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Abstract
We study a very simple linear evolutionary model based on distribution of protocells by 
total enantiomeric excess and without any mutual inhibition and show that such model 
can produce two species with values of total enantiomeric excess in each of the species 
approaching ±1 when there is a global L ↔ D symmetry. We then consider a scenario 
when there is a small external global asymmetry factor, like weak interaction, and show 
that only one of the species remains in such a case, and that is the one, which is more 
efficient in replication. We perform an estimate of the time necessary to reach homochiral-
ity in such a model and show that reasonable assumptions lead to an estimate of around 
300 thousand years plus or minus a couple of orders of magnitude. Despite this seemingly 
large time to reach homochirality, the model is immune to racemization because amino 
acids in the model follow the lifespan of the protocells rather than the time needed to reach 
homochirality. We show that not needing mutual inhibition in such evolutionary model is 
due to the difference in the topology of the spaces in which considered model and many 
known models of biological homochirality operate. Bifurcation-based models operate in 
disconnected zero-dimensional space (the space is just two points with enantiomeric excess 
equal −1 and 1 ), whereas considered evolutionary model (in its continuous representation) 
operates in one-dimensional connected space, that is the whole interval between −1 and 1 
of total enantiomeric excess. We then proceed with the analysis of the replication process 
in non-homochiral environment and show that replication errors (the probability to attach 
an amino acid of wrong chirality) result in a smooth decrease of replication time when total 
enantiomeric excess of the replicated structure moves away from zero. We show that this 
decrease in replication time is sufficient for considered model to work.

Keywords Molecular evolution · Chiral symmetry breaking · Replication with errors

Introduction

Chiral symmetry breaking in Life or why all living organisms are built from L amino acids 
and D sugars has been the subject of active academic research for the last about 150 years 
since the discovery of enantiomers. Many theories have been considered over the years and 
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many outstanding reviews of these matters have been written, for example: Frank 1953; Joyce 
et  al. 1984; Kondepudi et  al. 1985; Kauffman 1986; Avetisov and Goldanskii 1996; Steel 
2000; Sandars 2003; Plasson et al. 2004; Saito and Hyuga 2004; Wattis and Coveney 2005; 
Weissbuch et al. 2005; Brandenburg et al. 2007; Plasson et al. 2007; Gleiser et al. 2008; van 
der Meijden et al. 2009; Karfi et al. 2010; Noorduin et al. 2010; Blackmond 2011; Blanco 
and Hochberg 2011; Hordijk et al. 2011; Coveney et al. 2012; Hein et al. 2012; Ribó et al. 
2013; Sczepanski and Joyce 2014; Higgs and Lehman 2015, Brandenburg 2019, Hawbaker 
and Blackmond 2019; Konstantinov and Konstantinova 2018, 2020, Martínez et al. 2022. It 
is also often mentioned that chiral symmetry breaking requires far from equilibrium systems 
(Kondepudi and Nelson 1983; Plasson et al. 2007) and, in fact, some of the works considered 
how temporary chiral symmetry breaking occurs in specially prepared far from equilibrium 
systems (Blanco and Hochberg 2011). A good example of autocatalytic reaction producing 
large enantiomeric excess is Soai reaction (Soai et al. 1995), where large enantiomeric excess 
of 5-pyrimidyl alkanol is achieved from a small initial imbalance.

Many models of chiral symmetry breaking utilize some form of autocatalysis coupled 
with mutual inhibition. This can be traced back to Frank’s model (Frank 1953) and its vari-
ous further extensions (Sandars 2003; Wattis and Coveney 2005; Karfi et al. 2010; Blanco 
and Hochberg 2011, Buhse and Micheau 2022). However, such mutual inhibition is a very 
energy expensive process, especially when complex organic structures are involved. If 
applied to some complex organic structures, then we would rather call the process, as in 
Frank’s model, a “fierce competition” to illustrate the fact that two opposite organic struc-
tures have to “die off” to make it work. There are also some other models, which utilize 
different approaches (Kauffman 1986; Steel 2000; Hordijk et al. 2011). However, the most 
interesting point is that organic life operates on a slightly different set of reactions.

To start, synthesis of amino acids in organic life produces only left amino acids, whereas 
a catalytic synthesis of amino acids is bound by enantioselectivity of catalysts and cannot 
be 100%. This is due to the energy differences between catalytic reactions with two enanti-
omer catalysts and the estimates of enantioselectivity ( �c ) of such catalysts are from around 
�c ≈ 0.2 to 0.75 (Gellman and Ernst 2018) to as high as �c ≈ 0.95 (Cherney et. al. 2015). 
However, organic life reaches nearly perfect 100%. To achieve such perfect enantioselec-
tivity in synthesis of amino acids organic life requires approximately from 12 to 74 high-
energy phosphate bods per amino acid molecule (Akashi and Gojobori 2002). That means 
that such synthesis can no longer be called purely catalytic because the energy is spent dur-
ing such reactions. We can call it catalytic synthesis with energy consumption to distinguish 
from just catalytic synthesis. This has very deep consequences. To start from, a catalyst can-
not change the equilibrium due to thermodynamic constraints. In addition, a catalyst cannot 
be 100% enantioselective, as mentioned above. And so, if organic life used purely catalytic 
synthesis of amino acids, then it would have produced some noticeable amounts of right 
amino acids and it would have just faster produced some thermodynamically equilibrium 
state. But it does neither of that. Spending energy during synthesis of amino acids allows 
organic life to produce the result, which is far from thermodynamic equilibrium.

Second, once amino acids are made, the next crucial step of organic life is peptide syn-
thesis or, to be more precise, a directed peptide synthesis, where peptides are synthesized as 
needed rather than at random. It is an energetically unfavorable process and so a concentra-
tion of even random peptides would form a decreasing geometric progression in the absence 
of energy inflow. However, peptides of any needed length and needed, non-random constitu-
tion are synthesized by all living organisms. Again, organic life uses energy to synthesize 
peptides that it needs, and some simple unicellular life forms could use substantial portion 
of their energy budget on that process. The result is also shifted far from the thermodynamic 
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equilibrium by consuming energy. Similar to the terminology above, we can call such reac-
tions ligation with energy consumption.

Third, all living organisms possess the ability to discard what they don’t need. To main-
tain a chiral state, they must constantly decrease the entropy inside them. This is achieved 
by changing whatever can be properly changed inside the organisms and removing what-
ever cannot be and then discarding that into the environment. Probably one of the simplest 
examples is a sodium–potassium pump, discovered in 1957 by Jens Christian Skou (Skou 
1957). The pump consumes energy from ATP and pushes sodium out from the region of 
lower concentration into the region of higher concentration and captures potassium from 
the region of lower concentration into the region of higher concentration, both of which 
are against diffusion. This is also achieved by spending energy. We can call such reactions 
as destruction with energy consumption. Given that prebiotic “soup” did not yet have cell 
boundaries, discarding whatever was not needed could only happen in one of two ways: 
releasing some gas into the atmosphere or forming some sediment, which would fall into 
the ocean floor.

Fourth, as the chemical systems consist of finite number of molecules, that results in 
stochastic behavior in chemical kinetics (e.g., McQuarrie 1967; Gillespie 1992, 2007). 
Differential equations, which are often used to describe chemical kinetics, including the 
reactions used to study chiral symmetry breaking, cannot describe that stochasticity. Sub-
sequently, the scenarios, which consider transition through a bifurcation point, need to per-
form some additional statistical analysis to determine if chiral symmetry breaking could be 
directed or random in the presence of some global asymmetry factor (e.g., Kondepudi and 
Nelson 1985).

In addition, as discussed in detail in Konstantinov and Konstantinova 2020, all mod-
els of chiral symmetry breaking, which considered a very limited set of reactions, rely on 
some favorable set of parameters to make the models work. However, since the number of 
substances and reactions on prebiotic Earth were extremely large, that requires that models 
should statistically result in chiral symmetry breaking rather than rely on some specifically 
chosen parameters.

