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Abstract Several computational models of chemical reaction networks have been presented
in the literature in the past, showing the appearance and (potential) evolution of autocat-
alytic sets. However, the notion of autocatalytic sets has been defined differently in different
modeling contexts, each one having some shortcoming or limitation. Here, we review four
such models and definitions, and then formally describe and analyze them in the context of
a mathematical framework for studying autocatalytic sets known as RAF theory. The main
results are that: (1) RAF theory can capture the various previous definitions of autocatalytic
sets and is therefore more complete and general, (2) the formal framework can be used to
efficiently detect and analyze autocatalytic sets in all of these different computational mod-
els, (3) autocatalytic (RAF) sets are indeed likely to appear and evolve in such models, and
(4) this could have important implications for a possible metabolism-first scenario for the
origin of life.

Keywords Chemical reaction networks · Autocatalytic sets · Evolution ·
RAF theory · Origin of life

Introduction

Several computational models of chemical reaction networks have been presented in the
literature over the years. In some cases, these models showed the appearance and/or further
evolution of autocatalytic sets, i.e., collections of molecules and the (catalyzed) chemical
reactions between them that, as a whole, can sustain and reproduce themselves from an
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ambient food source. Such autocatalytic sets are believed to have played an important role
in the origin of life (Kauffman 1993; Hordijk 2013), and it has been argued that they may
have been the very first units of natural selection, before the appearance of template-based
replicators (Vasas et al. 2012).

However, in the various existing computational models of chemical reaction systems,
the concept of autocatalytic sets has often been defined in different ways, depending on
the particular modeling context. For example, they have been defined as (or even confused
with) hypercycles, as cores (connected components) in the catalysis graph, or as viable
cores (cores that can sustain themselves from a given food set). Unfortunately, these dif-
ferent definitions do not always translate easily (or at all) between the different modeling
contexts. Moreover, they all seem to miss one or more important aspects, or are limited to
the particular model to which they were applied.

The goals of this paper are therefore as follows:

– To suggest a previously developed formal framework known as RAF theory to serve as
a standard for defining, detecting, and analyzing autocatalytic sets.

– To show that this formal framework captures the various other definitions of auto-
catalytic sets that exist in the literature, and is therefore more general and more
complete.

– To use RAF theory to analyze and highlight the different ways in which autocatalytic
sets can emerge and evolve in different computational models of chemical reaction
systems.

In the next section, we briefly describe the basics of RAF theory and its main applica-
tions and results. We then review four different computational models of chemical reaction
networks presented in the literature, and show how they can be described within RAF the-
ory. We then apply this formal framework to analyze some of the main results of these
various models, confirming the appearance and evolution of autocatalytic sets as RAF sets,
and derive additional conclusions and insights along the way. Finally, we summarize the
main conclusions and present some discussion.

Autocatalytic Sets and RAF Theory

The concept of autocatalytic sets was first introduced by Kauffman (1971, 1986, 1993).
It was later formalized mathematically and further developed as RAF theory (Steel 2000;
Hordijk and Steel 2004; Hordijk 2013). In this section, we briefly review the basics of RAF
theory.

First, we define a chemical reaction system (CRS) as a tuple Q = {X,R, C} consisting
of a set X of molecule types, a setR of chemical reactions, and a catalysis set C indicating
which molecule types catalyze which reactions. We also consider the notion of a food set
F ⊂ X, which is a subset of molecule types that are assumed to be directly available from
the environment.

The notion of catalysis plays a central role here. A catalyst is a molecule that significantly
speeds up the rate at which a chemical reaction happens, without being “used up” in that
reaction. Catalysis is ubiquitous in life (Van Santen and Neurock 2006). The majority of
organic reactions are catalyzed, and catalysts are essential in determining and regulating the
functionality of the chemical reaction networks that support life.
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An autocatalytic set, or RAF set, is now defined as a subset R′ ⊆ R of reactions (and
associated molecule types) which is:

– Reflexively Autocatalytic (RA): each reaction r ∈ R′ is catalyzed by at least one
molecule type involved inR′, and

– Food-generated (F): all reactants in R′ can be created from the food set F by using a
series of reactions only fromR′ itself.

