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Abstract We reexamine Eigen’s paradox using the asymptotic limit theorems of
information theory. Applying the homology between information source uncertainty
and free energy density, under rate distortion constraints, the error catastrophe
emerges as the lowest energy state for simple prebiotic systems without error
correction. Invoking the usual compartmentalization – i.e., ‘vesicles’ – and using
a Red Queen argument, suggests that information crosstalk between two or more
properly interacting structures can initiate a coevolutionary dynamic having at least
two quasi-stable states. The first is a low energy realm near the error threshold, and,
depending on available energy, the second can approach zero error as a limit. A
large deviations argument produces jet-like global transitions which, over sufficient
time, may enable shifts between the many quasi-stable modes available to more
complicated structures, ‘locking in’ to some subset of the various possible low error
rate chemical systems, which become subject to development by selection and chance
extinction. Energy availability, according to the model, is thus a powerful necessary
condition for low error rate replication, suggesting that some fundamental prebiotic
ecosystem transformation entrained reproductive fidelity. This work, then, supports
speculation that our RNA/DNA world may indeed be only the chance result of a very
broad prebiotic evolutionary phenomenon. Processes in vitro, or ex planeta, might
have other outcomes.
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Introduction

Manfred Eigen’s evolution model (Eigen 1971, 1996) stands as a landmark attempt
at coherently relating evolution, molecular biology, and information theory. That
work views selection as condensation in information space, and evolution as a
succession of phase transformations. Indeed, Eigen’s quasispecies model, with its
error catastrophe, corresponds exactly to a phase transition in a two dimensional
Ising system (Leuthausser 1986). The essence of Eigen’s paradox is that the error
catastrophe limits genome length in RNA precursor organisms to much less than
observed in DNA organisms having error correcting enzymes, which, themselves,
cannot be created in the absence of just such a long genome.

As Holmes (2005) put it,

To create more genetic complexity, it is therefore necessary to encode more
information in longer genes by using a replication system with greater fidelity.
But there’s the catch: to replicate with greater fidelity requires a more accurate
and hence complex replication enzyme, but such an enzyme cannot be created
because this will itself require a longer gene, and longer genes will breach the
error threshold.

Here we will reconsider Eigen’s paradox from a highly formal perspective which
hews quite closely to the fundamental asymptotic limit theorems of information
theory, in particular the Rate Distortion Theorem, and its zero-error limit, the
Shannon–McMillan, or Source Coding Theorem. These, like the Central Limit
Theorem in parametric statistics, permit derivation of ‘regression-like’ models which
can be applied to real data. We use these theorems in a principled manner to
derive the high rate of mutation inherent to RNA virus replication and suggest a
plausible ‘Red Queen’ coevolutionary ratchet (Van Valen 1973) leading toward an
evolutionary condensation resulting in effective error-correction mechanisms.

Our program has these components:

[1] An increasingly complicated network of simple interacting ‘RNA-like’ organ-
isms creates a collective biochemical system – a ‘vesicle’ – which, as a parallel
communication channel, can have a much higher channel capacity for low-error
replication than do the individual components.

[2] Several such distinct, properly interacting, collectives – compartments in the
sense of Eigen and Szathmary – become each others’ most intimate environ-
ments, generating a coevolutionary ratchet resulting in a Red Queen structure
which, given sufficient energy, can support quasi-stable states with very low
reproductive error rates.

[3] High error rate, but low energy, systems-of-vesicles can become subject to
systematic ‘large deviations’ excursions which, over sufficient time, can lead to
the establishment of a distribution of low error rate, but higher energy, chemical
systems: even prebiological quasi-organisms can, apparently, build pyramids,
as it were. Thus many different chemistry-of-life solutions seem possible, and
these, of course, would be subject to evolutionary processes of selection and
chance extinction.

[4] The latter steps depend critically on the availability of adequate energy
sources, which, we hold, will be largely driven by changes in the protoecosys-
tem, i.e., ecosystem resilience domain shifts, in the sense of Holling (1973)
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(Gunderson 2000; Wallace and Wallace 2008). One imagines availability of a
new metabolic cycle, onset of predation, and/or crude photosynthesis as possible
examples.

This is not, except perhaps for [4], a particularly new perspective, being essentially
similar to the ‘bags of genes’ (Holmes 2005) model of Szathmary and colleagues
(Szathmary and Demeter 1987; Szathmary 1989, 2006; Fontanari et al. 2006) and, of
course, to Eigen’s hypercycle compartment model (Eigen 1996), but with hypercycles
generalized to broad coevolutionary interactions. Our innovations lie in a highly
formal use of the asymptotic limit theorems of information theory and in the system-
atic extension of phase transition techniques from statistical physics to information
theory via ‘biological’ renormalizations.

Although the basic line of reasoning is fairly straightforward, a number of
mathematical tasks need to be confronted. The first is to reconfigure the error
catastrophe of Eigen’s model in terms of average distortion. That done, the famous
homology between information source uncertainty and free energy density can be
extended to the rate distortion function, and, since the rate distortion limit is always
a non-increasing convex function of the distortion, the basic model emerges as a
kind of energy minimization near the error catastrophe. Pettini’s (2007) topological
hypothesis regarding the relation between topological shifts in structure and phase
transition can than be applied, using characteristic ‘biological renormalizations’ to
specify different forms of phase transition. A theory of ‘all possible’ Eigen models
is direct. For analogs to the Gaussian channel, zero distortion – no error at all – is
unattainable, requiring infinite energy. Such systems would, then, always be subject
to some mutational variation.

A standard coevolutionary argument applied to two or more vesicles interacting
through a mutual information crosstalk produces the essential results, crudely similar
to the set of stable strategies of elaborate stochastic coevolutionary game theory
models (e.g., Champagnat et al. 2006). Again, the simplest possible system has two
quasi-equilibrium points, one near the error limit, which is the low energy solution,
and the other near zero error, the high energy solution.

The many different possible chemical strategies in this broad spread of possible
solutions would themselves become higher order Darwinian individuals subject to
the vagaries of evolutionary process in the context of large deviations, producing,
on our planet, the familiar RNA/DNA chemistry basis of life. Other possibilities,
however, seem particularly interesting, and may perhaps be observed in vitro, or
ex planeta.

Reconsidering the Eigen Model

Following Campos and Fontanari (1999), the Eigen quasispecies model can be
characterized in its binary version as follows:

A molecule is represented by a string of L digits, (s1, s2, ..., sL) with the variates sα

allowed to take only two different values, each of which represents a different type
of monomer used to build the molecule. The concentrations xi of molecules of type
i = 1, 2, ..., 2L evolve in time according to the equations

dxi/dt =
∑

j
Wi, jx j − �(t)xi (1)
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where �(t) is a dilution flux that keeps the total concentration constant, determined
by the condition that

∑
i dxi/dt = 0. Taking

∑
i xi = 1 gives

� =
∑

i, j
Wi, jxj. (2)

The elements of Wi, j, the replication matrix, depend on the replication rate or
fitness Ai of the strings of type i, as well as on the Hamming distance d(i, j ) between
strings i and j. They are

Wi,i = Aiqν (3)

and

Wi, j = A jqL−d(i, j )[1 − q]d(i, j ), i �= j. (4)

Here 0 ≤ q ≤ 1 is the single-digit replication accuracy, assumed the same for all
digits. Again, Leuthausser (1986) shows this model corresponds exactly to that of a
two dimensional Ising system.

The famous figure on p.83 of Eigen (1996), taken from Swetina and Schuster
(1982), shows a numerical realization of the model for L = 50. The fittest sequence
has Hamming distortion d = 0, and is characterized as the ‘Master’ sequence. As
the error rate (1 − q) increases from zero, the proportion of the population corre-
sponding to the master sequence, x0, declines, while those corresponding to other
distortion values rise accordingly. The essential point, however, is that, for all values
below the critical error threshold, the average across the quasispecies, all the xd,
what Eigen calls the ‘consensus sequence’, remains precisely the master sequence
itself, even while the proportion constituting the master sequence itself falls. After
the error threshold, however, that consensus average is lost, and the distributions
become strictly random: the information of the master sequence has been dissipated.

Our interest is in reconsidering this effect from the perspective of the average
distortion. As the error threshold is approached from below, the proportion corre-
sponding the master sequence, having d = 0, declines, while the proportion of the
population having d > 0 increases. Thus the average distortion, D = ∑

j djxj, such
that

∑
i xi = 1, itself increases monotonically as the error rate approaches the error

threshold, until a critical value of the average distortion D is reached.
The Rate Distortion Theorem, described in more detail below, states that there

is a minimum necessary rate of transmission of information, R(D), through an
information channel for any given average distortion D. That is, rates of trans-
mission – channel capacities – greater than R(D) are guaranteed to have average
distortion less than D for any chosen distortion measure (Cover and Thomas 1991;
Dembo and Zeitouni 1998).

We have translated the Eigen model from a focus on a single error threshold into
one involving a critical value of average distortion in the transmission of information,
and this will prove to be important for our subsequent modeling exercise.

We will, like others, attempt to solve Eigen’s paradox by invoking a population of
related mutants as constituting a parallel transmission channel having a sufficiently
high capacity to ensure collective reproductive fidelity in spite of individual molecu-
lar reproductive errors: The ‘consensus average’ becomes the essential reproductive
message, and different such populations are separated into compartments or vesicles
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in the sense of Szathmary and Demeter (1987). These interact to become each other’s
principal environments, engaging in a crosstalk that enables the coevolutionary
ratchet. Many versions of this mechanism may have developed, becoming subject
to evolutionary selection and chance extinction. Certainly both Eigen’s compart-
ment hypercycle Eigen (1996) and Szathmary’s stochastic corrector (Szathmary and
Demeter 1987) solve the essential problem. Likely, so too may a plethora of different
structures, or, as Szathmary (1989) comments, ‘while it is true that hypercycles need
compartments, do compartments need hypercycles?’. Here we will attempt a kind of
general compartment model, using a broad information-theoretic brush.