The situation changes drastically when protocells started to appear. The most impor-
tant part there was the appearance of closed boundary between protocells and the environ-
ment. The boundary substantially decreased diffusion between the inside and the outside of 
protocells, and that allowed synthesizing something inside protocells without letting hard 
to synthesize (at that time) organic parts get lost in the immense amounts of surrounding 
water, e.g., Monnard and Walde 2015. From another point, as the number of molecules in 
a protocell was many orders of magnitude smaller than total number of molecules in the 
primordial soup, stochastic fluctuations inside protocells were far more substantial than in 
the surrounding environment.

Finally, even many modern unicellular organisms do not participate in a “fierce compe-
tition” as required in Frank’s model or similar models. Rather, they simply coexist and the 
only competition that they have is in consumption of food and / or other resources. And 
it is even more questionable to imagine “fierce competition” on a prebiotic Earth when 
organic structures were much simpler than now and had much less ability to capture and 
use low-entropy energy. It is therefore interesting and challenging to try explaining how 
chiral symmetry breaking could occur on a prebiotic Earth under the following conditions:

• The number of substances and reactions was extremely large and, therefore, effective 
averaging of enantioselectivity rules out “favorable” choices of reaction rates.
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• Given that organic life operates in far from thermodynamic equilibrium state, low-
entropy energy storage and consumption must be taken into account.

• Greatly increased stochasticity of chemical reactions inside the protocells should be 
considered.

• It seems important to explain chiral symmetry breaking without using “fierce competition”.
• The question whether chiral symmetry breaking was directed or just by a pure chance 

should be answered.

Evolution of Protocells Without Competition

In the current work we would like to consider a half-way from chemistry to biology and 
that is consider a very simple model of protocells: there is no biology yet, but the chemistry 
is already complicated enough. We can take a view that a protocell is a relatively simple 
and small open system capable of storing and processing low entropy energy (e.g., sun-
light) and which is also capable of producing a near copies of itself. In fact, the need for 
energy in the process of transitioning from chemical to biological evolution is explicitly or 
implicitly discussed in many works, e.g., Plasson and Brandenburg 2010, Dibrova et. al. 
2012. A protocell has some kind of a closed boundary, which substantially hinders diffu-
sion-like processes between the inside and the outside of the protocell. Some experiments 
(Bahadur 1964; Gupta 2014) showed that such small structures with closed boundaries can 
appear under relatively simple conditions.

A reasonable assumption then is that the prebiotic soup should have been close to ther-
modynamic equilibrium as a whole when the protocell boundaries started to close and 
actually did form the protocells. This is since diffusion would spread out any substantial 
irregularities including the ones related to the energy inflow when there were no bounda-
ries. Once the boundaries of the protocells were closed and diffusion between the inside 
and the outside slowed down substantially, then further evolution inside protocells could 
become dependent on energy transformations.

We can further look at a protocell as a black box, which consumes some “food” and 
low-entropy energy out of the environment and produces another protocell. This looks 
nearly identical to catalytic synthesis reactions except that a new protocell does not have 
to be an exact copy of the original one. We shall note that this is one of the points where 
enantiomeric excess can change in the system. Therefore, we can write:

where X is some achiral food (e.g., CO
2
 ), U is a “catalyzing” protocell, U′ is a new pro-

tocell, and we assumed that n molecules of food are needed to create one protocell. The 
Eq. (1) assumes that all amino acid needed for a new protocell are synthesized only inside 
the original protocell. The real process is much more complicated, and the protocells come 
in different sizes and types. However, even this simplified consideration is sufficient for the 
model to work.

Since the number of amino acids, including the ones inside the protocell is finite, all 
“internal” reactions, which result in the replication in Eq. (1), are subject to statistical fluc-
tuations. This impact of finiteness, which, in turn, results in stochastic evolution of chemi-
cal systems, is well known (see, e.g., Gillespie 1992). Here it results in the change of enan-
tiomeric excess in the new protocell, which we can call mutations. This illustrates the fact 
that finiteness alone is sufficient to explain such mutations in protocells.

(1)n X + U → U + U�
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We can further model that protocells just “die off” without any mutual inhibition as:

where W is some “waste”. This is another point where enantiomeric excess can change in 
the system because all chiral amino acids are considered as completely lost in this process.

To complete the model, we then need to either “recycle” the “waste” or assume that 
there is a nearly infinite amount of food. The latter was the case of CO

2
 on a prebiotic 

Earth. However, even though the amount of CO
2
 was nearly infinite, there are always some 

other constraints that limit the growth of organic systems and therefore models, which 
recycle the waste instead of considering an infinite amount of food seem to be more appro-
priate. The equation for that can be written as:

The smallest unicellular organisms known today contain on the order of (1 to 100) × 10
12 

atoms. However, primordial protocells were very likely much smaller than that, though it 
is hard to estimate what could have been their size. We can take the reported minimum 
size of experimentally obtained by Gupta and Rai 2013 protocell-like particles of about 
d ≈ 0.5�m in diameter as a starting point. Assuming pw ≈ 70% water (and non-amino 
acids) content and 

(
1 − pw

)
≈ 30% amino acid content and using average amino acid den-

sity �a ≈ 1.3 g∕ml , average molar mass ma ≈ 110 g∕mol , we can estimate the number of 
amino acids n in such reported protocells-like particles as:

where NA is the Avogadro number. Even if primordial protocells had a few orders of mag-
nitude less amino acids, this number is still large enough to replace summations needed 
when dealing with discreet variables by integrations. And this significantly simplifies the 
consideration without introducing too large errors, except certain cases, which we consider 
below. Then we can write the kinetics of Eqs. (1) and (2) as:

where �X(t) is the concentration of the “food” substance X at time t , U(�, t) describes the 
concentration of protocells with total enantiomeric excess � at time t , K

(
�, �

′
)
 is the rate 

coefficient at which U
(
�
′

, t
)
 can produce U(�, t) and �

0
 is the decay rate, which we assumed 

here as independent on � for simplicity.
There should be also a linear term corresponding to a spontaneous initial formation of 

protocells:

However, this process can be safely considered as very slow. Therefore, we can ignore it 
and consider that the system evolves from some very small initial fluctuation U(�, 0) cre-
ated by that linear process. This initial fluctuation U(�, 0) should be some narrow peak cen-
tered around � = 0 with a standard deviation �

0
≈

1√
n
 , Plasson and Brandenburg 2010, 

because the prebiotic soup was close to thermodynamic equilibrium as a whole.

(2)U → W

(3)W → n X

(4)n ∼

4�

3

(
d

2

)3(
1 − pw

)
�aNA

ma

≈ 1.4 × 10
8

(5)
dU(�, t)

dt
= �X(t)

n

1

∫
−1

K
(
�, �

�
)
U
(
�
�

, t
)
d�

�

− �
0
U(�, t)

(6)n X → U
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The changes in X and W can be written as:

and

where s is the “recycling” rate.
We can look at the stationary point of these equations when dU(�,t)

dt
= 0 . Then we can 

rewrite Eq. (5) as:

where � =
�
0

�X
n
 , U(�) ≡ U

0
u(�) and u(�) is L

2
 normalized so that:

This is an eigenvalue problem for Fredholm integral operator of the first kind. The 
eigenvalues �i determine stationary concentration of �X and eigenvectors ui(�) . The largest 
value of �i corresponds to the smallest concentration of and it is therefore the one toward 
which the system should evolve. All eigenvectors are orthonormal, and they form a basis 
on the interval [−1, 1]:

where �ij is Kronecker delta symbol.
To show that the system evolves toward eigenvector with the highest eigenvalue, we can 

decompose the distribution of protocells at any moment t into ui(�):

where Ai(t)  is the amplitude of i-th eigenvector at time t and it can be determined using 
orthonormality condition:

Then multiplying Eq. (5) by ui(�) and integrating by d� we can obtain:

(7)
d�X(t)

dt
= −n �X(t)

n

1

∫
−1

1

∫
−1

K
(
�, �

�
)
U
(
�
�

, t
)
d� d�

�

+ s �W (t)

(8)
d �W (t)

dt
= −s �W (t) + �

0

1

∫
−1

U
(
�

�

, t
)
d�

�

(9)

1

∫
−1

K
(
�, �

�
)
u
(
�
�
)
d�

�

= � u(�)

(10)

1

∫
−1

u(�)2d� = 1

(11)

1

∫
−1

ui(�)uj(�)d� = �ij

(12)U(�, t) =

∞∑
i=1

Ai(t)ui(�)

(13)Ai(t) =

1

∫
−1

U(�, t)ui(�)d�
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from which it follows that Ai(t) evolves with a local in time exponential coefficient (
�i �X(t)

n
− �

0

)
 . As the food is consumed and �X(t) decreases, more and more eigenvalues 

will have 
(
𝜆i 𝜌X(t)

n
− 𝛾

0

)
< 0 and that means that such eigenvectors start to die off at some 

point in time. This process will continue until the stationary point is reached, at which 
point the value of 

(
�
1
�X(t)

n
− �

0

)
 for the largest eigenvalue �

1
 reaches zero and the system 

reaches its final state: A
1
u
1
(�) . Since Eq. (5) is linear in u(�) , it does not fix the overall mul-

tiplier A
1
 . It is determined by using the matter conservation condition:

where �
0
 can be called the total amount of matter in the system. Substituting stationary 

conditions into this equation and denoting:

where c
1
 is L

1
 norm of the first eigenvector we can obtain:

From which it follows that:

The following should be noted. Because of the global symmetry L ↔ D , if u(�) is some 
eigenvector of Eq. (9), then u(−�) is also an eigenvector with the same eigenvalue. That means 
that the eigenvectors are either even or odd functions of � ∶ u(−�) = ±u(�) because if 
u(−�) ≠ ±u(�) then since u(−�) must have the same eigenvalue as u(�) , we can make two lin-
ear combinations: u

+
(�) =

u(�)+u(−�)√
2

 and u
−
(�) =

u(�)−u(−�)√
2

 , which will also have the same 
eigenvalues and are orthogonal. The new eigenvectors u

+
(�) and u

−
(�) are even and odd func-

tions correspondingly. The global symmetry imposes some constraints on K
(
�, �

′
)
 , which we 

will use shortly. If initial concentration �
0
 is sufficiently small so that 

(
𝜌
0
− n

√
𝛾
0

𝜆
1

)
< 0 , then (

𝜆i 𝜌
n
0
− 𝛾

0

)
< 0 for any value of i and that means that all protocells just die off.

To proceed further we need to determine the shape of the kernel function K
(
�, �

′
)
 . First, 

we can write:

where ka
(
�

′
)
 can be called normalized replication rate multiplier and:

(14)
dAi(t)

dt
=

(
�i �X(t)

n
− �

0

)
Ai(t)

(15)�X(t) + n

⎛⎜⎜⎝
�W (t) +

1

�
−1

U(�, t) d�

⎞⎟⎟⎠
≡ const = �

0

(16)

1

�
−1

U(�, t) d� = A
1

1

�
−1

u
1
(�) d� ≡ A

1
c
1

(17)n

√
�
0

�
1

+ n c
1
A
1

(
1 +

�
0

s

)
= �

0

(18)A
1
=

�
0
− n

√
�
0

�
1

nc
1

(
1 +

�
0

s

)

(19)

1

�
−1

K
(
�, �

�
)
d� ≡ k

0
ka
(
�
�
)
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is a normalization coefficient chosen so that ka(0) ≡ 1 . The physical meaning of ka
(
�

′
)
 is 

how much more (or less) efficient are the species with total enantiomeric excess �′ in com-
parison to the species with equal number of left and right amino acids ( ��

= 0).
We can note that when a protocell produces a copy of itself then there are some small 

chances of mutations, as discussed above, and that the probability of such mutations rapidly 
decreases if a copy is substantially different. Therefore, we can rewrite:

and then we can express that p
(
�, �

′
)
 as:

from which it follows that:

which means that p
(
�, �

′
)
 is the probability that species with total enantiomeric excess �′ 

would produce species with total enantiomeric excess �.
The shape of p

(
�, �

′
)
 substantially depends on the models of protocell existence and rep-

lication. In the current work we consider that p
(
�, �

′
)
 is a very narrow peak centered around 

� = �
� . We can model such probability using normal distribution and that leads to the follow-

ing expression for p
(
�, �

′
)
:

where 𝜖 ≪ 1 is some small parameter defining the mutation rate, erf is the error function 
and the normalization coefficient follows from normalization condition Eq. (23). Following 
the same reasoning as in Plasson and Brandenburg 2010, the value of � is likely ∼ 1√

n
 . 

However, as mentioned above, that depends on the models of protocell existence and repli-
cation. Therefore, we just varied parameter � within a certain range without attempting to 
translate it into the value of n . The choice of normal distribution is justified when 𝜖 ≪ 1 
and �′ is far from ±1 . This is the scenario that we are interested in, as we would like to 
investigate how does the system evolve away from � = 0 and are not concerned much about 
the actual final shape when / if the system approaches the states near � = ±1 . Then we can 
rewrite Eq. (9) as:

(20)k
0
=

1

∫
−1

K(�, 0)d�

(21)K
(
�, �

′
) ≡ k

0
ka
(
�
′
)
p
(
�, �

′
)

(22)p
(
�, �

′
) ≡ K

(
�, �

′
)

k
0
ka
(
�′
)

(23)

1

�
−1

p
(
�, �

�
)
d� =

1

�
−1

K
(
�, �

�
)

k
0
ka
(
��
)d� =

1

k
0
ka
(
��
)

1

�
−1

K
(
�, �

�
)
d� ≡ 1

(24)p
�
�, �

�
�
=

2e
−

�
�−�

�
�2

�2

�
√
�
�
erf

�
1−�

�

�

�
+ erf

�
1+�

�

�

��

(25)

1

∫
−1

ka
(
�
�
)
p
(
�, �

�
)
u
(
�
�
)
d�

�

= �̃u(�)
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where �̃ =
�
0

k
0
�X

n
 is the normalized eigenvalue. We shall note that function ka

(
�

′
)
 must be 

even due to a global L ↔ D symmetry and p
(
�, �

′
)
 is invariant under transformation (

�, �
�
)
→

(
−�,−�

�
)
 by construction. This means that L ↔ D symmetry is maintained by 

this kernel, as expected. Performing Taylor expansion up to second powers of � around 
� = 0 leads to the following form of ka:

Then we can investigate what are the eigenvalues and eigenvectors of Eq. (25) for dif-
ferent values of parameter a . This equation can be solved numerically by discretizing the 
integral in that equation and then finding the eigenvalues and eigenvectors of the resulting 
matrix. We performed calculation using 1,000 points and 200 digits of precision. Using 
1,000 points imposed some constraints on how small we could take some small parameters 
(like � ) to be able to “resolve” functions with narrow peaks. Using substantially more than 
1,000 points would make computation times prohibitive.

The physical meaning of parameter a is replication efficiency. When a > 0 , then homo-
chiral species (species with total enantiomeric content near � = ±1 ) are more efficient in 
replication (have larger replication rate) than the species with total enantiomeric content 
� = 0 , and when a < 0 , then it is the other way around.

The situation when a ≤ 0 is not interesting. The eigenvector corresponding to the 
largest eigenvalue is a Gaussian-like peak centered around � = 0 . The situation when 
a > 0 does result in two species with total enantioselectivity near � = ±1 . Figure  1 
shows the first two eigenvectors for the largest eigenvalues for a = 0.5 and � = 0.005 . 
The eigenvectors were L

2
 normalized. The eigenvector u

1
(�) is an even function, u

2
(�) is 

an odd function, and they are nearly indistinguishable on the interval � ∈ [−1, 0] so that 
only u

2
(�) peak is effectively visible on the left side of the chart.

