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Abstract We propose a nature-inspired model for simulating chemical reactions in a compu-
tationally resource-saving manner. The model was developed by extending our previously
proposed heuristic search algorithm, called “AmoebaSAT [Aono et al. 2013],” which was
inspired by the spatiotemporal dynamics of a single-celled amoeboid organism that exhibits
sophisticated computing capabilities in adapting to its environment efficiently [Zhu et al.
2013]. AmoebaSAT is used for solving an NP-complete combinatorial optimization problem
[Garey and Johnson 1979], “the satisfiability problem,” and finds a constraint-satisfying
solution at a speed that is dramatically faster than one of the conventionally known fastest
stochastic local search methods [Iwama and Tamaki 2004] for a class of randomly generated
problem instances [http://www.cs.ubc.ca/~hoos/5/benchm.html]. In cases where the problem
has more than one solution, AmoebaSATexhibits dynamic transition behavior among a variety
of the solutions. Inheriting these features of AmoebaSAT, we formulate “AmoebaChem,”
which explores a variety of metastable molecules in which several constraints determined by
input atoms are satisfied and generates dynamic transition processes among the metastable
molecules. AmoebaChem and its developed forms will be applied to the study of the origins of
life, to discover reaction paths for which expected or unexpected organic compounds may be
formed via unknown unstable intermediates and to estimate the likelihood of each of the
discovered paths.
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The satisfiability problem (SAT), one of the most studied constraint satisfaction
problems, is stated as follows: Given a logical formula f involving N variables xi,
does there exist an assignment xi∈{1,0} (i.e., a combination of Ntrue/false values)
that satisfies f, which ensures that the overall formula f is true? For example, a
problem instance f ¼ :x1∨x3∨:x4ð Þ ∧ x1∨:x2∨x3ð Þ ∧ x1∨x2∨x3ð Þ ∧ x1∨x2∨x4ð Þ∧
x1∨:x3∨:x4ð Þ∧ :x2∨x3∨x4ð Þ ∧ x2∨:x3∨:x4ð Þ∧ x2∨:x3∨:x4∨ð Þ∧ x2∨x3∨x4∨ð Þ has three so-
lutions (x1,x2,x3,x4)=(1,1,1,1),(1,1,1,0), and (0,1,1,0).

As the value of N increases, the total number of possible assignments grows exponentially
as 2N and no polynomial-time algorithm for finding a solution is known. SAT belongs to the
particularly difficult class of problems known as NP (nondeterministic polynomial time).
Moreover, SAT was the first problem shown to be NP-complete; this means that any problem
in NP may be reduced to SAT in polynomial time [Garey and Johnson 1979]. For this reason,
fast algorithms and systems capable of solving SAT may be applied to solve an extremely large
number of problems. Many of these problems are closely related to applications that span a
wide range of fields, including automatic inference, software/hardware verification, informa-
tion security, and bioinformatics.

Aono et al. (2013) formulated the AmoebaSAT algorithm, which utilizes the spatiotemporal
dynamics of a coupled system of 2N units corresponding to pseudopod-like branches of an
amoeba, to solve the N-variable SAT problem. Each unit is assigned a variable name i∈{1,2,
⋯,N} and a true/false value v∈{0,1} and is associated with two variables Xi,v and Ri,v. If, at
discrete time step t, a resource is supplied to unit (i,v) (corresponding to the elongation of the
amoeba branch), we denote this by Ri;v tð Þ ¼ 1, and we interpret this as meaning that the system
is considering the assignment xi= v. If no resource is supplied, we write this as Ri;v tð Þ ¼ 0:

We define a variable Xi,v∈{−1,0,1} to represent the accumulated value of the resource-
supply variable Ri,v:

X i;v t þ 1ð Þ ¼
X i;v tð Þ þ 1 if Ri;v tð Þ ¼ 1andX i;v tð Þ < 1

� �
;

X i;v tð Þ − 1 if Ri;v tð Þ ¼ 0andX i;v tð Þ > −1
� �

;
X i;v tð Þ otherwiseð Þ

8
<

:

The quantity Xi,v may be understood as an abstract representation of the displacement from
the equilibrium volume of the amoeba branches with one of the three values {−1,0,1}. In each
step, the variables X=(X1,0,X1,1,X2,0,X2,1,⋯XN,0,XN,1) are transformed into the variable as-
signments x ¼ x1; x2;⋯xNð Þ according to the following rule:

xi tð Þ ¼
0 if X i;0 tð Þ ¼ 1andX i;1 tð Þ≤0� �

;
1 if X x;1 tð Þ ¼ 1andX i;0 tð Þ≤0� �

;
xi t−1ð Þ otherwiseð Þ

8
<

:

We put Si,v(t)=1orSi,v(t)=0 to indicate the application or non-application, respectively, of a
signal (stimulus) that “bounces back” the supply of resources to Ri;v (corresponding to an
repulsive stimulus inhibiting the elongation of the amoeba branch). For now, we wish to focus
on the leftmost clause (¬x1∨x3∨¬x4) in f. If we have both x1=1 and x3=0, then we require that
x4 should not be 1 (i.e., x4≠1) in order for this clause to be true; indeed, otherwise we find
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(¬(x1=1)∨x3=0∨¬(x4=1))=0. For this reason, if at step t we have both X1,1(t)=1andX3,0(t)=
1, then at step t+1 we apply a bounceback signal to R4,1(t) (i.e., we determine S4,1(t+1)=1, so
that a resource is supplied to unit (4,1) with a certain low probability P4,1(t+1). We call this
rule a “bounceback rule”. Similarly, from the leftmost clause we can read off the bounceback
rules X1,1(t)=1∧X4,1(t)=1⇒S3,0(t+1)=1andX3,0(t)=1∧X4,1(t)=1⇒S1,1(t+1)=1. We proceed
similarly to investigate all clauses in f to analyze mutual interdependencies between the
variables and determine a set of all bounceback rules. On the other hand, for each unit (i,v)
in which the bounceback signal is not applied (i.e., Si,v(t)=0), the resource supply occurs (i.e.,
Ri,v(t)=1) with a certain high probability Pi,v(t).

Under the bounceback rules defined in Aono et al. (2013), if a system state X=(X1,0,X1,1,
X2,0,X2,1,⋯XN,0,XN,1) satisfies, for all (i,v), either the condition Xi,v(t)=1⇔Si,v(t)=0 or the
condition Xi,v(t)≤0⇔Si,v(t)=1, then the system is “stable”. If this stability criterion is not
satisfied, there is a high probability that the sign of Xi,v(t+1) differs from that of Xi,v(t)
depending on Si,v(t), and the system state X is unstable. Figure 1 shows an example of time
evolution of AmoebaSAT.

To evaluate the solution-searching performance of AmoebaSAT, we focused on a group of
problems known as Uniform Random-3-SAT, in which all clauses are formed from three
literals from the benchmark problems offered by the online SATLIB library [http://www.cs.
ubc.ca/~hoos/5/benchm.html]. We selected 100 instances with N=75 variables and 100
instances with N=100 variables. For performance comparison, we considered WalkSAT, one
of the categories of local search algorithms presently known to be the fastest heuristic methods
for randomly generated 3-SAT instances [Iwama and Tamaki 2004]. WalkSAT configures its
initial state by assigning all variables to random true or false values. Then the algorithm selects
at random one clause from among the clauses that are not satisfied (i.e., are false) with the
variable assignments at a given time and then chooses at random a single variable from within
that clause to flip (changing 0 to 1 or 1 to 0). The algorithm then iterates this basic behavior.
For each problem instance, we ran 500 Monte Carlo simulations of both the AmoebaSAT and
WalkSAT algorithms and compared the average number of time steps (number of iterations) t
required to arrive at the solution. We found that AmoebaSAT is able to find the solution with a
speed orders of magnitude greater than that of WalkSAT [Aono et al. 2013].

Understanding the origins of the high performance exhibited by AmoebaSAT is a subject of
current investigation. Whereas WalkSAT only updates one variable in each step, AmoebaSAT
incorporates many processes, which collectively update multiple variables and evolve

Fig. 1 An example of time evolution of AmoebaSAT solving the problem instance f, which has three solutions
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simultaneously while interfering with each other through the bounceback control mechanism.
Analytical results have been obtained that suggest that this unique “concurrent search” feature
of the algorithm is the source of its high performance.