Genetic Inheritance as an Information Source

Eigen’s and Szathmary’s perspective is not the only information theoretic analysis
of reproduction, although it certainly takes things to their earliest history. Adami
et al. (2000) make a case for reinterpreting the transmission of genetic heritage in
terms of a formal information process. They assert that genomic complexity can be
identified with the amount of information a sequence stores about its environment:
genetic complexity can be defined in a consistent information-theoretic manner. In
their view, information cannot exist in a vacuum and must have an instantiation.
For biological systems the instantiation of information is DNA. To some extent it
is the blueprint of an organism and thus information about its own structure. More
specifically, it is a blueprint of how to build an organism that can best survive in its
native environment, and pass on that information to its progeny. They assert that an
organism’s DNA thus is not only a ‘book’ about the organism, but also a book about
the environment it lives in, including the species it coevolves with. They identify the
complexity of genomes by the amount of information they encode about the world
in which they have evolved.

Ofria et al. (2003) continue in the same direction and argue that genomic complex-
ity can be defined rigorously within standard information theory as the information
the genome of an organism contains about its environment. From the point of view
of information theory, it is convenient to view evolution on the molecular level as a
collection of information transmission channels, subject to a number of constraints.
In these channels, they state, the organism’s genomes code for the information
(a message) to be transmitted from progenitor to offspring, and are subject to
noise due to an imperfect replication process. Information theory is concerned with
analyzing the properties of such channels, how much information can be transmitted
and how the rate of perfect information transmission of such a channel can be
maximized.

Adami and Cerf (2000) argue, using simple models of genetic structure, that the
information content, or complexity, of a genomic string by itself (without referring to
an environment) is a meaningless concept and a change in environment (catastrophic
or otherwise) generally leads to a pathological reduction in complexity.

The transmission of genetic information is thus a contextual matter which involves
operation of an information source which, according to this development, must
interact with embedding (ecosystem) structures.

It is much in this spirit that we now address the Eigen paradox, beginning with a
brief review of some facts and theorems from information theory.
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Information Sources and Their Dynamics

Channel Capacity

Messages from a source, seen as symbols xj from some alphabet, each having proba-
bilities Pj associated with a random variable X, are ‘encoded’ into the language of a
‘transmission channel’, a random variable Y with symbols yk, having probabilities Pk,
possibly with error. Someone receiving the symbol yk then retranslates it (without
error) into some xk, which may or may not be the same as the xj that was sent.

More formally, the message sent along the channel is characterized by a random
variable X having the distribution

P(X = xj) = Pj, j = 1, ..., M.

The channel through which the message is sent is characterized by a second
random variable Y having the distribution

P(Y = yk) = Pk, k = 1, ..., L.

Let the joint probability distribution of X and Y be defined as

P(X = xj, Y = yk) = P(xj, yk) = Pj,k

and the conditional probability of Y given X as

P(Y = yk | X = xj) = P(yk | xj).

Then the Shannon uncertainty of X and Y independently and the joint uncertainty
of X and Y together are defined respectively as

H(X) = −
∑M

j=1
Pj log(Pj)

H(Y) = −
∑L

k=1
Pk log(Pk)

H(X, Y) = −
∑M

j=1

∑L

k=1
Pj,k log(Pj,k). (5)

The conditional uncertainty of Y given X is defined as

H(Y | X) = −
∑M

j=1

∑L

k=1
Pj,k log[P(yk | xj)] (6)

For any two stochastic variates X and Y, H(Y) ≥ H(Y | X), as knowledge of X
generally gives some knowledge of Y. Equality occurs only in the case of stochastic
independence.

Since P(xj, yk) = P(xj)P(yk | xj), we have

H(X | Y) = H(X, Y) − H(Y)

The information transmitted by translating the variable X into the channel
transmission variable Y – possibly with error – and then retranslating without error
the transmitted Y back into X is defined as

I(X | Y) ≡ H(X) − H(X | Y) = H(X) + H(Y) − H(X, Y). (7)
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See, for example, Ash (1990), Khinchin (1957) or Cover and Thomas (1991) for a
modern treatment. The original development can be found in Shannon and Weaver
(1949) and Shannon (1957). The essential point is that if there is no uncertainty in X
given the channel Y, then there is no loss of information through transmission.

In general this will not be true, and herein lies the essence of the theory.
Given a fixed vocabulary for the transmitted variable X, and a fixed vocabulary

and probability distribution for the channel Y, we may vary the probability distrib-
ution of X in such a way as to maximize the information sent. The capacity of the
channel is defined as

C ≡ maxP(X) I(X | Y), (8)

subject to the subsidiary condition that
∑

P(X) = 1.
The central mechanism of the Shannon Coding Theorem which enables the

sending of a message with arbitrarily small error along the channel Y at any rate
R < C is to encode it in longer and longer ‘typical’ sequences of the variable X;
that is, those sequences whose distribution of symbols approximates the probability
distribution P(X) above which maximizes C.

If S(n) is the number of such ‘typical’ sequences of length n, then

log[S(n)] ≈ nH(X)

where H(X) is the uncertainty of the stochastic variable defined above. Some
consideration shows that S(n) is much less than the total number of possible messages
of length n. Thus, as n → ∞, only a vanishingly small fraction of all possible messages
is meaningful in this sense. This observation, after some considerable development,
is what allows the Coding Theorem to work so well. In sum, the prescription is to
encode messages in typical sequences, which are sent at very nearly the capacity of
the channel. As the encoded messages become longer and longer, their maximum
possible rate of transmission without error approaches channel capacity as a limit.
Again, Ash (1990), Khinchin (1957) and Cover and Thomas (1991) provide details.

A trivial but important generalization of the simple channel without memory is the
Parallel Channel. Consider a set of K discrete memoryless channels having capacities
C1, ..., CK. Assume these are connected in parallel in the sense that each unit of
time an arbitrary symbol is transmitted and received over each channel. The input
x = (x1, ...xK) to the parallel channel is a K-vector whose components are inputs to
the individual channels, and the output y = (y1, ..., yK) is a K-vector whose com-
ponents are the individual channel outputs. The capacity of the parallel channel is

CTotal =
∑K

i=1
Ci. (9)

Thus the consensus sequence in a compartment or vesicle, which is clearly a
parallel channel, can be transmitted at a much higher overall rate than is possible
using individual replicators. This is no small matter.

The Shannon–McMillan Theorem

Not all statements – sequences of the random variable X – are equivalent. According
to the structure of the underlying language of which the message is a particular
expression, some messages are more ‘meaningful’ than others, that is, in accord with
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the grammar and syntax of the language. The other principal result from information
theory, the Shannon–McMillan or Asymptotic Equipartition Theorem, describes
how messages themselves are to be classified.

Suppose a long sequence of symbols is chosen, using the output of the random
variable X above, so that an output sequence of length n, with the form

xn = (α0, α1, ..., αn−1)

has joint and conditional probabilities

P
(
X0 = α0, X1 = α1, ..., Xn−1 = αn−1

)

P
(
Xn = αn | X0 = α0, ..., Xn−1 = αn−1

)
. (10)

Using these probabilities we may calculate the conditional uncertainty

H
(
Xn | X0, X1, ..., Xn−1

)
.

The uncertainty of the information source, H[X], is defined as

H[X] ≡ limn→∞ H
(
Xn | X0, X1, ..., Xn−1

)
. (11)

In general

H
(
Xn | X0, X1, ..., Xn−1

) ≤ H(Xn).

Only if the random variables X j are all stochastically independent does equality
hold. If there is a maximum n such that, for all m > 0

H
(
Xn+m | X0, ..., Xn+m−1

) = H
(
Xn | X0, ..., Xn−1

)
,

then the source is said to be of order n. It is easy to show that

H[X] = lim
n→∞

H
(
X0, ...Xn

)

n + 1
.

In general the outputs of the X j, j = 0, 1, ..., n are dependent. That is, the output
of the communication process at step n depends on previous steps. Such serial
correlation, in fact, is the very structure which enables most of what follows.

Here, however, the processes are all assumed stationary in time, that is, the serial
correlations do not change in time, and the system is stationary.

A very broad class of such self-correlated, memoryless, information sources, the
so-called ergodic sources for which the long-run relative frequency of a sequence con-
verges stochastically to the probability assigned to it, have a particularly interesting
property:

It is possible, in the limit of large n, to divide all sequences of outputs of an ergodic
information source into two distinct sets, S1 and S2, having, respectively, very high
and very low probabilities of occurrence, with the source uncertainty providing the
splitting criterion. In particular the Shannon–McMillan Theorem states that, for a
(long) sequence having n (serially correlated) elements, the number of ‘meaningful’
sequences, N(n) – those belonging to set S1 – will satisfy the relation

log[N(n)]/n ≈ H[X]. (12)
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More formally,

limn→∞ log[N(n)]/n = H[X]
= limn→∞ H

(
Xn | X0, ..., Xn−1

)

= limn→∞ H
(
X0, ..., Xn

)
/(n + 1). (13)

The Shannon Coding theorem, by means of an analogous splitting argument,
shows that for any rate R < C, where C is the channel capacity, a message may
be sent without error, using the probability distribution for X which maximizes
I(X | Y) as the coding scheme. Using the internal structures of the information
source permits limiting attention only to meaningful sequences of symbols. This
restriction can greatly raise the maximum possible rate at which information can
be transmitted with arbitrarily small error: if there are M possible symbols and the
uncertainty of the source is H[X], then the effective capacity of the channel C, using
this ‘source coding,’ becomes (Ash 1990)

CE = C log(M)/H[X]. (14)

As H[X] ≤ log(M), with equality only for stochastically independent, uniformly
distributed random variables,

CE ≥ C. (15)

Note that, for a given channel capacity, the condition

H[X] ≤ C (16)

always holds.
Source uncertainty has a very important heuristic interpretation. As Ash (1990)

puts it,

...[W]e may regard a portion of text in a particular language as being produced
by an information source. The probabilities P[Xn = αn | X0 = α0, ..., Xn−1 =
αn−1) may be estimated from the available data about the language; in this
way we can estimate the uncertainty associated with the language. A large
uncertainty means, by the [Shannon–McMillan Theorem], a large number
of ‘meaningful’ sequences. Thus given two languages with uncertainties H1

and H2 respectively, if H1 > H2, then in the absence of noise it is easier to
communicate in the first language; more can be said in the same amount of
time. On the other hand, it will be easier to reconstruct a scrambled portion of
text in the second language, since fewer of the possible sequences of length n
are meaningful.