To test if the largest two eigenvalues are the same or different, we performed calcu-
lations with 200 digits of precision. The difference turned out to be extremely small: 
�
1
− �

2
∼ 10

−177 and even though we still had about 23 digits of precision left before 
hitting the precision limit of 200, our view is that such difference can be safely con-
sidered as exact zero for practical purposes. That means that the eigenvalues are nearly 
degenerate, and any linear combinations are possible. In other words that means that 
any mix of protocells made from nearly all left or nearly all right amino acids can coex-
ist in such a model. And even if the eigenvalues are not degenerate (that means that 

(26)ka(�) = 1 + a �2

Fig. 1  Eigenvectors for the larg-
est two eigenvalues for replica-
tion efficiency parameter a = 0.5

and mutation rate � = 0.005
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symmetric eigenvector has a slightly larger eigenvalue), the difference in eigenvalues is 
so tiny that it will take a very large amount of time for some arbitrary mix of protocells 
made from nearly all left and nearly all right amino acids to wear out the asymmetry 
and transition to an equal mix of left and right species.

The first two largest eigenvectors have narrow peaks near � = ±1 and it is therefore 
interesting to calculate how the mutation rate � and replication efficiency parameter a 
affect the widths and positions of these peaks. To do so we varied a in the range from 
0.01 to 1, � in the range from 0.005 to 0.02 and then calculated mean ( � ) and stand-
ard deviation ( � ) for the right peak of the even eigenvector. The value of � = 0.005 is 
approximately the smallest, which can be resolved without significant errors using 1,000 
grid points. The results are shown on Figs. 2 and 3.

As the mutation rate � decreases, the peaks in the largest two eigenvectors become 
more and more narrow and shift closer and closer to � = ±1 . On the other hand, decreas-
ing the value of parameter a widens the peaks and pushes them away from � = ±1 . How-
ever, that impact is smaller for smaller values of �.

Fig. 2  Dependence of � on repli-
cation efficiency parameter a and 
mutation rate �

Fig. 3  Dependence of � on repli-
cation efficiency parameter a and 
mutation rate �

214 K. K. Konstantinov, A. F. Konstantinova



1 3

Impact of Global Asymmetry

The L ↔ D symmetric model described above does evolve from protocells with nearly 
racemic content ( � ≈ 0 ) toward two nearly homochiral species with � ≈ ±1 . However, one 
may argue that symmetry breaking does not really occur in such a model because there are 
two species, and their combined total enantiomeric excess is around zero. In fact, we will 
take this statement further and state that the whole concept of symmetry breaking does not 
apply to evolutionary models, like this one. We discuss that in detail below when we talk 
about differences in topologies of the spaces used in bifurcation-based models and cur-
rent evolutionary model. Subsequently, when considering evolutionary models, we should 
only talk about two aggregate parameters describing the system: average total enantiomeric 
excess:

and standard deviation of total enantiomeric excess in the system:

where ũ
1
(�) is L

1
 renormalized strictly non-negative eigenvector u

1
(�) corresponding to the 

largest eigenvalue:

from which it follows that ũ
1
(�) can be interpreted as a probability to find a protocell with 

total enantiomeric excess � in a final state.
Subsequently, it is then important to investigate what happens if L ↔ D symmetry is 

slightly broken due to some external mechanism. It is a known fact that L amino acids 
and D sugars are slightly more energy stable due to weak interaction (for review see, 
e.g., Bonner 1991). However, the difference is extremely tiny, and it was always a mys-
tery why the biological evolution went that way and whether it was just by chance or 
that tiny difference did matter. The analysis above seems to provide a definite answer on 
that question. When discussing eigenvalues of Eq. (25) we mentioned that due to global 
L ↔ D symmetry the largest two eigenvalues are likely degenerate and there are two 
eigenvectors (even and odd) corresponding to them. However, once weak integration 
is taken into account, then this degenerate pair splits and subsequently the combination 
based on L amino acids and D sugars gets the largest eigenvalue. That means that the 
other combination based on D amino acids and L sugars (as well as the other two pairs) 
will eventually die off.

To test that we introduced a very small asymmetry parameter g into ka(�):

and then calculated eigenvalues and eigenvectors using kg,a(�) instead of ka(�) in Eq. (25) 
for the value of g = 10

−20 , a = 0.5 , and � = 0.005 . The difference between the first two 

(27)�� =

1

∫
−1

�
�

ũ
1

(
�
�
)
d�

�

(28)��
2
=

⎛⎜⎜⎝

1

∫
−1

�
�
�
�2
ũ
1

�
�
�
�
d�

�

⎞⎟⎟⎠
− ��

2

(29)ũ
1
(�) =

u
1
(�)

∫ 1

−1
u
1

(
��
)
d��

≡ u
1
(�)

c
1

(30)kg,a(�) = (1 + g �)ka(�)
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eigenvalues turned out: 
(
�
1
− �

2

)
∼ 10

−20
∼ g and the eigenvectors are no longer nearly 

even and odd functions. Rather, they split into distinct left and right species. The result is 
shown on Fig. 4 and it illustrates the statement above. We used 200 digits of precision for 
this calculation as well.

We can also compare the amplitudes Ãi(0) ≡ Ã
0i
 for initial fluctuation U(�, 0) and ker-

nel with the broken symmetry Eq. (30) with the amplitudes Ai(0) ≡ A
0i
 obtained using a 

symmetric kernel ( g = 0 ). The largest absolute difference is very small:

and it happens around i ≈ 50 . This illustrates the fact that only the eigenvectors, which cor-
respond to the first few largest eigenvalues, are split into distinct left and right species. 
However, since the corresponding amplitudes are extremely small, then so are the differ-
ences |||Ã0i

− A
0i

||| for small values of i.
It should be noted that even though the energy difference between individual L and D 

amino acids is extremely small and so if we take just one L and D amino acid, then they 
are nearly indistinguishable in their stability, the situation changes when we consider 
large chains of amino acids. The errors in less stable species ( D amino acids) will start 
to add up faster than in more stable species ( L amino acids) and that results in effec-
tive asymmetry parameter for n amino acids gn , which can be estimated using binomial 
distribution:

To estimate the time needed for the system to transition from the state with two distinct 
species with total enantiomeric excess centered around � = ±1 into the state where only 
one of the species survives, consider Eq. (14) for two largest eigenvalues, �

1
 and �

2
:

where �̃
0
≡ �̃

1
+�̃

2

2
 , f ≡ �̃

1
−�̃

2(
�̃
1
+�̃

2

)
gn

∼ 1 (because 
(
�̃
1
− �̃

2

)
∼ gn , as shown by numerical cal-

culations), and �̃
1,2

∼ 1 (as also shown by numerical calculations) are normalized eigenval-
ues from Eq. (25) and then consider the scenario when:

(31)
|||�A0i

− A
0i

||| < 2.5 × 10
−11

(32)gn = 1 − (1 − g)n ≈ 1 − e−(ng) ≈ (ng), (ng) ≪ 1

(33)�
1,2

= k
0

(
1 ± fgn

)
�̃
0

Fig. 4  Eigenvectors for the larg-
est two eigenvalues for global 
asymmetry parameter g = 10

−20 , 
replication efficiency param-
eter a = 0.5 , and mutation rate 
� = 0.005
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This corresponds to the state when all other eigenvectors except u
1
 and u

2
 are no longer pre-

sent in the system and the food is scarce enough. Then we can obtain (ignoring changes in �X 
and �w for simplicity as we are only interested in the estimate of the exponential factor here):

from which it follows that initially A
1
 will experience exponential growth with the rate  f gn �0 

and A
2
 will experience exponential decay with the same (but negative) rate. Since the system 

is non-linear when we consider A
1
 , A

2
 , and �X , the overall dependence is more complicated. 

