 ± 0.01 for 50% replenishment (Supplemental Section  6). Mechanism 1 
requires the deprotonated amine groups, and the pH at which most of the amine groups 
are deprotonated for glycine is 9.60. Therefore, we expect to see reduced GG formation 
when the initial pH of the solution is significantly below that point. This likely explains 
why samples with 75% replenishment have disproportionately lower GG formation than 
samples with 90% replenishment relative to the difference in their initial pH.

Fig. 6  Higher replenishment rates have higher peptide yields in replenished systems with serial transfer. 
Replenishment percentages indicate how much of the sample was replaced with fresh reactant mixture each 
day. Each data set is normalized relative to the results from the first day
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Although it has a less profound impact on the underlying reaction mechanism, peptide 
yields tend to decrease when the amino acid-to-TP ratio is less than equimolar (Supplemen-
tal Section 7), so the availability of TP likely also contributes lowering peptide yields at 
lower replenishment rates. This is likely to pose a challenge in any systems which include 
activating agents that are consumed. It is still theoretically possible for these systems to 
accumulate higher peptide concentrations even when the activating agent is only partially 
replaced; for example, a system with slow reverse kinetics whose forward rate constants 
were minimally impacted by the presence of side products could potentially accumulate 
polymers despite having less available activating agent after the first cycle. However, in 
many cases the combination of decreased reactivity and sample dilution is difficult to over-
come, which causes the yields of longer products at steady state to be lower than their 
yields after one reaction cycle.

Activating materials that act as catalysts, like solid surfaces or metal salts, may help 
maintain a more constant reactivity in replenished systems since they are not depleted after 
the first cycle (Bujdák et al. 1995; Erastova et al. 2017). However, even with reusable acti-
vating agents, recursive reactions can be inhibited by waste products that are never fully 
removed. Thus, there is significant interest in methods that selectively retain certain prod-
ucts while removing most other materials. Realistic scenarios that have been suggested to 
produce this behavior include absorption onto mineral surfaces or containment in coac-
ervates (Bedoin et  al. 2020; Fares et  al. 2020). These scenarios allow cycling of energy 
sources and waste products without equal dilution of biopolymers.

Given the number of possible scenarios, thorough experimental design of replenish-
ments can be a difficult task. Moreover, the fact that kinetic reaction networks may be 
highly nonlinear means that relatively minor differences in experimental design may have 
significant consequences for the product distribution. Fully understanding the details of 
how system members interact with one another and with the environment is often chal-
lenging and may not currently be possible for some complex systems. Approximations of 
system behavior can be useful but need to be applied carefully. Despite these difficulties, 
it is worthwhile to develop an understanding of the dynamics of short monomers and their 
biopolymers undergo hydrolysis and condensation reactions, as these interactions must 
have been involved in the origins of long, functional biopolymers such as enzymes.

Conclusion

Although the dynamics of chemical reaction networks prior to the emergence of repli-
cating chemical systems have not been extensively explored, they may provide valuable 
insights into how biopolymer systems begin to develop complex behaviors. The behaviors 
of open systems, which are consistently held away from equilibrium and therefore heavily 
influenced by kinetics, are of particular interest. However, studying chemical reaction net-
works in an open system can be challenging because environmental changes can make the 
results more difficult to interpret and experimental variables such as the method and rate 
of replenishment, as well as the cycle timing, which can greatly expand the experimental 
parameter space. As we have shown, despite these challenges, interesting behaviors can be 
captured using simple experimental systems paired with kinetic models.

We found that a simple ODE model of glycine polymerization using parameters fit from 
experimental data displayed overshoot, a dynamic phenomenon in which a species passes 
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through its attractor in some dimension at least once before reaching it. Simulated environ-
mental cycles that alternated between two reaction mechanisms resulted in yields of trim-
ers and tetramers that were well above the calculated attractors of the two reaction mecha-
nisms involved. Since equilibrium as represented by the attractors is not defined for an 
open system, we were unable to look for overshoot directly, but iterative experiments found 
relatively good agreement between the model and experimental results. It is noteworthy 
that different experimental cycling conditions indicate the possibility of species selectiv-
ity. These findings illustrate that even simple reaction networks, when pushed by repeated 
environmental changes, can start showing kinetic control, which is an important feature of 
reactions in life-like systems. Future modeling and experimental studies of non-linear reac-
tion systems in open environments, thus, seem critical to help us understand the origins of 
complex, life-like dynamics in chemical reaction networks.
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