A simple example of a RAF set is presented in Fig. 1. A more formal definition of RAF
sets is provided in Hordijk and Steel (2004); Hordijk et al. (2011), including an efficient
(polynomial-time) algorithm for finding RAF sets in a general CRS.

This RAF algorithm returns the unique maximal RAF set (maxRAF), which is the union
of all RAF (sub)sets within a given CRS. If no RAF set exists within a CRS, the RAF
algorithm returns the empty set. A maximal RAF set can often be decomposed into several
smaller subsets which themselves are RAF sets, i.e., subRAFs (Hordijk et al. 2012). If such
a subRAF cannot be reduced any further without losing the RAF property, it is referred to
as an irreducible RAF, or irrRAF (Hordijk and Steel 2004).

Note that it is implicitly assumed that reactions can also still happen uncatalyzed, but
at a significantly lower rate than catalyzed reactions. In other words, uncatalyzed reactions
are possible, but rare. However, such “spontaneous” reactions are often necessary for RAF
sets to come into existence in a dynamical sense (given that they exist in the underlying
reaction network). For example, in the RAF set in Fig. 1, one of the two reactions will have
to happen uncatalyzed as long as there are only food molecules available. But once such a
spontaneous reaction has happened the full set can come into existence, and potentially grow
exponentially in concentration. As argued elsewhere (and see also below), this requirement
for spontaneous reactions is actually a useful property for the potential evolvability of RAF
sets (Hordijk and Steel 2014).

RAF theory has been applied extensively to simple polymer-based models of chemical
reaction networks, showing that autocatalytic sets are highly likely to exist under a wide
variety of model assumptions (Hordijk and Steel 2004; Mossel and Steel 2005; Hordijk et al.
2011; Hordijk et al. 2014b; Smith et al. 2014; Hordijk et al. 2014a). Moreover, these results
show that there generally exist many hierarchical levels of subRAFs and irrRAFs in such
networks (Hordijk et al. 2012; Hordijk et al. 2015). Finally, the formal RAF framework has
also been applied successfully to analyze real chemical and biological networks in terms of
autocatalytic sets (Hordijk and Steel 2013; Sousa et al. 2015).

Fig. 1 An example of a simple
RAF set with two reactions.
Black dots represent molecule
types and white boxes represent
reactions. Solid arrows are
reactants going into and products
coming out of a reaction. Dashed
arrows indicate catalysis. The
food set consists of the four
molecule types at the bottom
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Evolution of Autocatalytic Sets in Chemical Reaction Networks

We now review four computational models of chemical reaction networks that have been
presented in the literature. For each model, we show how it can be formally described,
analyzed, and interpreted with RAF theory. In all cases, these models clearly show the
(potential) evolution of autocatalytic (RAF) sets.

Spontaneous Decay and Information Preservation

Hordijk and Fontanari (2003) present an evolutionary model of a chemical reaction network
that was used to study information preservation under spontaneous decay. In particular, a
genetic algorithm (GA) was used to evolve reaction networks that are capable of maintaining
a certain distribution of longer polymers, while these polymers spontaneously break up into
smaller pieces at a rate that is proportional to their length.

The molecules in this model are polymers Pi (of a single, unspecified, monomer type),
where only their length i is important. These polymers can be of any length i up to 35.
The possible chemical reactions are “bonding” (combining two polymers into a longer one:
Pi + Pj → Pi+j ) and “breaking” (splitting a polymer into two shorter ones: Pi+j →
Pi + Pj ), taking the maximum polymer length into account (i + j ≤ 35). However, only
catalyzed reactions are considered. In other words, each bonding or breaking reaction is
catalyzed by some (randomly assigned) polymer Pk .