However, we can use that initial growth / decay rate to estimate the time needed for such a  
system to reach a homochiral state as:

where T� ≡ 1

�
0

 is the average lifespan of the species and we used Eq. (32) to estimate gn . 
This means that the larger are the protocells and the smaller is their lifespan, the faster they 
reach homochirality. Given that the condition on prebiotic Earth were harsh, it is reasona-
ble to assume that the average lifespan of protocells was reasonably small. Assuming the 
value of global asymmetry factor g ∼ 10

−17 (Kondepudi and Nelson 1983), number of 
amino acids in the protocell n ∼ 10

9 , f ∼ 1 , T� ∼ 1 day (the fastest growing modern bacte-
ria can have doubling time as short as 10  min under optimal conditions, Elsgaard and 
Prieur, 2011) leads to an estimate Th ∼ 300 thousand years and it can easily go back and 
forth a few orders of magnitude if the lifespan and / or the number of chiral centers in the 
protocells change. The value of Th can shrink to ∼ T� if much larger species are involved. 
To illustrate that consider some species with about 1 mg of weight and about pw = 70% 
water and non-amino acid content. Then using average molar mass of amino acid of about 
ma ≈ 110 g/mol leads to an estimate of the total number of chiral centers in such species as 
∼ 1.6 × 10

18 and subsequently a value of (ng) ∼ 16 . That results in gn ≈ 1 − e−(ng) ≈ 1 and 
subsequently Th ≈ T� . This illustrates that the process can be extremely quick on a geologi-
cal scale when species become larger and larger.

One may argue that the calculated above time estimate to reach homochirality could 
be too large compared to racemization time of amino acids under conditions on prebiotic 
Earth. However, the amino acids in the considered model only exist for the duration of the 
protocell lifespans, not for the duration of the whole transition period. Therefore, racemiza-
tion does not affect this model.

Interplay of Global Asymmetry and Efficiency

The analysis above considers a specific case where global asymmetry parameter (the linear 
coefficient in the kernel near � = 0 ) and the efficiency near � = ±1 are skewed the same 
way. Here we would like to consider that in more details. In fact, one may argue that why it 
is not possible that e.g., mostly right species evolve to be more efficient in producing cop-
ies of themselves than left species just by chance when the system initially evolves toward 
distinct left and right species. Then they would dominate in the considerations above. To 

(34)�̃
0
�X

n
− �

0
= 0

(35)
dA

1
(t)

dt
= f gn �0 A1

(t),
dA

2
(t)

dt
= −f gn �0 A2

(t)

(36)Th =
1

f gn 𝛾0
≈

T𝛾

f n g
∼

T𝛾

n g
, (n g) ≪ 1
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address this question, we need to get back to finding stationary points (eigenvectors and 
eigenvalues) of Eq. (5) but consider that the decay rate � is now a function of �:

where �
0
 is now some normalizing decay rate coefficient and �(�) can be called a relative 

decay rate of the species. Then the eigenvalue problem Eq. (25) becomes:

We can estimate the ratio of two largest eigenvalues �1
�
2

 (assuming that corresponding 
eigenvectors u

1
 and u

2
 are narrow peaks centered near ±1 ) as:

So, even if right species turn out to be slightly more efficient just by chance: 
k(−1) > k(1) , there is a limit on how much more efficient they could be due to effective 
averaging because of a very large number or reactions. Therefore, this term is ≈ 1 and the 
difference from 1 should be very small. However, the relative decay rate can easily become 
very different for left and right species and that means that �(−1) can be substantially 
greater than �(1) . Subsequently �1

�
2

 becomes greater than one. Further research is needed to 
check this statement in detail.

It is then interesting to look at how the eigenvector corresponding to the largest eigenvalue 
changes when efficiency parameter a is varied in the kernel with broken symmetry (Eq. 30). 
The results are shown on Fig. 5 ( g = 10

−20 , � = 0.02 ) and Fig. 6 ( g = 10
−20 , � = 0.005).

The value of a → 0 corresponds to the situation when there is no difference in efficiency 
based on enantiomeric content of the protocells. The resulting eigenvector at that value 
of a is a very wide even function, which spawns the whole region [−1, 1] . As the param-
eter a increases, the eigenvector starts to run toward both � ± 1 . That means that there is a 
range of parameter a where both species (made from mostly left and mostly right amino 
acids) can coexist. However, it is still nearly symmetric and the peaks near � ± 1 are wide 
until some critical value of a , after which less efficient species disappear quickly and only 
the most efficient species remain. The eigenvector then becomes a narrow peak near � ≈ 1 
(because we used a positive value of parameter g , which makes species with � ≈ 1 more 
efficient in replication).

It is also interesting to look at the dependence of cut off value of parameter a at 
which the right species ( � = −1 ) completely disappear. Figures 5 and 6 visually provide 
two points to estimate that: a

1
≈ 0.1 for �

1
= 0.02 and a

2
≈ 0.006 for �

2
= 0.005 , from 

which it follows that a1
a
2

≈

(
�
1

�
2

)2

 . We also checked that ratio for values of g = 10
−10 and 

g = 10
−5 . The charts for g = 10

−10 exhibit similar dependency, though it is harder to 
determine the cut off because it becomes more spread out. The chart for g = 10

−5 and 
� = 0.005 , which is shown on Fig.  7 looks interesting. There is no visible region in 
parameter a where left and right species can coexist. Rather, when value of a increases, 
the eigenvector just transitions into left species straight away.

There are three parameters at play here: replication efficiency parameter a , mutation rate � , 
and global asymmetry parameter g that together determine the shape of the first eigenvector.

(37)�
0
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0
�(�), �(0) ≡ 1
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To continue the discussion about what if the right species evolve to be more efficient 
than the left species, whereas the global asymmetry parameter g favors the left species, 
we can consider a scenario when the value of g is not “enough” to overcome the effi-
ciency of the right species near � = ±1 . To model such a scenario, we can introduce an 
extra parameter into a kernel, call it kg,a,b:

where such parameter choice was made to make the part of the kernel made of quadratic 
and cubic powers of � rescale without changing shape when parameter a is varied. Param-
eter b can be called efficiency asymmetry parameter. The chart for some interesting combi-
nation of parameters is presented on Fig. 8.

The chart is interesting because it shows that while only one of the species always 
remains (after the value of parameter a becomes large enough), now it could be different 

(40)kg,a,b(�) = 1 + g � + a �2(1 − b �)

Fig. 5  First eigenvector for 
different values of replication 
efficiency parameter a for global 
asymmetry parameter g = 10

−20 
and mutation rate � = 0.02

Fig. 6  First eigenvector for 
different values of replication 
efficiency parameter a for global 
asymmetry parameter g = 10

−20 
and mutation rate � = 0.005
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species based on the value of the replication efficiency. The sudden transition from left 
species into right species happens when right species become more efficient than left 
species near points � = ±1 , which means that: kg,a,b(1) ≈ kg,a,b(−1) , from which it fol-
lows that a critical value ac of parameter a should be:

The actual value ac ≈ 0.02155 for the values of parameters g and b used on Fig. 8 and 
it is very close to the estimated value of g

b
= 0.02 used to generate the chart. The eigen-

vector on Fig. 8 looks almost the same as on Fig. 7 up to ac and then it transitions to the 
right species. The transition from left to right species near ac point is very sharp, and it 
shows that the system slides into one or the other direction once the critical value ac is 
passed.

(41)ac ≈
g

b

Fig. 7  First eigenvector for 
different values of replication 
efficiency parameter a for global 
asymmetry parameter g = 10

−5 
and mutation rate � = 0.005

Fig. 8  First eigenvector for 
different values of replication 
efficiency parameter a for global 
asymmetry parameter g = 10

−5 , 
efficiency asymmetry parameter 
b = 0.0005 , and mutation rate 
� = 0.005
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Impact of Discreteness

Continuous representation of the model described above is convenient for performing anal-
ysis because it allows us to use a well-known machinery of Fredholm equations. However, 
as chemical systems stochastically evolve in integers (number of molecules), rather than in 
continuous real functions, there are certain peculiarities, which must be accounted for.