The Rate Distortion Theorem

The Shannon–McMillan Theorem is the zero error limit of the Rate Distortion
Theorem (Dembo and Zeitouni 1998; Cover and Thomas 1991), which can be
expressed in terms of a splitting criterion that identifies high probability pairs of
sequences. We follow closely the treatment of Cover and Thomas (1991).

The origin of the problem is the question of representing one information source
by a simpler one in such a way that the least information is lost. For example we
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might have a continuous variate between 0 and 100, and wish to represent it in terms
of a small set of integers in a way that minimizes the inevitable distortion that process
creates. Typically, for example, an analog audio signal will be replaced by a ‘digital’
one. The problem is to do this in a way which least distorts the reconstructed audio
waveform.

Suppose the original stationary, ergodic information source Y with output from a
particular alphabet generates sequences of the form

yn = y1, ..., yn.

These are ‘digitized,’ in some sense, producing a chain of ‘digitized values’

b n = b 1, ..., b n,

where the b -alphabet is much more restricted than the y-alphabet.
b n is, in turn, deterministically retranslated into a reproduction of the original

signal yn. That is, each b m is mapped on to a unique n-length y-sequence in the
alphabet of the information source Y:

b m → ŷn = ŷ1, ..., ŷn.

Note, however, that many yn sequences may be mapped onto the same retransla-
tion sequence ŷn, so that information will, in general, be lost.

The central problem is to minimize that loss.
The retranslation process defines a new stationary, ergodic information source, Ŷ.
The next step is to define a distortion measure, d(y, ŷ), which compares the original

to the retranslated path. For example the Hamming distortion is

d(y, ŷ) = 1, y �= ŷ

d(y, ŷ) = 0, y = ŷ. (17)

For continuous variates the Squared error distortion is

d(y, ŷ) = (y − ŷ)2. (18)

The Rate Distortion Theorem applies to a broad class of possible distortion
measures.

The distortion between paths yn and ŷn is defined as

d(yn, ŷn) = (1/n)
∑n

j=1
d(yj, ŷj). (19)

Suppose that with each path yn and b n-path retranslation into the y-language
and denoted yn, there are associated individual, joint, and conditional probability
distributions

p(yn), p(ŷn), p(yn | ŷn).

The average distortion is defined as

D ≡
∑

yn
p(yn)d(yn, ŷn). (20)
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It is possible, using the distributions given above, to define the information
transmitted from the incoming Y to the outgoing Ŷ process in the usual manner,
using the Shannon source uncertainty of the strings:

I(Y, Ŷ) ≡ H(Y) − H(Y | Ŷ) = H(Y) + H(Ŷ) − H(Y, Ŷ).

If there is no uncertainty in Y given the retranslation Ŷ, then no information
is lost.

In general, this will not be true.
The information rate distortion function R(D) for a source Y with a distortion

measure d(y, ŷ) is defined as

R(D) = min
p(y,ŷ);∑(y,ŷ) p(y)p(y|ŷ)d(y,ŷ)≤D

I(Y, Ŷ). (21)

The minimization is over all conditional distributions p(y | ŷ) for which the joint
distribution p(y, ŷ) = p(y)p(y | ŷ) satisfies the average distortion constraint (i.e.,
average distortion ≤ D).

The Rate Distortion Theorem states that R(D) is the minimum necessary rate
of information transmission (effectively, the channel capacity) so that the average
distortion does not exceed the distortion D. Cover and Thomas (1991) or Dembo
and Zeitouni (1998) provide details.

Pairs of sequences (yn, ŷn) can be defined as distortion typical; that is, for a given
average distortion D, defined in terms of a particular measure, pairs of sequences can
be divided into two sets, a high probability one containing a relatively small number
of (matched) pairs with d(yn, ŷn) ≤ D, and a low probability one containing most
pairs. As n → ∞, the smaller set approaches unit probability, and, for those pairs,

p(yn) ≥ p(ŷn | yn) exp[−nI(Y, Ŷ)]. (22)

Thus, roughly speaking, I(Y, Ŷ) embodies the splitting criterion between high and
low probability pairs of paths.

For the theory of interacting information sources, then, I(Y, Ŷ) can play the role
of H in the dynamic treatment that follows.

The rate distortion function of Eq. 21 can actually be calculated in many cases by
using a Lagrange multiplier method – see Section 13.7 of Cover and Thomas (1991).
For a simple Gaussian channel having noise with zero mean and variance σ 2 then

R(D) = 1/2 log[σ 2/D], 0 ≤ D ≤ σ 2

R(D) = 0, D > σ 2. (23)

For this particular channel, zero distortion, no mutations at all, requires an infinite
channel capacity, which, we will show, requires infinite energy.

A second important observation is that any rate distortion function R(D), fol-
lowing the arguments of Cover and Thomas (1991, Lemma 13.4.1) is necessarily a
decreasing convex function of D, that is, a reverse-J-shaped curve. This requirement,
like the singularity of Gaussian-like channels at zero distortion, has profound conse-
quences for replication dynamics.
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Information System Phase Transitions

As many have noted, the first part of Eq. 13,

H ≡ lim
n→∞ log[N(n)]/n,

is homologous to the thermodynamic limit in the definition of the free energy density
of a physical system. This has the form

F(K) = lim
V→∞

log[Z (K)]/V, (24)

where F is the free energy density, K the inverse temperature, V the system volume,
and Z (K) is the partition function defined by the system Hamiltonian. Any good
statistical mechanics text will provide details (e.g., Landau and Lifshitz 2007).

The Appendix shows how this homology permits a highly natural generalization of
standard renormalization methods from statistical mechanics to information theory,
producing phase transitions and analogs to evolutionary punctuation in systems
characterized by piecewise, adiabatically stationary, ergodic information sources.
Thus biological phase changes appear to be ubiquitous in natural systems.

The approach uses a mean field approximation in which average strength (or prob-
ability) of nondisjunctive linkages between interacting nodes (vesicles) – crosstalk –
serves as a kind of inverse temperature parameter. Phase transitions can then be
described using various ‘biological’ renormalization strategies, in which universality
class tuning becomes a principal second order mechanism. These are continuous
phase transitions in that there is no latent heat required, as in boiling water until it
turns to steam, although a treatment of ecosystem resilience in dynamic manifolds
(e.g., Wallace and Wallace 2008) can perhaps be viewed as an analog. Under a
resilience domain shift the underlying system topology changes, either within or
between dynamic manifolds, and this can be viewed as similar to the fundamental
geometric structural change water undergoes when it transforms from crystal to
liquid, or from liquid to gas. Indeed, recent work (Franzosi and Pettini 2004; Pettini
2007) uses Morse theory from differential topology to identify necessary conditions
for topological shifts on dynamic manifolds of systems undergoing first and second
order phase transition. The converse, sufficiency, is an open question. See the
Appendix for a brief introduction to Morse Theory.

The important point is that the homology between Eqs. 12 and 24 ensures that
some form of emergent behavior, akin to a physical phase transition, is inevitable for
a broad class of systems which transmit information.

Phenomenological Onsager Theory

The homology between the information source uncertainty and the free energy
density of a physical system arises, in part, from the formal similarity between their
definitions in the asymptotic limit. Information source uncertainty can be defined as
in Eq. 13. This is, as noted, quite analogous to the free energy density of a physical
system, Eq. 24.

Feynman (1996) provides a series of physical examples, based on Bennett’s work,
where this homology is, in fact, an identity, albeit for very simple systems. Bennett
argues, in terms of idealized irreducibly elementary computing machines, that the
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information contained in a message can be viewed as the work saved by not needing
to recompute what has been transmitted.

Feynman explores in some detail Bennett’s ideal microscopic machine designed
to extract useful work from a transmitted message. The essential argument is that
computing, in any form, takes work. Thus the more complicated a process, measured
by its information source uncertainty, the greater its energy consumption, and our
ability to provide energy is limited. In a psychological context, the striking phenom-
enon of inattentional blindness, Wallace (2007) argues, emerges as a thermodynamic
limit on processing capacity in a focused cognitive system, that is, one which has been
strongly configured about a particular task. Other biological generalizations seem
obvious.

Understanding the time dynamics of information systems away from the kind
of phase transition critical points described above and in the Appendix requires a
phenomenology similar to the Onsager relations of nonequilibrium thermodynamics.
This will lead to a more general theory involving large-scale topological changes in
the sense of Morse theory.

If the source uncertainty associated with a biological process is parametized by
some vector of quantities K ≡ (K1, ..., Km), then, in analogy with nonequilibrium
thermodynamics, gradients in the Kj of the disorder, defined as

S ≡ H(K) −
∑m

j=1
Kj∂ H/∂Kj (25)

become of central interest.
Equation 25 is similar to the definition of entropy in terms of the free energy

density of a physical system, as suggested by the homology between free energy
density and information source uncertainty described above.

Pursuing the homology further, the generalized Onsager relations defining tem-
poral dynamics become

dKj/dt =
∑

i

L j,i∂S/∂Ki, (26)

where the L j,i are, in first order, constants reflecting the nature of the underlying
phenomena. The L-matrix is to be viewed empirically, in the same spirit as the
slope and intercept of a regression model, and may have structure far different than
familiar from simpler chemical or physical processes. The ∂S/∂K are analogous
to thermodynamic forces in a chemical system, and may be subject to override
by external physiological driving mechanisms: biological systems, unlike physical
systems, can make choices as to energy allocation.

That is, an essential contrast with simple physical systems driven by (say) en-
tropy maximization is that complex biological structures can make decisions about
resource allocation, to the extent resources are available. Thus resource availability
is a context, not a determinant.