Instances of this reaction network model are then created by choosing 100 random bond-
ing and breaking reactions, and assigning a catalyst to each of them, also at random. Starting
with an initial polymer distribution of an equal number of polymers up to length nine, the
dynamics of such a reaction network is then simulated using the standard Gillespie algo-
rithm (Gillespie 1976; 1977). However, in these simulations an element of spontaneous
decay is also included. In particular, each polymer Pi breaks down into smaller pieces at a
rate that is directly proportional to its length i.

Finally, a genetic algorithm (Goldberg 1989; Mitchell 1996) was used to evolve such
reaction networks (each one consisting of 100 catalyzed bonding and breaking reactions).
The fitness of a reaction network is determined by comparing its final polymer distribution
(after simulating the network dynamics for a certain amount of time) with a pre-specified
target distribution. This model set-up was then used to study the evolution of reaction net-
works, and their capability to preserve a certain amount of information, under various rates
of spontaneous decay and target distributions. For full details, see Hordijk and Fontanari
(2003).

This model can be formally described within the RAF framework:

X = {Pi | i = 1, . . . , 35}
R = {Pi + Pj → Pi+j , Pi+j → Pi + Pj | i + j ≤ 35}
C = {(Pi, r) | i = 1, . . . , 35, r ∈ R}
F = {Pi | i = 1, . . . , 9}

where each model instance contains a random subset of size 100 ofR (and, correspondingly,
of C).

The main results of this evolutionary model can be summarized as follows:

1. Reaction networks can indeed be evolved to generate a specific polymer distribution
from a given initial distribution (even under the “constraint” of spontaneous polymer
decay).
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2. These evolved reaction networks often contain a small core set of reactions that are
responsible for most, if not all, of the network’s behavior.

In Hordijk and Fontanari (2003) Table 1, a set of 13 reactions is presented that forms the
core set of one of the best GA-evolved reaction networks. As the authors remark, this core
reaction set contains “various hypercycle-like structures”. However, the evolved reaction
network, or its core set, was never analyzed in any formal way.

Hypercycles were originally defined as a possible mechanism to build increasing chem-
ical complexity in an origin of life context (Eigen and Schuster 1979). They are indeed
autocatalytic cycles, but in a more specific (and restricted) way than autocatalytic sets in
general. In particular, each element in a hypercycle is a self-reproducing unit, whereas
in an autocatalytic set each element is generally produced from other, different, elements
(although some elements could also be self-reproducers). In other words, hypercycles are
a restricted subset of, and often show quite different dynamics than, general autocatalytic
sets. Unfortunately, the two are still all too often confused (Szathmáry 2013).

Here, we have taken the mentioned core set of 13 reactions and applied the RAF algo-
rithm to it. This results in a (max)RAF set of ten reactions. One of the 13 core reactions is
not part of the RAF set, and there are two pairs of identical reactions in the core set, but
with different catalysts. Each of these pairs can thus be considered as one reaction, respec-
tively, each one having two possible catalysts. The resulting set of ten reactions, presented
in Fig. 2 is, indeed, an actual autocatalytic (RAF) set.

Fig. 2 The 10-reaction RAF set that is contained in the 13-reaction core set of a GA-evolved reaction
network
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Note, however, that this RAF set is not a hypercycle, nor does it contain “hypercycle-
like structures”, as Hordijk and Fontanari (2003) originally claimed. In fact, none of the
elements is a self-reproducing unit. Given their strict requirements, hypercycles are not easy
to realize, which is probably why no real examples of a hypercycle exists. However, several
autocatalytic (RAF) sets have already been created in the lab (Sievers and Von Kiedrowski
1994; Ashkenasy et al. 2004; Lincoln and Joyce 2009; Vaidya et al. 2012), or observed in
living systems (Sousa et al. 2015).