When there is a global L ↔ D symmetry but some asymmetry of the initial state, then 
continuous model will first evolve into an asymmetric state made of some possibly une-
qual number of left and right species. The proportionality is the same as in the original 
decomposition of the initial state as determined by Eq. (13). Since the first two eigen-
values are nearly degenerate (the value �

1
− �

2
∼ 10

−177 in one of the examples), that 
mix will coexist for extremely long time and for practical purposes it can be considered 
as forever. The real chemical systems are discrete, and they evolve stochastically. That 
means that Eq. (1) is effectively a random walk on a 1-D lattice where each step could be 
some small number of lattice nodes (number of left amino acids in a protocell) at a time. 
Such random walks are equivalent to diffusion processes and that ensures that a discrete 
model will spread out in the whole range in � . In addition, as it is a random walk, the 
system could evolve into a random mix of left and right species, regardless, which mix is 
supposed to dominate in potentially asymmetric initial state according to Eq. (13). This 
is different from continuous representation where initial state completely determines the 
final state.

The most interesting behavior appears when there is a global asymmetry parameter 
pointing in one direction, but the efficiency factor: a �2(1 − b �) is tilted in the other direc-
tion: Eq. (40) and as illustrated on Fig. 8. When efficiency parameter a is gradually increas-
ing and is crossing the value of ac , then continuous system experiences a sudden transition 
from left to right species. This is because there are species with any total enantiomeric 
excess in continuous representation, even though some of the species (e.g., near � = −1 
when left species still dominate before reaching ac ) have diminishingly small amplitudes. 
That does not happen in discrete evolution, as all small real numbers become exact zeros. 
That means that when efficiency parameter a crosses the value of ac , there are no right 
species, which could have driven left species into extinction due to increased efficiency of 
the right species. Subsequently left species still stays. That means that it is the linear coef-
ficient in the kernel function kg,a,b(�) near � = 0 , which determines the direction into which 
the system will evolve, and that coefficient is a global asymmetry parameter g.

Replication with Errors and Normalized Replication Rate Multiplier

Given that normalized replication rate multiplier ka with replication efficiency parameter 
a > 0 is crucial for the considered model to work, it is, therefore, important to perform 
analysis of the replication process for various total enantiomeric content of the protocells. 
Before proceeding further, we need to clarify what do we mean here by replication. For 
the purposes of further considerations, a replication is a process of creating a near copy of 
an “input” peptide chain (template). While it is tempting to bring parallels with DNA and 
RNA replication, where a so-called replication fork moves along the template and produces 
a copy of the DNA, the replication process on primordial Earth must have been much sim-
pler than that because DNA and RNA have not existed yet. Therefore, without speculating 
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about what chemical reactions could have been used at that time to perform a replication, 
we consider an abstract replication process in the following simplified form:

• The replication happens at the replication site.
• The template is “read” one amino acid at a time.
• The replication site waits for matching amino acid to collide with the replication site 

and attempts to attach it to the copy.
• If the process is unsuccessful (the amino acid is not attached), then replication site 

waits for another collision.
• If the process is successful, then the replication site moves to the next amino acid of the 

template.

It is a known fact that the replication site does not have to carry the same chirality as a 
template. For example, Sczepanski and Joyce 2014, developed cross-chiral RNA polymer-
ase where D-RNA enzyme catalyzes joining of L-mono or oligonucleotide substrates on 
a complimentary L-RNA template. Subsequently, we will not attempt to speculate what 
could be an effect of replication errors on the viability of the replicated structures. Here we 
only analyze collision events and their effect on the replication rate. In the current work we 
are also only interested in tracing amino acid enantiomers rather than types. Subsequently, 
we will not be considering errors due to replacement of amino acid types, but rather trace 
only errors due to incorrect enantiomers.

It is a well-known fact that rates of chemical reactions are proportional to the concentra-
tion of reagents. Consider a protocell with total internal enantiomeric excess � and consider 
that this protocell needs to replicate some complicated structure (e.g., create a copy of the 
protocell) with approximately the same total enantiomeric excess. The collision process 
between replication site and amino acids in the solution can be modeled using exponential 
distribution with probability density function: P(t) = 1

Tc
e

t

Tc , where Tc is the average colli-
sion time between any amino acid and the replication site. The probability that a left amino 
acid collides with the replication site is p =

1+�

2
 when collision happens and the probability 

that a right amino acid collides with the replication site is (1 − p).
As we are talking about protocells on primordial Earth where organic structures were 

much simpler than now, it is, therefore, reasonable to assume that such replication pro-
cess was not completely precise at that time. To describe that we need to introduce two 
dimensionless parameters: q – the probability that a correct amino acid enantiomer is 
not attached to the structure when it successfully collides with the replication site and r 
– the probability that incorrect amino acid enantiomer is attached to the structure when 
it successfully collides with the replication site. We can call parameter q as skip prob-
ability and r as error probability. Then, we can calculate total enantiomeric excess of 
replicated structure �w by considering collision events:

and similar when D amino acid is needed:
(42)

PLLA = p (1 − q) − probability to get L amino acid and attach it when L is needed

PLLN = p q − probability to get L amino acid and do not attach it when L is needed

PLDA = (1 − p) r − probability to get D amino acid and attach it when L is needed

PLDN = (1 − p) (1 − r) − probability to get D amino acid and do not attach it when L is needed
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from which we can calculate the following probabilities:

and from which it follows that “expected value” of attached amino acid enantiomeric 
excess (taking that “enantiomeric excess” of L is eeL = 1 , and of D is eeD = −1 ) after 
attachment on the first try when L is needed and expected value after attachment on the 
first try when D is needed are:

We can note that EL1 ↔

(
−ED1

)
 when p ↔ (1 − p) , as expected. When, e.g., L 

is needed, then the following events are possible at each collision: the amino acid is 
attached (which is described by two events captured in EL1 : the probability to get L and 
attach it: PLLA , and the probability to get D and attach it: PLDA ) or not (which has the 
probability 1 −

(
PLLA + PLDA

) ≡ 1 − PLA ≡ PLN ). Then, we can calculate expected val-
ues of attached amino acid enantiomeric excess after any number of tries when L is 
needed and when D is needed as:

and, finally, expected total enantiomeric excess of the replicated structure as:

assuming that the amino acids in the solution are abundant enough so that we can neglect 
changes to enantiomeric excess in the solution due to replication, and that parameters q and 
r are independent on enantiomeric content, and where parameter w was introduced for the 
convenience as:

(43)

PDDA = (1 − p) (1 − q) − probability to get D amino acid and attach it when D is needed

PDDN = (1 − p) q − probability to get D amino acid and do not attach it when D is needed

PDLA = p r − probability to get L amino acid and attach it when D is needed

PDLN = p (1 − r) − probability to get L amino acid and do not attach it when D is needed

(44)

PLA = r + p (1 − q − r) − probability to attach any amino acid when L is needed

PLN = 1 − r − p (1 − q − r) − probability to do not attach any amino acid when L is needed

PDA = 1 − q − p (1 − q − r) − probability to attach any amino acid when D is needed

PDN = q + p (1 − q − r) − probability to do not attach any amino acid when D is needed

(45)
EL1 = eeLPLLA + eeDPLDA = p(1 − q) − (1 − p)r

ED1 = eeDPDDA + eeLPDLA = −(1 − p)(1 − q) + p r

(46)

EL = EL1

∞∑
k=0

(
PLN

)k
=

EL1

1 − PLN

=
p(1 − q + r) − r

p(1 − q − r) + r

ED = ED1

∞∑
k=0

(
PDN

)k
=

ED1

1 − PDN

=
(1 − p) (1 − q + r) − r

(1 − p) (1 − q − r) + r

(47)�w(�,w) = p EL + (1 − p)ED = �

(
1 +

w(1 − w)
(
1 − �2

)
1 − w2�2

)

(48)w =
1 − q − r

1 − q + r
≡ 1 −

(
r

1−q

)

1 +

(
r

1−q

) ≡ 1 − r̃

1 + r̃
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where r̃ =
(

r

1−q

)
 is an adjusted error rate. It shall be noted that the physical meaning of w 

is the enantioselectivity of the replication site.
To calculate total expected replication time Tw we note that total (pn) left amino acids 

and ((1 − p)n) right amino acids need to be attached, consider the same replication events 
as above, and note that when amino acids it not attached then we need to wait for another 
Tc (on average) before the next collision event happens. The expected times to attach some 
amino acid when L is needed and when D is needed are:

from which it follows that total expected replication time is:

We can further define normalized replication rate multiplier due to different replication 
time as:

The value of Δ�w =

(
�w − �

)
 , which can be called extra total enantiomeric excess, 

shows the difference between total enantiomeric excess of the original structure and rep-
licated structure and the value of kw shows how much faster the replication process should 
take in comparison to a protocell with an equal mix of left and right amino acids ( � = 0 ) 
for a given value of w . The charts for Δ�w and kw , are shown on Figs. 9 and 10.