Equations 25 and 26 can be derived in a simple parameter-free covariant manner
which relies on the underlying topology of the information source space implicit
to the development (e.g., Wallace and Wallace 2008). We will not pursue that
development here.
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The dynamics, as we have presented them so far, have been noiseless, while
biological systems are always very noisy. Equation 26 might be rewritten as

dKj/dt =
∑

i

L j,i∂S/∂Ki + σ W(t)

where σ is a constant and W(t) represents white noise.
This leads directly to a family of classic stochastic differential equations having the

form

dK j
t =

∑
i
L j,i(t, ∂S/∂Ki)dt + σ j(t)dB j

t , (27)

where the Li, j and σ are appropriately regular functions of t and Ki, dB j
t represents

the noise structure, and we have readjusted the indices.
Further progress in this direction requires introduction of methods from stochastic

differential geometry and related topics in the sense of Emery (1989), which will not
be required in our approach. The obvious inference is that noise, which need not be
‘white’, can serve as a tool to shift the system between various modes, as a kind of
crosstalk and the source of a generalized stochastic resonance.

Effectively, topological shifts between and within dynamic manifolds constitute
another theory of phase transitions. Indeed, similar considerations have become
central in the study of phase changes for physical systems (Franzosi and Pettini 2004).

Our phenomenological Onsager treatment would likely be much enriched by
adoption of a Morse theory perspective.

Rate Distortion Dynamics

It is possible to restate Eqs. 26 and 27 in a manner which relates them closely to our
central concerns. First recall the relation between information source uncertainty
and channel capacity from Eq. 16:

H[X] ≤ C.

Next, the definition of channel capacity, Eq. 8:

C ≡ max
P(X)

I(X | Y).

Finally, the definition of the rate distortion function, from Eq. 21:

R(D) = min
p(y,ŷ);∑(y,ŷ) p(y)p(y|ŷ)d(y,ŷ)≤D

I(Y, Ŷ).

R(D) defines the minimum channel capacity necessary for average distortion D,
placing limits on information source uncertainty. Thus, we suggest that, as in Eigen’s
original model, distortion measures can drive information system dynamics.

We are led to propose, as a heuristic, that the dynamics of Eqs. 25, 26, and 27 will,
through Eq. 16, be constrained by the system as described in terms of a parametized
rate distortion function. To do this, take R as parametized, not only by the distortion
D, but by some vector of variates D = (D1, ..., Dk), for which the first component
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is the average distortion. The assumed dynamics are then driven by gradients in the
rate distortion disorder defined as

SR ≡ R(D) −
k∑

i=1

Di∂ R/∂ Di, (28)

leading to the deterministic and stochastic systems of equations

dDj/dt =
∑

i
L j,i∂SR/∂ Di (29)

and

dDj
t =

∑
i
L j,i(t, ∂SR/∂ Di)dt + σ J(t)dB j

t . (30)

A simple Gaussian channel, taking σ 2 = 1, has a Rate Distortion function

R(D) = 1/2 log[1/D],
so that,

SR(D) = R(D) − DdSR/dD = 1/2 log(1/D) + 1/2. (31)

The simplest possible Onsager relation becomes

dD/dt ∝ −dSR/dD = 1/(2D), (32)

where −dSR/dD represents the force of the ‘biochemical wind’.
This has the solution

D ∝ √
t. (33)

Similar results will accrue to any of the reverse-J-shaped relations which must
inevitably characterize simple RNA-like replicators. The implication is that all simple
RNA(-like) organisms – including RNA viruses – will inevitably be subject to a
relentless biochemical force, a constant torrent, which can drive them very close to
their critical mutation rates. That is, in general, absent a contravening biological or
other constraint,

D(t) = f (t), (34)

with f (t) monotonic increasing in t.
It is not surprising, then, that so many RNA viruses are found close to their

error thresholds, which do indeed constitute a powerful biological constraint
(Holmes 2003).

In the next section we will show how two or more interacting RNA-like vesicles
can, given enough energy, by virtue of Van Valen’s (1973) Red Queen dynamic,
oppose this fierce chemical hurricane.

Prebiotic Coevolution

Natural systems subject to coevolutionary interaction may become enmeshed in the
Red Queen dilemma of Alice in Wonderland, in that they must undergo constant
evolutionary change in order to avoid extinction – they must constantly run just
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to stay in the same place. An example would be a competitive arms race between
predator and prey: Each evolutionary advance in predation must be met with a
coevolutionary adaptation which allows the prey to avoid the more efficient predator.
Otherwise the system will collapse, since a highly specialized predator can literally
eat itself to extinction. Similarly, each prey defense must be matched by a predator
adaptation for the system to persist.

Here we present a fairly elaborate model of coevolution, in terms of interacting
information sources. Interaction events, we will argue, can be highly punctuated.
These are assumed to be between prebiotic vesicles which engage in crosstalk.

We begin by examining ergodic information sources and their dynamics under
the self-similarity of a renormalization transformation near a punctuated phase
transition, using a simple version of the more elaborate arguments in the Appendix.
We then study the linked interaction of two information sources in which the richness
of the quasi-language of each affects the other, that is, when two information sources
have become one another’s primary environments. This leads directly and naturally
to a coevolutionary Red Queen. We will generalize the development to a ‘block
diagonal’ structure of several interacting sources, and extend the model to second
order, using a large deviations argument, suggesting a means for the necessary series
of punctuated biochemical evolutionary events.

Fragmentation and Coalescence

The structures of interest to us here can be most weakly, and hence universally,
described in terms of an adiabatically, piecewise stationary, ergodic information
source involving a stochastic variate X which, in some general sense, sends symbols
α in correlated sequences α0, α1...αn−1 of length n (which may vary), according to a
joint probability distribution, and its associated conditional probability distribution,

P
[
X0 = α0, X1 = α1, ...Xn−1 = αn−1

]
,

P
[
Xn−1 = αn−1 | X0 = α0, ...Xn−2 = αn−2

]
.

If the conditional probability distribution depends only on m previous values of
X, then the information source is said to be of order m (Ash 1990).

By ‘ergodic’ we mean that, in the long term, correlated sequences of symbols are
generated at an average rate equal to their (joint) probabilities. ‘Adiabatic’ means
that changes are slow enough to allow the necessary limit theorems to function,
‘stationary’ means that, between pieces, probabilities don’t change (much), and
‘piecewise’ means that these properties hold between phase transitions, which are
described using renormalization methods.

As the length of the (correlated) sequences increases without limit, the Shannon–
McMillan Theorem permits division of all possible streams of symbols into two
groups, a relatively small number characterized as meaningful, whose long-time be-
havior matches the underlying probability distribution, and an increasingly large set
of gibberish with vanishingly small probability. Let N(n) be the number of possible
meaningful sequences of length n emitted by the source X. Again, uncertainty of the
source, H[X], can be defined by the relation

H[X] = lim
n→∞

log[N(n)]
n

.
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The Shannon–McMillan Theorem shows how to characterize H[X] directly in
terms of the joint probability distribution of the source X.

Let P[xi | yj] be the conditional probability that stochastic variate X = xi given
that stochastic variate Y = yj and let P[xi, yj] be the joint probability that X = xi

and Y = yj. Then the joint and conditional uncertainties of X and Y, H(X, Y), and
H(X | Y) are given by expressions like those of Eqs. 5 and 6.

And again, the Shannon–McMillan Theorem of states that the function for H[X]
is determined according to the limits of Eq. 13.

Estimating the probabilities of the sequences α0, ...αn−1 from observation, the
ergodic property allows us to use them to estimate the uncertainty of the information
source. Thus H[X] is directly measurable.

Equation 16, H[X] ≤ C, establishes C as the maximum rate at which the external
world can transmit information originating with the information source, or that
internal vesicles can communicate. Much of the subsequent development could, in
fact, be expressed using this relation, and the analog in terms of the rate distortion
Eqs. 28–30.

Again recall the relation between the expression for source uncertainty and the
free energy density of a physical system which undergoes a phase transition depend-
ing on an inverse temperature parameter K = 1/T at a critical temperature TC.

Imposition of a renormalization symmetry on F(K) in Eq. 24 describes, in the
infinite volume limit, the behavior of the system at the phase transition in terms of
scaling laws (Wilson 1971). After some development, taking the limit n → ∞ as an
analog to the infinite volume limit of a physical system, we will apply this approach
to a parametized source uncertainty. We will examine changes in structure as a
fundamental ‘inverse temperature’ changes across the underlying system.

We use three parameters to describe the relations between an information source
and its environment or between different interacting sources.

The first, J ≥ 0, measures the degree to which acquired characteristics are trans-
mitted. J ≈ 0 thus represents a high degree of genetic as opposed to epigenetic
inheritance.

J will always remain distinguished, a kind of inherent direction or external field
strength in the sense of Wilson (1971).

The second parameter, Q = 1/C ≥ 0, represents the inverse availability of re-
sources. Q ≈ 0 thus represents a high ability to renew and maintain a particular
system.

The third parameter, K = 1/T, is an inverse index of a generalized temperature
T, which we will more directly specify below in terms of the richness of interacting
information sources.

We suppose further that the structure of interest is implicitly embedded in, and
operates within the context of, a larger manifold stratified by metric distances.

Take these as multidimensional vector quantities A, B, C.... A may represent
location in space, time delay, or the like, and B may be determined through
multivariate analysis of a spectrum of observed behavioral or other factors, in the
largest sense, etc.

It may be possible to reduce the effects of these vectors to a function of their
magnitudes a =| A |, b =| B | and c =| C |, etc. Define a generalized distance r as

r2 = a2 + b 2 + c2 + ... . (35)



436 R. Wallace, R.G. Wallace

To be more explicit, we assume an ergodic information source X is associated with
the reproduction and/or persistence of a biological population or other structure. The
source X, its uncertainty H[J, K, Q, X] and its parameters J, K, Q all are assumed to
depend implicitly on the embedding manifold, in particular on the metric r of Eq. 35.

A particularly elegant and natural formalism for generating such punctuation
in our context involves application of Wilson’s (1971) program of renormalization
symmetry – invariance under the renormalization transform – to source uncertainty
defined on the r-manifold. The results predict that language in the most general
sense, which includes the transfer of information within a biological or prebiotic
context, will undergo sudden changes in structure analogous to phase transitions in
physical systems.