Even though the RAF set of Fig. 2 has only ten reactions, it has a very rich internal
structure. Using an extension of the RAF algorithm, it is possible to generate the partially
ordered set (poset) of all the possible RAF subsets that are contained within this (maximal)
RAF set (Hordijk et al. 2012). This poset is represented as a so-called Hasse diagram in
Fig. 3. In this diagram, the 10-reaction maximal RAF is at the top. The row below it contains
the nodes representing its 9-reaction RAF subsets, the next row its 8-reaction RAF subsets,
and so on, with the irreducible RAF sets at the bottom. There is an arrow from subsetRi to
subset Rj if Rj ⊂ Ri and there is no subset Rk such that Rj ⊂ Rk ⊂ Ri (Hordijk et al.
2012). In total there are 407 nodes (i.e., possible RAF subsets) in this diagram.

This rich poset structure reflects a high level of modularity in the RAF set. This suggests
that there is not just one possible RAF set that can produce the desired functionality (i.e.,
generate the target polymer distribution), but that there may be multiple (similar) networks
that can generate the same kind of dynamical behavior. In other words, evolution probably
has a fair chance of finding a good solution for the given problem.

Molecular Cooperation and Network Structure

Jain and Krishna (2001, 2002) present “a simple mathematical model for the evolution of an
idealized chemical system to study how a network of cooperative molecular species arises
and evolves to become more complex and structured.” In their model, different molecular
species i are produced through chemical reactions (although it is not specified how these

Fig. 3 The partially ordered set of all possible RAF subsets of the 10-reaction RAF set of Fig. 2
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molecules are produced), and a given species j can be a catalyst for the production of
another species i with some small probability p.

An instance of this model can be represented as a so-called “catalysis graph”, where each
node represents a molecular species, and there is a directed arrow from node j to node i

if species j catalyzes the production of species i. An example is shown in Fig. 4. Such a
catalysis graph is completely specified by its adjacency matrix A = (aij ) where aij = 1 if
species j catalyzes the production of species i, and aij = 0 otherwise.

Given an instance of this model, the dynamics of the system is then simulated for a fixed
time T , according to rate equations specified by the adjacency matrix A, and starting from a
random initial distribution of species concentrations. At time T , the species with the lowest
concentration is replaced with a new species that has random catalytic links with the other
species according to the same probability p. The current concentrations are then perturbed
by a small random amount, and the dynamics is again simulated for a time T . Once more, the
species with the lowest concentration is replaced with a new randomly connected species,
and so on. This way, the network, and its dynamic behavior, evolves over time.

Jain and Krishna (2002) performed experiments with this model with 100 species and a
given value for the parameter p. They show how the network evolves over time, and forms
connected “cores” of mutually catalytic species. Figure 4 shows one such network (repre-
sented as a catalysis graph) that appeared at time step 6070 during one of their evolution
experiments (reprinted from Jain and Krishna (2002) Fig. 1i). White nodes indicate species
that have a concentration of zero. Black nodes indicate the connected cores, and grey nodes
the species with non-zero concentrations in the “periphery” of these cores. The existence of
such cores can also be derived from a linear algebra analysis of the adjacency matrix A. For
complete details, see Jain and Krishna (2002).

Fig. 4 One of the reaction networks, represented as a catalysis graph, during the evolution in the Jain &
Krishna model. Reprinted from Jain and Krishna (2002)
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This model can also be formally described within the RAF framework:

X = {f, i | i = 1, . . . , 100}
R = {f → i | i = 1, . . . , 100}
C = {(i, r) | i = 1, . . . , 100, r ∈ R}
F = {f }

where f is some generic food molecule (from which all other species are produced), and
each model instance contains a random subset of C.

Applying the RAF algorithm to the network shown in Fig. 4 results in a RAF set of size
67, which corresponds exactly to the black and grey nodes in the figure. In other words,
the molecular species with a non-zero concentration are exactly those that are part of the
(maximal) RAF set. Furthermore, using an extension of the RAF algorithm, the irreducible
RAF sets within this maximal RAF set can be found as well (Hordijk and Steel 2004). This
results in two irrRAFs, one of size two and one of size five, which correspond exactly with
the two cores (connected subsets of black nodes) in Fig. 4.