The following should be noted. The value of Δ�w is an odd function, which is strictly 
positive in the interval � ∈ (0, 1) for any w ∈ (0, 1) and the value of kw is an even convex 

(49)

TL = TcPLA

∞∑
k=0

(k + 1)
(
PLN

)k

TD = TcPDA

∞∑
k=0

(k + 1)
(
PDN

)k

(50)Tw(�,w, r) = p n TL + (1 − p) n TD =

(1 − w)
(
1 − w�2

)

r
(
1 − w2�2

) Tc n

(51)kw(�,w) =
Tw(0,w, r)

Tw(�,w, r)
= 1 +

w(1 − w)�2

1 − w�2

Fig. 9  Dependence of extra total 
enantiomeric excess Δ�w on 
enantioselectivity of replication 
site wand enantiomeric excess �
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function with a minimum at � = 0 for any value of w > 0 . Both have the same reason, and 
it is the non-zero parameter r that results in that. Parameter r is effectively an error rate that 
amino acid of wrong chirality will be attached to the replicated structure. If, e.g., 𝜂 > 0 , then 
the probably of collision with left amino acid is larger than with the right amino acid, at 
which point the left amino acid could be attached instead of right amino acid (where right 
was needed). The same explains why kw does not stay constant when � is varied: amino acid 
of incorrect chirality is simply attached to the chain and replication moves on to the next ele-
ment. The fact that values of kw and Δ�w depend only on parameter w and not on individual 
values of parameters q and r makes it irrelevant whether parameters q and r are related or not.

Since, as shown above, replication with errors amplifies the enantiomeric excess in the 
replicated structure, the surrounding solution experiences the opposite, that is the enan-
tiomeric excess should decrease in absolute value. Therefore, without any mechanism to 
restore enantiomeric excess in the solution inside the protocell, the net effect must be zero. 
However, there is a well-known effect, which ensures that at least some amino acids can 
maintain high level of enantiomeric excess inside protocells. That is formation of highly 
insoluble diastereomeric salts. While it is often mentioned that only 5–10% of amino acids 
form such highly insoluble diastereomeric salts and so it is not enough to reach homochi-
rality (Klussmann et  al.  2006; Blackmond 2011), this statement should be rephrased as 
follows when applied to replication inside protocells: there are at least about 5–10% of 
amino acids, which should participate in replication process in nearly homochiral form. 
Therefore, it would be interesting to look at solubilities of nearly racemic mixtures of 20 
to 22 amino acids that comprise proteins and especially of adenine, thymine, guanine, and 
cytosine, which are used in the DNA. Unfortunately, we were unable to find detailed infor-
mation in this regard. It shall be also noted that formation of such diastereomeric salts is 
mutual inhibition mechanism as described in Frank’s model.

The analysis above shows a very interesting phenomena: while modern Life has 
error rate r̃  nearly identically zero, it is substantially different from zero value of r̃  
that pushes replicated structures in primitive protocells toward homochirality. It is also 
interesting that apart from a very low error rate, modern Life utilizes “error correc-
tion” mechanisms in the form of, e.g., D-amino acid oxidase, which destroys all natu-
ral D-amino acid except the acidic ones (e.g., Pollegioni et al. 2018).

Fig. 10  Dependence of normal-
ized rate multiplier kw on enanti-
oselectivity of replication site w
and enantiomeric excess �
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Topology of the Model

Here we would like to discuss the topological differences between, e.g., Frank’s or 
similar models and the current model. The systems in Frank’s or similar models expe-
rience bifurcation when some control parameter crosses certain critical value regard-
less the absence or presence of some small global asymmetry factor. The model con-
sidered here can be called evolutionary. The protocells do not experience a bifurcation 
point even in case of a global L ↔ D symmetry where left and right species can coexist 
(which is not the case in bifurcation-based models). This can be illustrated by calculat-
ing average total enantiomeric excess in the system, �� (Eq. 27) and standard deviation, 
�� (Eq. 28). The average total enantiomeric excess is �� ≡ 0 and the standard deviation 
is �� ≈ 1 for the evolutionary model discussed here, whereas �� ≈ ±1 and �� ≈ 0 for 
bifurcation-based models when there is a global L ↔ D symmetry.

Once a small global asymmetry parameter is introduced, the current model just 
“evolves” toward the most efficient species, and it happens in a smooth way when 
the control parameter (replication efficiency parameter a ) is varied. This difference 
in behavior can be explained once we consider the spaces in which bifurcation-based 
models and current model operate. A typical bifurcation-based model has, e.g., some 
L and D species. Topologically, this is a set of two zero-dimensional disconnected 
spaces (points with � = −1 and � = 1 ). Current model (when viewed in continuous 
form) operates in one-dimensional connected space (the whole interval � ∈ [−1, 1] ) 
and so the points � = −1 and � = 1 are connected. This is what makes it possible for 
the system to smoothly evolve on the interval [−1, 1] in the relevant direction based on 
values of the coefficients (small global asymmetry parameter g , replication efficiency 
parameter a , and efficiency asymmetry parameter b ). When discretization is introduced 
(whether considering that protocells have some finite number of amino acids or discre-
tizing function u

(
�
′
)
 in the integral), then it is no longer possible to use the term “con-

nected”, as it is only used for continuous spaces. However, it is still possible to make a 
“path” between � = −1 and � = 1 points by making small steps (replacing one D amino 
acid by one L amino acid in a protocell). That difference in topology of the spaces, in 
which bifurcation models and evolutionary models, like considered here, operate is 
what makes the difference.

Subsequently, from the topology point of view, we can further say that the concept 
of symmetry breaking is not applicable to evolutionary models, like considered here. 
The change in control parameter in bifurcation models results in a sudden split of a 
symmetric racemic state into either only left or only right species. That split is random 
in case of global symmetry or directed in case of some global asymmetry parameter. 
The evolutionary models can have any values of total enantiomeric excess in between 
purely left and purely right species and that allows them to gradually transition to, e.g., 
nearly all left species when control parameter (the efficiency parameter a ) is varied.

Further Research

As a final note we would like to discuss some possible directions of further research.
Considering that some percentage of amino acids is taken out of the environment and 

the rest is synthesized inside the protocells is an interesting and important question. That 
will require introducing several more parameters and reactions. One of the reactions, which 
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must be considered in such a case, is racemization. The larger percentage of amino acids is 
reused, the larger will be effect of racemization. Another reaction that might be worth con-
sidering is an internal “error correction” mechanism, as discussed above.

Better analysis of effect of global asymmetry, like weak interaction, on stability of long 
peptide chains is needed to come up with a better time estimate to reach homochirality. 
This becomes especially important when some amino acids are reused, and racemization is 
taken into account.