We emphasize that this is an argument by abduction from physical theory: Much
current development surrounding physical phase change is based on the assumption
that at transition a system looks the same under renormalization. That is, phase
transition represents a stationary point for a renormalization transform in the sense
that the transformed quantities are related by simple scaling laws to the original
values.

Renormalization is a clustering semigroup transformation in which individual
components of a system are combined according to a particular set of rules into
a ‘clumped’ system whose behavior is a simplified average of those components.
Since such clumping is a many-to-one condensation, there can be no unique inverse
renormalization, and, as the Appendix shows, many possible forms of condensation.

Assume it possible to redefine characteristics of the information source X and
J, K, Q as functions of averages across the manifold having metric r, which we write
as R. That is, ‘renormalize’ by clustering the entire system in terms of blocks of
different sized R.

Let N(K, J, Q, n) be the number of high probability meaningful correlated se-
quences of length n across the entire community in the r-manifold of Eq. 35, given
parameter values K, J, Q. We study changes in

H[K, J, Q, X] ≡ lim
n→∞

log[N(K, J, Q, n)]
n

as K → KC and/or Q → QC for critical values KC, QC at which the system begins to
undergo a marked transformation from one kind of structure to another.

Given the metric of Eq. 35, a correlation length, χ(K, J, Q), can be defined as
the average length in r-space over which structures involving a particular phase
dominate.

Now clump the ‘community’ into blocks of average size R in the multivariate
r-manifold, the ‘space’ in which the system of interest is implicitly embedded.

Following the classic argument of Wilson (1971), reproduced and expanded in
the Appendix, it is possible to impose renormalization symmetry on the source
uncertainty on H and χ by assuming at transition the relations

H
[
KR, JR, QR, X

] = Rδ H[K, J, Q, X] (36)

and

χ
(
KR, JR, QR

) = χ(K, J, Q)/R (37)
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hold, where KR, JR and QR are the transformed values of K, J and Q after the
clumping of renormalization. We take K1, J1, Q1 ≡ K, J, Q and permit the char-
acteristic exponent δ > 0 to be nonintegral. The Mathematical Appendix provides
examples of other possible relations.

Equations 36 and 37 are assumed to hold in a neighborhood of the transition
values KC and QC.

Differentiating these with respect to R gives expressions for dKR/dR, dJR/dR
and dQR/dR depending simply on R which we write as

dKR/dR = u
(
KR, JR, QR

)
/R

dQR/dR = w
(
KR, JR, QR

)
/R

dJR/dR = [
v
(
KR, JR, QR

)
/R

]
JR. (38)

Solving these differential equations gives KR, JR and QR as functions of J, K, Q
and R.

Substituting back into Eqs. 36 and 37 and expanding in a first order Taylor series
near the critical values KC and QC gives power laws much like the Widom-Kadanoff
relations for physical systems (Wilson 1971). For example, letting J = Q = 0 and
taking κ ≡ (KC − K)/KC gives, in first order near KC,

H = κδ/y H0

χ = κ−1/yχ0 (39)

where y is a constant arising from the series expansion.
Note that there are only two fundamental equations – Eqs. 36 and 37 – in n > 2

unknowns: The critical ‘point’ is, in this formulation, most likely to be a complicated
implicitly defined critical surface in J, K, Q, ...-space. The ‘external field strength’
J remains distinguished in this treatment, i.e., the inverse of the degree to which
acquired characteristics are inherited, but neither K, Q nor other parameters are, by
themselves, fundamental, rather their joint interaction defines critical behavior along
this surface.

That surface is a fundamental object, not the particular set of parameters (except
for J) used to define it, which may be subject to any set of transformations which
leave the surface invariant. Thus inverse generalized temperature, resource availabil-
ity, or whatever other parameters may be identified as affecting H, are inextricably
intertwined and mutually interacting, according to the form of this critical surface.
That surface, in turn, is unlikely to remain fixed, and should vary with time or other
extrinsic parameters, including, but not likely limited to, J.

At the critical surface a Taylor expansion of the renormalization Eqs. 36 and 37
gives a first order matrix of derivatives whose eigenstructure defines fundamental
system behavior. For physical systems the surface is a saddle point (Wilson 1971), but
more complicated behavior seems likely in what we study. See Binney et al. (1986)
for some details of this differential geometry.

Taking, for the moment, the simplest formulation, (J = Q = 0), that is, a well-
provisioned system with memory, as K increases toward a threshold value KC, the
source uncertainty declines and, at KC, the average regime dominated by the ‘other
phase’ grows. That is, the system begins to freeze into one having a large correlation
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length for the second phase. The two phenomena are linked at criticality in physical
systems by the scaling exponent y.

Assume the rate of change of κ = (KC − K)/KC remains constant, | dκ/dt |=
1/τK. Analogs with physical theory suggest there is a characteristic time constant for
the phase transition, τ ≡ τ0/κ , such that if changes in κ take place on a timescale
longer than τ for any given κ , we may expect the correlation length χ = χ0κ

−s,
s = 1/y, will be in equilibrium with internal changes and result in a very large
fragment in r-space. Following Zurek (1985, 1996), the ‘critical’ freezout time, t̂, will
occur at a ‘system time’ t̂ = χ/ | dχ/dt | such that t̂ = τ . Taking the derivative dχ/dt,
remembering that by definition dκ/dt = 1/τK, gives

χ

| dχ/dt | = κτK

s
= τ0

κ

so that

κ = √
sτ0/τK.

Substituting this value of κ into the equation for correlation length, the expected
size of fragments in r-space, d(t̂), becomes

d ≈ χ0

(
τK

sτ0

)s/2

with s = 1/y > 0. The more rapidly K approaches KC the smaller is τK and the
smaller and more numerous are the resulting r-space fragments. Thus rapid change
produces small fragments more likely to risk extinction in a system dominated by
economies of scale.

An absolutely central observation is that this argument suggests the possibility of
a reverse transformation: from a set of weakly linked, quasi-independent vesicles in
simple loose association, into a large, coherent, strongly-linked structure in which
the vesicles are now intimate, mutually-supporting, subcomponents. From a Morse
Theory perspective, this must involve a fundamental topological transformation of
the underlying biochemical networks.

The next section explores the dynamics of coevolutionary coherence in more
detail.

Recursive Interaction

The next iteration of the argument involves envisioning reciprocally interacting
biological information sources – vesicles – as subject to a coevolutionary Red
Queen by treating their respective reproductive source uncertainties as recursively
parametized by each other. That is, we assume the information sources are each
other’s primary environments. These are, respectively, characterized by information
sources X and Y, whose uncertainties are parametized

[1] by measures of both inheritance and inverse resources – J, Q as above – and,
most critically,

[2] by each others inverse uncertainties, HX ≡ 1/H[X] and HY ≡ 1/H[Y], i.e.,

H[X] = H[Q, J,HY , X]
H[Y] = H[Q, J,HX , Y]. (40)
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Fig. 1 A reverse-J-shaped curve for source uncertainty H[X] – measuring language richness – as a
function of an inverse temperature parameter K = 1/H[Y]. To the right of the critical point KC the
system breaks into fragments in r-space whose size is determined by the rate at which K approaches
KC . A collection of fragments already to the right of KC , however, would be seen as condensing into
a single unit as K declined below the critical point. If K is an inverse source uncertainty itself, i.e.,
K = 1/H[Y] for some information source Y, then under such conditions a Red Queen dynamic can
become enabled, driving the system strongly to the left. No intermediate points are asymptotically
stable in this development. To the right of the critical point KC the system is locked into disjoint
fragments. Thus there are two quasi-stable points, a low energy solution near the error limit phase
transition point, and a high energy state nearer to, but never at, the zero error limit

This is a recursive system having complicated behaviors.

Assume a strongly heritable genetic system, J = 0, with fixed inverse resource
base, Q, for which H[X] follows something like the lower graph in Fig. 1, a reverse
J-shaped curve with K ≡ HY = 1/H[Y], and similarly H[Y] depends on HX . That
is, increase or decline in the source uncertainty of one system leads to increase or
decline in the source uncertainty of the other, and vice versa. The richness of the two
information sources is closely linked.

Start at the right of the lower graph for H[X] in Fig. 1, the source uncertainty of
the first system, but to the left of the critical point KC. Assume H[Y] increases so
HY decreases, and thus H[X] increases, walking up the lower curve of Fig. 1 from
the right: the richness of the first system’s internal language increases.

The increase of H[X] leads, in turn, to a decline in HX and triggers an increase
of H[Y], whose increase leads to a further increase of H[X] and vice versa: The Red
Queen, taking the system from the right of Fig. 1 to the left, up the lower curve as
the two systems mutually interact.

Now enlarge the scale of the argument, and consider the possibility of other
interactions.
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The upper graph of Fig. 1 represents the disorder

S = H[K, X] − KdH[K, X]/dK, K ≡ 1/H[Y],
whose gradient, in the absence of the Red Queen interaction, would simply drive the
system toward the minimum energy critical point for this system, as in the section on
rate distortion dynamics.

Clearly this ratchet can also be reversed. Thus the system has two quasi-stable
limit points, a low energy solution near the error limit phase transition point, and
a high energy state near to, but never at, the zero error limit, depending on the
availability of sufficient energy to the system. Absent a relatively high energy source,
low error rate reproduction would be impossible, according to the model. This
suggests that some major, large scale, ecosystem transformation in energy availability
was a necessary condition for low error rate reproduction.

This simple model has a surprising number of implications that are not confined
to a prebiotic context. It is possible to formulate the contest between a highly
mutating pathogen, operating at a low energy configuration, and a complicated
immune system, in terms of phenotype, rather than simply genotype, coevolution,
in the sense of West-Eberhard (2003). Then the phenotype-phenotype ‘two-vesicle’
coevolutionary ratchet has, again, two quasi-fixed points: fragmentation near a
high variability phenotype, and immune/viral phenotype coalescence near a low
variability phenotype. The latter will, ultimately, write an image of itself, in the
sense of Adami et al. (2000), on the pathogen gene in spite of its high mutation rate,
producing protected zones defining that phenotype.