Note that in this model a generic food set F is implicitly assumed, from which all other
molecular species i are produced. In practice, what this means is that the F-generated part
in the definition of a RAF set is always (trivially) satisfied for any subset R′ of reactions.
In that case, loops, or more generally strongly connected components, in the catalysis graph
correspond directly to RAF sets. However, in the more general case where reactions can also
have reactants that are not food molecules, this correspondence breaks down, and merely
looking for loops or strongly connected components in the catalysis graph of an arbitrary
reaction network is not sufficient to identify autocatalytic sets (Hordijk et al. 2014a).

So, the Jain & Krishna model, and their corresponding definition of autocatalytic sets, is
rather restrictive in terms of real chemistry. However, it does show interesting behavior in
terms of network evolution, and it can be easily described and analyzed within the more gen-
eral RAF framework. Using this more general framework, it is clear that RAF sets do indeed
appear, and can be analyzed in more detail, in the evolved chemical reaction networks in
this model.

Units of Selection

Vasas et al. (2012) performed novel experiments to explicitly test for evolvability of auto-
catalytic sets. They used a polymer model based on the original experiments of Farmer et al.
(1986). In this model, molecules consist of polymers made up of two types of monomers, a
and b. There are two types of reactions: ligation and cleavage. A ligation reaction combines
two polymers into a longer one by simply concatenating them, e.g. aaa + bb → aaabb,
while a cleavage reaction breaks a polymer into two smaller ones, e.g., ababab → ab +
abab. There is a given (low) probability p that any polymer catalyzes any ligation-cleavage
reaction.

The food set consists of a random subset of polymers up to length four, and there is a
constant influx of food molecules, and also a constant outflux of all types of molecules.
This way, the dynamics of a reaction network within a compartment is modeled, starting
with only food molecules, and adding new possible ligation-cleavage reactions and catal-
ysis events to the network as new molecular species are being produced through currently
existing reactions. In addition, spontaneous (uncatalyzed) reactions between currently exist-
ing polymers can also happen at a low background rate. See Vasas et al. (2012) for a full
description of the model.
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Evolutionary experiments were then performed by randomly shuffling the current molec-
ular concentrations at given time steps, and also by modeling a population of growing and
dividing compartments. One of the main, and important, conclusions of this work is that
autocatalytic sets can be evolvable when there are multiple autocatalytic subsets in the
underlying reaction network that can (potentially) exist in different combinations within
such compartments.

An example of this is shown in Fig. 5, which is reprinted from Vasas et al. (2012) Fig. 4.
The reaction network below the blue line shows part of the original chemical network (after
randomly selecting the food set and the initial catalysis assignments). The network above
the blue line is the additional part that occurred after simulating the network dynamics for
a certain number of time steps, and also allowing spontaneous reactions to create novel
species.

The dotted orange arrows indicate two so-called “viable loops”, sets of molecules (poly-
mers) where each one catalyzes the production of the next one, in a closed loop. In that
sense, they are similar to cores in the Jain & Krishna model. However, in addition, viable
loops are also self-sustaining in the (non-trivial) sense that their molecular constituents can
be built up from the food set by using only reactions that are catalyzed by molecules that are
part of the self-sustaining subset of reactions. As the authors then argue, it is exactly these
viable loops that could form the units of selection in a pre-template, metabolism-first origin
of life scenario (Vasas et al. 2012).

Again, this model can also be formally described within the RAF framework:

X = {a,b}∗
R = {xi + xj → xi · xj , xi · xj → xi + xj | xi, xj ∈ X}
C = {(xi, r) | xi ∈ X, r ∈ R}
F = {a,b}≤4

where each model instance contains random subsets of F and C.
We have taken the reaction network of Fig. 5, which is provided in full detail (48 reac-

tions in total) in the supplementary material of Vasas et al. (2012), and applied the RAF
algorithm to it. Not surprisingly, this entire network forms a (maximal) RAF set, as only
those polymers will be produced (in the dynamical simulations) that can be formed through

Fig. 5 An example reaction network resulting from the evolutionary model of Vasas et al. (2012)
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a sequence of catalyzed reactions from the food set. More importantly, the viable loops can
be easily detected as well.