As shown in Fig. 1, AmoebaSAT not only stabilized in a first-found solution but also
exhibited probabilistic transition behavior among a number of solutions. The duration for
which a solution is maintained, which corresponds to the time spent in one of metastable states,
could be seen as representing with the concept of “thermodynamic stability”. The transition
probabilities between two solutions vary depending on each pair of solutions, suggesting that
the transition probability may contain information on “kinetics”. For example, the transition
probability from a solution (x1,x2,x3,x4)=(1,1,1,1)to(1,1,1,0) is higher than that to (0,1,1,0),
because the former occurs with a bit flip whereas the latter requires two simultaneous bit flips
that occur only infrequently.

Here we propose a new model, called “AmoebaChem,” that is an extended form of
AmoebaSAT. In this article, we give only a brief explanation on AmoebaChem due to space
limitations, and its detailed descriptions and results will be reported elsewhere. AmoebaChem
considers a molecule as a (meta) stable solution in which several types of bounceback rules,
which represent physical and chemical constraints including Lewis’s “octet rule,” are satisfied
by all the atoms in the molecule. Figures 2 and 3 show the bounceback rules that are generated
automatically when we input two nitrogen atoms and six hydrogen atoms. As shown in Fig. 4,
each unit of AmoebaChem, which is depicted as a box marked with a 0 or 1 in Figs. 2 and 3,
represents a bonding state of valence electrons owned by two atoms.

Fig. 2 Bounceback rules in AmoebaChem, where two nitrogen atoms and six hydrogen atoms are introduced.
The table shows that an N2 molecule and three H2 molecules are formed
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A major difference between AmoebaChem and AmoebaSAT is that the bounceback signal
intensities of the former (SType(t)) are given as parameters taking continuous values in a real
interval [0.0,1.0] whereas that of the latter are binarized as S(t)∈{0,1}. With smaller
bounceback signal intensities, the behavior of AmoebaChem becomes more “unstable” since

Fig. 3 Bounceback rules in AmoebaChem, where two nitrogen atoms and six hydrogen atoms are introduced.
The table shows that two ammonia molecules NH3 are formed

Fig. 4 Formulation of AmoebaChem
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more aggressive probabilistic fluctuations (perturbations) are introduced, implying that the
equivalent of “temperature” can be raised by lowering the parameters. Moreover, by changing
the parameters, the equivalent of “kinetics” can be modulated. In fact, Fig. 5 shows that, for
example, the transition probability from the initially given 1-N2-3-H2 state (Fig. 2) to a 2-NH3

state (Fig. 3) changed significantly as the parameter set was altered. It would be important to
establish a methodology to tune the parameters for making the behavior of AmoebaSAT more
realistic so that it can be consistent with experimentally observed reaction data.

Although each unit of AmoebaChem introduced in this article represents a bonding state of
valence electrons owned by two atoms, it can be replaced with other representations depending
on purposes, for example, the number of bondings between two atoms. We can also simulate
more realistic aspects in organic chemistry such as polarization, ionization, and radical reactions.

These models will be useful for finding unknown intermediate states that may exist before
expected or unexpected organic products are formed.

If a variety of reaction paths can be found, we will be able to estimate the likelihood of each
path by analyzing the durations and transition probabilities of the discovered intermediates.

We can also develop a simulator for RNA (secondary) structure prediction by considering
each unit as representing a nucleotide and by introducing different bounceback rules that
emulate complementary base-pairing rules and their related constraints. Furthermore, replacing
nucleotides with amino acids, this simulator may be extended to protein (tertiary) structure
prediction, if appropriate bounceback rules that represent physical and chemical constraints of
protein folding such as hydrophobic-hydrophilic interactions can be introduced. Further
investigations and developments will be devoted to advancing the study of the origins of life.
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Fig. 5 Distribution of first found stable states obtained after 500 trials of Monte Carlo simulation, where an N2

molecule and two H2 molecules are introduced initially. a and b show the results obtained with different
parameter sets (bounceback signal intensities) as indicated in the insets
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