Dynamic evolution with gradually increasing efficiency parameter a for model 
described by Eq. (40) is also interesting. If parameter a is slowly increasing (which would 
model the scenario when protocells evolve to become more efficient), then the system will 
first transition into purely L species. The question is what will happen when parameter 
a goes above ac . Since protocells are measured in non-negative integers, then there will 
likely be no D protocells at all. Subsequently, the sudden transition to purely right species, 
as shown on Fig. 8 is likely never going to happen.

Experimentally, it is interesting to look at the solubilities of diastereomeric salts made 
of 20–22 amino acids used in organic life and especially the four used in the DNA.

It is also interesting to look not only on chirality of amino acids but also on their type 
and then investigate how that affects replication with errors.

Conclusion

There have been numerous discussions over many years whether chiral symmetry breaking 
on primordial Earth occurred first followed by biological evolution or it happened the other 
way around and whether that symmetry breaking was directed or happened just by chance.

Our current view is as follows. Given that reactions with energy consumptions are 
crucial for organic life to maintain order, it seems unlikely that substantial and consistent 
chiral symmetry breaking could occur before the ability to store and process energy has 
evolved, even if it was in a very primitive form.

We considered a very simple linear model of protocell evolution and showed such model 
should evolve into a mix of almost purely left and almost purely right species when there 
is a global L ↔ D symmetry. This is very different from bifurcation-based models, which 
exhibit spontaneous symmetry breaking. However, when a tiny global asymmetry factor is 
introduced into the model, then only one, more efficient, species survive. We traced down 
the difference in behavior of evolutionary models and bifurcation-based models to the dif-
ferences in the topologies of the spaces, in which the models operate. Bifurcation-based 
models operate in disjoint set of two zero-dimensional spaces (two points L and D ), whereas 
evolutionary models (in continuous representation) operate in one-dimensional connected 
space (any value of total enantioselectivity is possible between � = −1 and � = 1 ). Subse-
quently, we argued that the concept of symmetry breaking is not applicable to evolution-
ary models. Rather, more efficient species simply outperform less efficient species either in 
increased replication rate, or decreased decay rate, or both and that results in less efficient 
species simply dying off from “starvation” when the “food” becomes scarce in the model.

We performed an estimate of the time needed to achieve homochirality in such a model and 
showed that it could be on the order of a few hundred thousand years plus or minus a couple of 
orders of magnitude. Despite this seemingly large time, the model is immune to racemization 
because amino acids in the model exist only for the duration of protocells lifespan.
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We then proceeded with the analysis of replication with errors and showed that homo-
chiral protocells should have a faster replication time in comparison to racemic protocells. 
In addition, we showed that replication with errors results in higher enantiomeric excess 
in replicated structures in comparison to the original structure, though at the expense of 
depleting enantiomeric excess inside the protocell and / or in the environment.

Appendix I – List of Parameters

The following table summarizes all the parameters used along with descriptions.

Parameter Description / physical meaning

a Replication efficiency parameter
ac Critical value of replication efficiency parameter a , at which right species start to dominate 

over left species for the normalized replication rate coefficient kg,a,b(�) with global asymmetry 
parameter g and efficiency asymmetry parameter b

A
0i

Initial amplitude of i-th eigenvector for symmetric normalized rate multiplier ka(�)

Ã
0i

Initial amplitude of i-th eigenvector for asymmetric normalized rate multiplier kg,a(�)

Ai(t) Amplitude of i-th eigenvector over time
A
1

Final amplitude of the first eigenvector
b Efficiency asymmetry parameter
c
1

L
1
 norm of the first eigenvector u

1
(�)

d Minimum reported dimeter of experimentally obtained protocell-like particles
eeD Enantiomeric excess value of a single D amino acid
eeL Enantiomeric excess value of a single L amino acid
EL1 Expected value of attached amino acid enantiomeric after attachment on the first try when L is 

needed
ED1 Expected value of attached amino acid enantiomeric after attachment on the first try when D is 

needed
EL Expected value of attached amino acid enantiomeric excess after any number of tries when L is 

needed
ED Expected value of attached amino acid enantiomeric excess after any number of tries when D 

is needed
f Relative split between two largest eigenvalues divided by global asymmetry parameter value for 

the normalized rate multiplier kg,a(�)
g Global asymmetry parameter for a single amino acid
gn Global asymmetry parameter for a chain of amino acids (protocell) of length n
k
0

Normalization coefficient chosen so that ka(0) ≡ 1

ka(�) Normalized replication rate multiplier,ka(0) ≡ 1

kg,a(�) Normalized replication rate multiplier when there is a global asymmetry parameter g,kg,a(0) ≡ 1

kg,a,b(�) Normalized replication rate multiplier when there is a global asymmetry parameter g and 
efficiency asymmetry parameter b,kg,a,b(0) ≡ 1

kw(�,w) Normalized replication rate multiplier due to different replication time
K
(
�, �

′
)

Rate coefficient at which U
(
�

′

, t
)
 can produce U(�, t)

ma Average molar mass of amino acids
n Number of amino acids in a protocell
p Probability that a left amino acid collides with the replication site when collision happens
pw Water and non-amino acids percentage content in the protocell
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Parameter Description / physical meaning

p
(
�, �

′
)

Probability that species with total enantiomeric excess �′ would produce species with total 
enantiomeric excess �

P(t) Probability density function for the collisions between replication site and any amino acid
PLLA Probability to get L amino acid and attach it when L is needed
PLLN Probability to get L amino acid and do not attach it when L is needed
PLDA Probability to get D amino acid and attach it when L is needed
PLDN Probability to get D amino acid and do not attach it when L is needed
PDDA Probability to get D amino acid and attach it when D is needed
PDDN Probability to get D amino acid and do not attach it when D is needed
PDLA Probability to get L amino acid and attach it when D is needed
PDLN Probability to get L amino acid and do not attach it when D is needed
PLA Probability to attach any amino acid when L is needed
PLN Probability to do not attach any amino acid when L is needed
PDA Probability to attach any amino acid when D is needed
PDN Probability to do not attach any amino acid when D is needed
q Skip probability – probability that a correct amino acid enantiomer is not attached to the struc-

ture when it successfully collides with the replication
r Error probability – probability that incorrect amino acid enantiomer is attached to the structure 

when it successfully collides with the replication site
r̃ Adjusted error rate
s Recycling rate
t Time
Tc Average collision time between any amino acid and replication site
Th Estimated time to reach homochirality
TD Expected time to attach some amino acid when D is needed
TL Expected time to attach some amino acid when L is needed
Tw Total expected replication time
T� Average lifespan of the species
ui(�) i-th eigenvector ( L

2
 normalized)

ũ
1
(�) L

1
 renormalized strictly non-negative eigenvector u

1
(�) corresponding to the largest eigenvalue. 

It can be interpreted as a probability to find a protocell with total enantiomeric excess �
U(�, t) Concentration of protocells with total enantiomeric excess � at time t
w Enantioselectivity of the replication site
�(�) Relative decay rate of the species, �(0) ≡ 1

�
0

Protocell decay rate at � = 0

Δ�w Extra total enantiomeric excess
� Mutation rate
� Total enantiomeric excess of the protocell
�c Enantioselectivity of a catalyst
�w(�,w) Expected total enantiomeric excess of the replicated protocell
�, �i Eigenvalue, i-th eigenvalue

�̃, �̃i
Normalized eigenvalue, i-th normalized eigenvalue

�̃
0

Average of two largest normalized eigenvalues �̃
1
 and �̃

2

� Mean of the right peak of the first eigenvector u
1
 for the normalized replication rate ka(�) and 

mutation rate �
�� Average total enantiomeric excess in the final state of the system
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Parameter Description / physical meaning

�
0

Matter conservation condition (total amount of matter in the system)
�W (t) Concentration of the “waste” substance W at time t
�X(t) Concentration of the “food” substance X at time t
� Standard deviation of the right peak of the first eigenvector u

1
 for the normalized replication 

rate ka(�) and mutation rate �
�
0

The standard deviation of initial fluctuation U(�, 0)

�� Standard deviation of total enantiomeric excess in the final state of the system
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