First, construct the catalysis graph (and its corresponding adjacency matrix, as explained
in the previous subsection) of the (maximal) RAF set. In this graph, the nodes represent the
molecular species that are part of the RAF set, and there is a directed link from node j to
node i if molecule type j catalyzes the production of molecule type i. Next, compute the
strongly connected components in this catalysis graph. For the RAF set that is formed by
the reaction network in Fig. 5, this results in two components, one of size two and one of
size five, which correspond exactly to the two viable loops as indicated by the dotted orange
arrows in the figure.

Note that a viable loop in itself is not necessarily a RAF set, as it generally needs other
(catalyzed) reactions to build up its constituent molecules from the food set (as is the case in
Fig. 5). However, a viable loop is what we have elsewhere termed a “pseudo RAF”, which
may not be self-sustaining (Hordijk et al. 2015). Furthermore, as was mentioned in the pre-
vious subsection, looking for loops or strongly connected components in the catalysis graph
of an arbitrary reaction network is generally not sufficient to identify RAF sets. However,
computing the strongly connected components in the catalysis graph of an actual RAF set
results in exactly the viable loops contained within it (viable loops, after all, must be part of
a RAF set).

The approach of Vasas et al. (2012) seems to be to first identify the loops (or cores)
in the catalysis graph of the entire reaction network, and then check for each of these
loops whether it is also self-sustaining (i.e., viable). The RAF algorithm, on the other hand,
efficiently checks for both of these requirements simultaneously. Furthermore, a RAF set
explicitly includes those reactions that are necessary to build up the elements comprising
its strongly connected components (i.e., viable loops), whereas in the Vasas et al. (2012)
approach these have to be inferred separately. In fact, a viable loop together with the (min-
imal) set of reactions that make it self-sustaining (given a food set), forms an irreducible
RAF, which provides more complete (and indispensable) information.

So, as in the previous examples, the current model can be captured and analyzed effi-
ciently and more completely using RAF theory, which shows that RAF sets have indeed
appeared during the evolutionary experiments. Moreover, following the conclusions of
Vasas et al. (2012), the existence of multiple RAF (sub)sets (viable cores) in a reaction net-
work is one of the necessary conditions for the possible evolvability of autocatalytic sets.
Elsewhere we have shown that, in general, one can indeed expect large numbers of RAF
subsets to exist in instances of the binary polymer model (Hordijk et al. 2015).

Multiple RAF Combinations

Wills and Henderson (2000) introduced a similar model consisting of binary polymers,
using 0s and 1s as the basic building blocks. However, in this model only single monomers
can be added to an already existing polymer, or bit string. More precisely, the set of reac-
tions in this model consists of four categories: (R1) ligation of a 0 to a bit string (polymer)
ending with a 0, (R2) ligation of a 1 to a 0, (R3) ligation of a 0 to a 1, and (R4) ligation
of a 1 to a 1. Catalysts for these reactions are also assigned randomly, but in this model a
chosen catalyst will catalyze all reactions in a given reaction category Ri (rather than just
one reaction). Finally, the food set consists of the monomers 0 and 1.

Hordijk and Steel (2014) studied a particular instance of this model in the context of the
necessary conditions for evolvability of autocatalytic sets as derived in Vasas et al. (2012).
This model instance was already fully described and analyzed using RAF theory in Hordijk
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and Steel (2014), so here we will only briefly review their main results, and simply include
it as yet another computational model in which autocatalytic sets appear and (potentially)
evolve.