Extending the Model

The model directly generalizes to multiple interacting information sources.
First consider a matrix of crosstalk measures between a set of information sources.

Assume the matrix of mutual information crosstalk can be block diagonalized into
two major components, characterized by mutual information source measures like

Im(X1...Xi), m = 1, 2.

Then apply the two-component theory above.
Extending the development to multiple, recursively interacting information

sources resulting from a more general block diagonalization seems direct. First use
inverse measures I j ≡ 1/I j, j �= m as parameters for each of the other blocks, writing

Im = Im(K1...Ks, ...I j...), j �= m

where the Ks represent other relevant parameters.
Next segregate the I j according to their relative rates of change.
The dynamics of such a system becomes a recursive network of stochastic differ-

ential equations, similar to those used to study many other highly parallel dynamic
structures (e.g., Wymer 1997).

Letting the Kj and Im all be represented as parameters Q j, (with the caveat that
Im not depend on Im), one can define

Sm
I ≡ Im −

∑

i

Qi∂ Im/∂ Qi
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to obtain a complicated recursive system of phenomenological ‘Onsager relations’
stochastic differential equations like Eq. 27 or, in terms of rate distortion functions,
like Eq. 30,

dQ j
t =

∑
i

[
L j,i

(
t, ...∂Sm

I /∂ Qi...
)
dt + σ j,i

(
t, ...∂Sm

I /∂ Qi...
)
dBi

t

]
, (41)

where, again, for notational simplicity only, we have expressed both the reciprocal
I ’s and the external K’s in terms of the same Q j.

The index m ranges over the crosstalk and we could allow different kinds of ‘noise’
dBi

t, having particular forms of quadratic variation which may, in fact, represent a
projection of environmental factors under something like a rate distortion manifold
(Wallace and Wallace 2008).

Indeed, the Im and/or the derived Sm might, in some circumstances, be combined
into a Morse function, permitting application of Pettini’s Topological Hypothesis.

The model rapidly becomes unwieldy, probably requiring some clever combinato-
rial or groupoid convolution algebra and related diagrams for concise expression,
much as in the usual field theoretic perturbation expansions (Hopf algebras, for
example). The virtual reaction method of Zhu et al. (2007) is another possible
approach.

As in the simple model above, there will be, first, multiple quasi-stable points
within a given system’s Im, representing a class of generalized resilience modes ac-
cessible via punctuation, enmeshing the crosstalking vesicles in a manner analogous
to the simple model of Fig. 1, and depending critically on available energy.

Second, however, will be analogs to the fragmentation of Fig. 1 when the system
exceeds the critical value Kc. That is, the K-parameter structure will represent full-
scale fragmentation of the entire structure, and not just punctuation within it.

There are other possible patterns:

[1] Setting Eq. 41 equal to zero and solving for stationary points – ‘coevolutionary
stable strategies’ – again gives attractor states since the noise terms preclude
unstable equilibria.

[2] However, this system may also converge to limit cycle or ‘strange attractor’
behaviors in which it seems to chase its tail endlessly.

[3] What is converged to in both cases is not a simple state or limit cycle of states.
Rather it is an equivalence class, or set of them, of highly dynamic information
sources coupled by mutual interaction through crosstalk. Thus ‘stability’ in
this structure represents particular patterns of ongoing dynamics rather than
some identifiable ‘state’. This leads directly to elaborate groupoid descriptions
of dynamic manifolds, and to consideration of directed homotopy equivalence
classes which we will not explore further here (Wallace and Wallace 2008).

We are, then, deeply enmeshed in a highly recursive phenomenological stochastic
differential equations, but in a dynamic rather than static manner: the objects of this
dynamical system are equivalence classes of information sources and their crosstalk,
rather than simple ‘states’ of a dynamical or reactive chemical system.

Other formulations may well be possible, but our work here serves to illustrate
the method.
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It is, however, interesting to compare our results to those of Dieckmann and Law
(1996), who invoke evolutionary game dynamics to obtain a first order coevolution-
ary canonical equation having the form

dsi/dt = Ki(s)∂Wi
(
s′

i, s
) |s′

i=si . (42)

The si, with i = 1, ..., N, denote adaptive trait values in a community comprising N
species. The Wi(s′

i, s) are measures of fitness of individuals with trait values s′
i in the

environment determined by the resident trait values s, and the Ki(s) are non-negative
coefficients, possibly distinct for each species, that scale the rate of evolutionary
change. Adaptive dynamics of this kind have frequently been postulated, based
either on the notion of a hill-climbing process on an adaptive landscape or some
other sort of plausibility argument.

When this equation is set equal to zero, so there is no time dependence, one
obtains what are characterized as ‘evolutionary singularities’, i.e., stationary points.

Dieckmann and Law contend that their formal derivation of this equation satisfies
four critical requirements:

[1] The evolutionary process needs to be considered in a coevolutionary context.
[2] A proper mathematical theory of evolution should be dynamical.
[3] The coevolutionary dynamics ought to be underpinned by a microscopic theory.
[4] The evolutionary process has important stochastic elements.

Our Eq. 41 seems clearly within this same ballpark, although we have taken
a much different route, one which indeed produces elaborate patterns of phase
transition punctuation in a highly natural manner. Champagnat et al. (2006), in
fact, derive a higher order canonical approximation extending Eq. 42 which is very
much closer equation to Eq. 41, that is, a stochastic differential equation describing
evolutionary dynamics.

Champagnat et al. (2006) go even further, using a large deviations argument
to analyze dynamical coevolutionary paths, not merely evolutionary singularities.
They contend that in general, the issue of evolutionary dynamics drifting away from
trajectories predicted by the canonical equation can be investigated by considering
the asymptotic of the probability of ‘rare events’ for the sample paths of the diffusion.
By ‘rare events’ they mean diffusion paths drifting far away from the canonical
equation.

The probability of such rare events is governed by a large deviation principle:
when a critical parameter (designated ε) goes to zero, the probability that the sample
path of the diffusion is close to a given rare path φ decreases exponentially to 0 with
rate I(φ), where the ‘rate function’ I can be expressed in terms of the parameters
of the diffusion. This result, in their view, can be used to study long-time behavior
of the diffusion process when there are multiple attractive evolutionary singularities.
Under proper conditions the most likely path followed by the diffusion when exiting
a basin of attraction is the one minimizing the rate function I over all the appropriate
trajectories. The time needed to exit the basin is of the order exp(H/ε) where H is
a quasi-potential representing the minimum of the rate function I over all possible
trajectories.

An essential fact of large deviations theory is that the rate function I which
Champagnat et al. (2006) invoke can almost always be expressed as a kind of entropy,
that is, in the form I = −∑

j Pj log(Pj) for some probability distribution. This result
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goes under a number of names; Sanov’s Theorem, Cramer’s Theorem, the Gartner-
Ellis Theorem, the Shannon–McMillan Theorem, and so forth (Dembo and Zeitouni
1998). Here we will use it to suggest the possibility of second order effects in prebiotic
coevolutionary process. The fluctuational paths defined by the system of equations
in Eq. 41 may, over sufficient time, lead to relatively sudden, and very marked,
evolutionary excursions.

Large Deviations in Prebiotic Evolution

We begin with a recapitulation of large deviations and fluctuation formalism.
Information source uncertainty, according to the Shannon–McMillan Theorem,

serves as a splitting criterion between high and low probability sequences (or pairs
of them) and displays the fundamental characteristic of a growing body of work in
applied probability often termed the Large Deviations Program, (LDP) which seeks
to unite information theory, statistical mechanics and the theory of fluctuations under
a single umbrella.

Following Dembo and Zeitouni (1998, p.2),
Let X1, X2, ...Xn be a sequence of independent, standard Normal, real-valued

random variables and let

Sn = (1/n)

n∑

j=1

X j. (43)

Since Sn is again a Normal random variable with zero mean and variance 1/n, for
all δ > 0

limn→∞ P(| Sn |≥ δ) = 0, (44)

where P is the probability that the absolute value of Sn is greater or equal to δ. Some
manipulation, however, gives

P(| Sn |≥ δ) = 1 − 1√
2π

∫ δ
√

n

−δ
√

n
exp

( − x2/2
)
dx, (45)

so that

limn→∞
log P(| Sn |≥ δ)

n
= −δ2/2. (46)

This can be rewritten for large n as

P(| Sn |≥ δ) ≈ exp
( − nδ2/2

)
. (47)

That is, for large n, the probability of a large deviation in Sn follows something
much like the asymptotic equipartition relation of the Shannon–McMillan Theorem,
i.e., that meaningful paths of length n all have approximately the same probability
P(n) ∝ exp(−nH[X]).

Questions about meaningful paths appear suddenly as formally isomorphic to the
central argument of the LDP which encompasses statistical mechanics, fluctuation
theory, and information theory into a single structure (Dembo and Zeitouni 1998).
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Again, the cardinal tenet of large deviation theory is that the rate function −δ2/2
can, under proper circumstances, be expressed as a mathematical entropy having the
standard form

−
∑

k
pk log pk, (48)

for some distribution pk.
Next we briefly recapitulate part of the standard treatment of large fluctuations

(Onsager and Machlup 1953; Fredlin and Wentzell 1998).
The macroscopic behavior of a complicated physical system in time is assumed to

be described by the phenomenological Onsager relations giving large-scale fluxes as
∑

i
Ri, jdKj/dt = ∂S/∂Ki, (49)

where the Ri, j are appropriate constants, S is the system entropy and the Ki are the
generalized coordinates which parametize the system’s free energy.

Entropy is defined from free energy F by a Legendre transform – more of which
follows below:

S ≡ F −
∑

j

Kj∂ F/∂Kj,

where the Kj are appropriate system parameters.
Neglecting volume problems for the moment, free energy can be defined from the

system’s partition function Z as

F(K) = log[Z (K)].
The partition function Z , in turn, is defined from the system Hamiltonian –

defining the energy states – as

Z (K) =
∑

j

exp[−KEj],

where K is an inverse temperature or other parameter and the Ej are the energy
states.