The instance of the model is as follows:

X = {0, 1}≤3

R = R1 ∪ R2 ∪ R3 ∪ R4
C = {(000, r)|r ∈ R1} ∪ {(010, r)|r ∈ R2} ∪ {(101, r)|r ∈ R3} ∪ {(111, r)|r ∈ R4}
F = {0, 1}
It is then shown, using the RAF algorithm, that this model instance contains three differ-

ent irreducible RAF sets (irrRAFs), and, through dynamical simulations, that these irrRAFs
can emerge and exist in different combinations within a compartment (which satisfies one
of the necessary conditions for evolvability of autocatalytic sets). Which particular combi-
nation of irrRAFs occurs within a compartment largely depends on random chemical events,
given that all three irrRAFs need at least one of their reactions to happen spontaneously
(uncatalyzed) before the full set can come into existence. This requirement for spontaneous
reactions actually satisfies (part of) a second necessary condition for evolvability: a mecha-
nism for the spontaneous, but rare, gain of new “viable loops”, in the terminology of Vasas
et al. (2012).

So, this fourth model can also clearly be described and analyzed within the formal
RAF framework, and dynamical simulations show that it satisfies some basic necessary
conditions under which autocatalytic sets can be evolvable.

Conclusions and Discussion

We have reviewed four different computational models of chemical reaction networks and
corresponding definitions of autocatalytic sets. We found that most definitions fall short, in
one way or another, in fully capturing the concept of autocatalytic sets in its most general
way, or in a way that is compatible with other models. In particular:

– Hypercycles are too restrictive to capture the general notion of autocatalytic sets.
Furthermore, they are difficult to realize, and do not seem to exist in real chemistry.

– Cores (connected components) in the catalysis graph are restricted to models in which
all elements are directly created from some (implicit) food source. In models where this
is not the case, cores are not sufficient to identify true autocatalytic sets (i.e., they may
not be self-sustaining).

– Viable cores include this self-sustaining requirement, and are thus applicable in more
general models. However, the reactions that provide the necessary self-sustainability
(outside of the core itself) still have to be inferred separately.

On the other hand, we have shown here that these different definitions and models can all
be captured and analyzed using RAF theory, which defines the concept of autocatalytic sets
in a formal and complete way. Moreover, we have confirmed that in all of these computa-
tional models RAF sets do indeed appear and evolve, or at least have the potential to evolve,
and that they can be detected and analyzed efficiently using the RAF algorithm. This shows
both the versatility as well as the strength of the formal framework, suggesting its use as a
standard tool for studying autocatalytic sets in chemical reaction networks.

One criticism one might have is that the computational models reviewed here are rather
simplistic, in particular compared to real chemistry. However, as has been shown earlier,
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many of the main results from RAF theory hold up under a wide variety of chemically more-
realistic model assumptions, such as template-based catalysis (Hordijk and Steel 2012),
power-law distributed catalysis (Hordijk et al. 2014a), allowing only the longest polymers
to be catalysts (Hordijk et al. 2014b), allowing a moderate level of inhibition (Hordijk et al.
2015), using a partitioned polymer model as in, e.g., nucleotides vs. amino acids (Smith
et al. 2014), and even in non-polymer systems (Smith et al. 2014).

Perhaps more importantly, autocatalytic sets are not just mathematical or computational
constructs. They have been shown to exist in various experimental chemical systems (Siev-
ers and Von Kiedrowski 1994; Ashkenasy et al. 2004; Lincoln and Joyce 2009; Vaidya et al.
2012). In fact, one of these experimental systems, the RNA network of Vaidya et al. (2012),
was formally analyzed using RAF theory (Hordijk and Steel 2013). This not only repro-
duced many of the experimental results, but also provided additional insights that would be
hard to obtain from chemical experiments alone. Finally, it was recently shown, also using
RAF theory, that the metabolic network of E. coli forms an autocatalytic set (Sousa et al.
2015), indeed a truly evolved one.

In conclusion, autocatalytic sets appear and are able to evolve in various computational
models as well as in real chemical and biological reaction networks. Furthermore, this can
be formally described and efficiently analyzed using RAF theory. We believe that the ubiq-
uity of autocatalytic sets in all of these real and model systems, together with the availability
of a standard and formal analysis tool, could have important implications for a possible
metabolism-first origin of life scenario.
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