Inverting the Onsager relations gives

dKi/dt =
∑

j
Li, j∂S/∂Kj = Li(K1, ..., Km, t) ≡ Li(K, t). (50)

The terms ∂S/∂Ki are macroscopic driving forces dependent on the entropy
gradient.

Let a white Brownian noise ε(t) perturb the system, so that

dKi/dt =
∑

j
Li, j∂S/∂Kj + ε(t) = Li(K, t) + ε(t), (51)

where the time averages of ε are < ε(t) >= 0 and < ε(t)ε(0) >= Dδ(t). δ(t) is the
Dirac delta function, and we take K as a vector in the Ki.

Following Luchinsky (1997), if the probability that the system starts at some initial
macroscopic parameter state K0 at time t = 0 and gets to the state K(t) at time t is
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P(K, t), then a somewhat subtle development (e.g., Feller 1971) gives the forward
Fokker–Planck equation for P:

∂ P(K, t)/∂t = −∇ · (L(K, t)P(K, t)) + (D/2)∇2 P(K, t). (52)

In the limit of weak noise intensity this can be solved using the WKB, i.e., the
eikonal, approximation, as follows: take

P(K, t) = z(K, t) exp(−s(K, t)/D). (53)

z(K, t) is a prefactor and s(K, t) is a classical action satisfying the Hamilton–Jacobi
equation, which can be solved by integrating the Hamiltonian equations of motion.
The equation reexpresses P(K, t) in the usual parametized negative exponential
format.

Let p ≡ ∇s. Substituting and collecting terms of similar order in D gives

dK/dt = p + L, dp/dt = −∂L/∂Kp (54)

and

−∂s/∂t ≡ h(K, p, t) = pL(K, t) + p2

2
, (55)

with h(K, t) the Hamiltonian for appropriate boundary conditions.
Again following Luchinsky (1997), these Hamiltonian equations have two differ-

ent types of solution, depending on p. For p = 0, dK/dt = L(K, t) which describes
the system in the absence of noise. We expect that with finite noise intensity the
system will give rise to a distribution about this deterministic path. Solutions for
which p �= 0 correspond to optimal paths along which the system will move with
overwhelming probability.

In sum, to again paraphrase Luchinsky (1997), large fluctuations, although in-
frequent, are fundamental in a broad range of processes, and it was recognized by
Onsager and Machlup (1953) that insight into the problem could be gained from
studying the distribution of fluctuational paths along which the system moves to
a given state. This distribution is a fundamental characteristic of the fluctuational
dynamics, and its understanding leads toward control of fluctuations. Fluctuational
motion from the vicinity of a stable state may occur along different paths. For large
fluctuations, the distribution of these paths peaks sharply along an optimal, most
probable, path. In the theory of large fluctuations, the pattern of optimal paths plays
a role similar to that of the phase portrait in nonlinear dynamics.

The essential generalization is that, by invoking the results of the section on rate
distortion dynamics, we can substitute the rate distortion function for free energy
in this argument. For the two-vesicle system of Fig. 1 this suggests the possibility
of a transition from the low energy, high error state to the high energy, low error
condition, assuming enough time and energy are available.

For more complicated cooperative prebiotic assemblies of RNA-like vesicles,
these sudden, relatively large, jet-like transitions might – again given enough time
and available energy – lead to far more complicated structures having error correc-
tion capabilities within the overall constraints of the particular chemical system. A
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central question then revolves around what classes of systems would be more likely
to make such a transition. These might be the ones best sought via observation
ex planeta.

Discussion and Conclusions

Like many others, we have resolved Eigen’s paradox by proposing appropriate inter-
action between compartments consisting of closely related populations of prebiotic
mutants carrying a ‘consensus sequence’. These are isolated in vesicles, which are
themselves linked. Our innovation has been to impose a formalism driven by the
asymptotic limit theorems of information theory. Rather than abduct spin glass,
two dimensional Ising, or similar models from physics, we have used the homology
between information source uncertainty and free energy density to invoke highly
modified biological phase change and generalized Onsager relation schemes in order
to describe the dynamics of information processing systems at, and away from,
phase transition analogs. A restatement of Eigen’s model in rate distortion terms,
compounded with a coevolutionary perspective, suggests RNA virus-like structures
are likely to be found as either a fragmented community, with each mutational
population driven toward the mutation error limit, or else in a cooperative state of
linked vesicles which, collectively, can have a relatively low reproductive error rate,
depending on available energy.

More complicated coevolutionary dynamics seem possible, not only ‘quasi-
evolutionarily stable strategies’, but even analogs to limit cycles or pseudorandom
strange attractors, all having various rates of reproductive error.

A large deviations argument suggests that certain of these prebiotic chemical
systems may, given time, undergo highly structured excursions among their various
possible equilibrium or quasi-equilibrium modes, depending on available energy.
The more viable of these collective modes having low error rates would then become
subject to further evolutionary process, resulting in a condensation from RNA-like
to DNA-like error correcting structures, where the various vesicles become ever
more closely intertwined. Energy availability may indeed be the critical matter, with
the probability of a ‘large deviation’ dependent on development of new energy
sources. The inverse perspective is that the availability of a new energy source –
a new metabolic cycle, or elementary photofixation, for example – can drive large
deviations, and hence evolutionary process. One can argue that large scale energy
availability is enmeshed with large scale ecosystem resilience shifts, sensu Holling
(1973), another example in which resilience drives evolution, albeit in a prebiotic
circumstance (Wallace and Wallace 2008).

Our relatively systematic invocation of core concepts from information theory
apparently marks a departure from current theorizing on these subjects, although we
have, in fact, purged the groupoid and topological foundations of a ‘resilience’ analy-
sis of similar topics (Wallace and Wallace 2008). These permit further classification of
quasi-stable sets within the dynamic manifolds implicit to the development here. That
is, a far richer theoretical structure is available, and will probably be required: One
is, in spite of all the formal heavy lifting of this paper, still somehow reminded of the
famous cartoon in which a white-coated scientist, standing in front of a blackboard
filled with mathematical scribbles, turns to his audience, chalk in hand, saying
“...and here a miracle occurs...”.
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Nonetheless, we have added significantly to the store of needed theoretical
building blocks. The keys to further progress, however, seem, as usual, to lie in more
extensive and penetrating observational and laboratory studies.

Acknowledgements The authors thank an anonymous reviewer for comments and suggestions
useful in revision.

Mathematical Appendix

Morse Theory

Morse theory examines relations between analytic behavior of a function – the loca-
tion and character of its critical points – and the underlying topology of the manifold
on which the function is defined. We are interested in a number of such functions,
for example information source uncertainty on a parameter space and ‘second order’
iterations involving parameter manifolds determining critical behavior, for example
sudden onset of a giant component in the mean number model (Wallace and Wallace
2008), and universality class tuning in the mean field model of the next section. These
can be reformulated from a Morse theory perspective. Here we follow closely the
elegant treatments of Pettini (2007) and Kastner (2006).

The essential idea of Morse theory is to examine an n-dimensional manifold M as
decomposed into level sets of some function f : M → R where R is the set of real
numbers. The a-level set of f is defined as

f −1(a) = {x ∈ M : f (x) = a},

the set of all points in M with f (x) = a. If M is compact, then the whole manifold can
be decomposed into such slices in a canonical fashion between two limits, defined by
the minimum and maximum of f on M. Let the part of M below a be defined as

Ma = f −1(−∞, a] = {x ∈ M : f (x) ≤ a}.

These sets describe the whole manifold as a varies between the minimum and
maximum of f .

Morse functions are defined as a particular set of smooth functions f : M → R
as follows. Suppose a function f has a critical point xc, so that the derivative
df (xc) = 0, with critical value f (xc). Then f is a Morse function if its critical points
are nondegenerate in the sense that the Hessian matrix of second derivatives at xc,
whose elements, in terms of local coordinates are

Hi, j = ∂2 f/∂xi∂x j,

has rank n, which means that it has only nonzero eigenvalues, so that there are no
lines or surfaces of critical points and, ultimately, critical points are isolated.

The index of the critical point is the number of negative eigenvalues of H at xc.
A level set f −1(a) of f is called a critical level if a is a critical value of f , that is, if

there is at least one critical point xc ∈ f −1(a).
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Again following Pettini (2007), the essential results of Morse theory are:

[1] If an interval [a, b ] contains no critical values of f , then the topology of f −1[a, v]
does not change for any v ∈ (a, b ]. Importantly, the result is valid even if f is
not a Morse function, but only a smooth function.

[2] If the interval [a, b ] contains critical values, the topology of f −1[a, v] changes in
a manner determined by the properties of the matrix H at the critical points.

[3] If f : M → R is a Morse function, the set of all the critical points of f is a
discrete subset of M, i.e., critical points are isolated. This is Sard’s Theorem.

[4] If f : M → R is a Morse function, with M compact, then on a finite interval
[a, b ] ⊂ R, there is only a finite number of critical points p of f such that f (p) ∈
[a, b ]. The set of critical values of f is a discrete set of R.

[5] For any differentiable manifold M, the set of Morse functions on M is an
open dense set in the set of real functions of M of differentiability class r for
0 ≤ r ≤ ∞.

[6] Some topological invariants of M, that is, quantities that are the same for all the
manifolds that have the same topology as M, can be estimated and sometimes
computed exactly once all the critical points of f are known: Let the Morse
numbers μi(i = 1, ..., m) of a function f on M be the number of critical points of
f of index i, (the number of negative eigenvalues of H). The Euler characteristic
of the complicated manifold M can be expressed as the alternating sum of the
Morse numbers of any Morse function on M,

χ =
m∑

i=0

(−1)iμi.

The Euler characteristic reduces, in the case of a simple polyhedron, to

χ = V − E + F

where V, E, and F are the numbers of vertices, edges, and faces in the
polyhedron.

[7] Another important theorem states that, if the interval [a, b ] contains a critical
value of f with a single critical point xc, then the topology of the set Mb defined
above differs from that of Ma in a way which is determined by the index, i, of
the critical point. Then Mb is homeomorphic to the manifold obtained from
attaching to Ma an i-handle, i.e. the direct product of an i-disk and an (m − i)-
disk.

Again, Pettini (2007) contains both mathematical details and further references.
See, for example, Matsumoto (2002) or the classic by Milnor (1963).

The Mean Field Model

Wallace and Wallace (1998, 1999) have addressed how a language, in a large sense,
‘spoken’ on a network structure, responds as properties of the network change. The
properties of interest were the magnitude of ‘strong’ or ‘weak’ ties which, respec-
tively, either disjointly partitioned the network or linked it across such partitioning.
These would be analogous to local and mean-field couplings in physical systems.
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Fix the magnitude of strong ties – again, those which disjointly partition the
underlying network into submodules – but vary the index of nondisjunctive weak
ties, P, between these components, taking K = 1/P.

Assume the piecewise, adiabatically stationary ergodic information source (or
sources) of interest depends on three parameters, two explicit and one implicit. The
explicit are K as above and, as a calculational device, an ‘external field strength’
analog J, which gives a ‘direction’ to the system. We will, in the limit, set J = 0. Note
that many other approaches may well be possible, since renormalization techniques
allow a variety of approaches.

The implicit parameter, r, is an inherent generalized ‘length’ characteristic of the
phenomenon, on which J and K are defined. That is, J and K are written as functions
of averages of the parameter r, which may be quite complex, having nothing at all to
do with conventional ideas of space. For example r may be defined by the degree of
niche partitioning in ecosystems or separation in social structures.

For a given generalized language of interest having a well defined (adiabatically,
piecewise stationary) ergodic source uncertainty, H = H[K, J, X].

To summarize a long train of standard argument (Binney et al. 1986; Wilson 1971),
imposition of invariance of H under a renormalization transform in the implicit
parameter r leads to expectation of both a critical point in K, written KC, reflecting a
phase transition to or from collective behavior across the entire array, and of power
laws for system behavior near KC. Addition of other parameters to the system results
in a ‘critical line’ or surface.

Let κ ≡ (KC − K)/KC and take χ as the ‘correlation length’ defining the average
domain in r-space for which the information source is primarily dominated by
‘strong’ ties. The first step is to average across r-space in terms of ‘clumps’ of length
R =< r >. Then H[J, K, X] → H[JR, KR, X].

Taking Wilson’s (1971) analysis as a starting point, the ‘renormalization relations’
used here are:

H[KR, JR, X] = f (R)H[K, J, X]
χ(KR, JR) = χ(K, J)/R, (56)

with f (1) = 1 and J1 = J, K1 = K. The first equation significantly extends Wilson’s
treatment. It states that ‘processing capacity,’ as indexed by the source uncertainty of
the system, representing the ‘richness’ of the generalized language, grows monoton-
ically as f (R), which must itself be a dimensionless function in R, since both
H[KR, JR] and H[K, J] are themselves dimensionless. Most simply, this requires
replacing R by R/R0, where R0 is the ‘characteristic length’ for the system over which
renormalization procedures are reasonable, then setting R0 ≡ 1, hence measuring
length in units of R0.

Wilson’s original analysis focused on free energy density. Under ‘clumping,’
densities must remain the same, so that if F[KR, JR] is the free energy of the clumped
system, and F[K, J] is the free energy density before clumping, then Wilson’s Eq. 4
is F[K, J] = R−3 F[KR, JR],

F[KR, JR] = R3 F[K, J].
Remarkably, the renormalization equations are solvable for a broad class of

functions f (R), or more precisely, f (R/R0), R0 ≡ 1.
The second equation just states that the correlation length simply scales as R.



450 R. Wallace, R.G. Wallace

Again, the central feature of renormalization in this context is the assumption
that, at criticality, the system looks the same at all scales, that is, it is invariant under
renormalization at the critical point. All else flows from this.

There is no unique renormalization procedure for information sources: other, very
subtle, symmetry relations – not necessarily based on the elementary physical analog
we use here – may well be possible. For example, McCauly (1993, p.168) describes
the highly counterintuitive renormalizations needed to understand phase transition
in simple ‘chaotic’ systems. This is important, since biological systems may well
alter their renormalization properties – equivalent to tuning their phase transition
dynamics – in response to external signals.

To begin, following Wilson, take f (R) = Rd, d some real number d > 0, and
restrict K to near the ‘critical value’ KC. If J → 0, a simple series expansion and
some clever algebra (Wilson 1971; Binney et al. 1986) gives

H = H0κ
α

χ = χ0/κ
s, (57)

where α, s are positive constants. More biologically relevant examples appear below.
Further from the critical point, matters are more complicated, appearing to

involve Generalized Onsager Relations, ‘dynamical groupoids’, and a kind of ther-
modynamics associated with a Legendre transform of H: S[K] ≡ H[K] − KdH/dK.

Regardless of the particular renormalization properties, sudden critical point
transition is possible in the opposite direction for this model. That is, going from a
number of independent, isolated and fragmented systems operating individually and
more or less at random, into a single large, interlocked, coherent structure, once the
parameter K, the inverse strength of weak ties, falls below threshold, or, conversely,
once the strength of weak ties parameter P = 1/K becomes large enough.

This heuristic insight can be made more exact using a rate distortion argument
(or, more generally, using the Joint Asymptotic Equipartition Theorem) as follows:

Suppose that two ergodic information sources Y and B begin to interact, to ‘talk’
to each other, to influence each other in some way so that it is possible, for example,
to look at the output of B – strings b – and infer something about the behavior
of Y from it – strings y. We suppose it possible to define a retranslation from the
B-language into the Y-language through a deterministic code book, and call Ŷ the
translated information source, as mirrored by B.

Define some distortion measure comparing paths y to paths ŷ, d(y, ŷ). Invoke
the Rate Distortion Theorem’s mutual information I(Y, Ŷ), which is the splitting
criterion between high and low probability pairs of paths. Impose, now, a para-
metization by an inverse coupling strength K, and a renormalization representing
the global structure of the system coupling. This may be much different from the
renormalization behavior of the individual components. If K < KC, where KC is a
critical point (or surface), the two information sources will be closely coupled enough
to be characterized as condensed.

In the absence of a distortion measure, the Joint Asymptotic Equipartition
Theorem gives a similar result.

Detailed coupling mechanisms will be sharply constrained through regularities of
grammar and syntax imposed by limit theorems associated with phase transition.
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Biological Renormalization

Equation 56 states that the information source and the correlation length, the degree
of coherence on the underlying network, scale under renormalization clustering in
chunks of size R as

H[KR, JR]/ f (R) = H[J, K]
χ [KR, JR]R = χ(K, J),

with f (1) = 1, K1 = K, J1 = J, where we have slightly rearranged terms.
Differentiating these two equations with respect to R, so that the right hand

sides are zero, and solving for dKR/dR and dJR/dR gives, after some consolidation,
expressions of the form

dKR/dR = u1d log( f )/dR + u2/R

dJR/dR = v1 JRd log( f )/dR + v2

R
JR. (58)

The ui, vi, i = 1, 2 are functions of KR, JR, but not explicitly of R itself.
We expand these equations about the critical value KR = KC and about JR = 0,

obtaining

dKR/dR = (KR − KC)yd log( f )/dR + (KR − KC)z/R

dJR/dR = wJRd log( f )/dR + xJR/R. (59)

The terms y=du1/dKR |KR=KC , z=du2/dKR |KR=KC , w=v1(KC, 0), x=v2(KC, 0)

are constants.
Solving the first of these equations gives

KR = KC + (K − KC)Rz f (R)y, (60)

again remembering that K1 = K, J1 = J, f (1) = 1.
Wilson’s method is to iterate on this relation, which is supposed to converge

rapidly near the critical point (Binney et al. 1986), assuming that for KR near KC,
we have

KC/2 ≈ KC + (K − KC)Rz f (R)y. (61)
We iterate in two steps, first solving this for f (R) in terms of known values, and

then solving for R, finding a value RC that we then substitute into the first of Eq. 56 to
obtain an expression for H[K, 0] in terms of known functions and parameter values.

The first step gives the general result

f (RC) ≈
[
KC/(KC − K)

]1/y

21/y Rz/y
C

. (62)

Solving this for RC and substituting into the first expression of Eq. 56 gives, as a
first iteration of a far more general procedure (Shirkov and Kovalev 2001), the result

H[K, 0] ≈ H
[
KC/2, 0

]

f (RC)
= H0

f (RC)

χ(K, 0) ≈ χ(KC/2, 0)RC = χ0 RC, (63)

which are the essential relationships.
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Note that a power law of the form f (R) = Rm, m = 3, which is the direct physical
analog, may not be biologically reasonable, since it says that ‘language richness’ can
grow very rapidly as a function of increased network size. Such rapid growth is simply
not observed.

Taking the biologically realistic example of non-integral ‘fractal’ exponential
growth,

f (R) = Rδ, (64)

where δ > 0 is a real number which may be quite small, Eq. 62 can be solved for RC,
obtaining

RC =
[
KC/(KC − K)

][1/(δy+z)]

21/(δy+z)
(65)

for K near KC. Note that, for a given value of y, one might characterize the relation
α ≡ δy + z = constant as a ‘tunable universality class relation’ in the sense of Albert
and Barabasi (2002).

Substituting this value for RC back into Eq. 62 provides an expression for H,
having three parameters: δ, y, z.

A more biologically interesting choice for f (R) is a logarithmic curve that ‘tops
out’, for example

f (R) = m log(R) + 1. (66)

Again f (1) = 1.
Using Mathematica 4.2 or above to solve Eq. 62 for RC gives

RC =
[

Q
W[Q exp(z/my)]

]y/z

, (67)

where

Q ≡ (z/my)2−1/y [
KC/(KC − K)

]1/y
.

Lambert’s transcendental function W(x) is defined by the relation

W(x) exp(W(x)) = x.

It arises in the theory of random networks and in renormalization strategies for
quantum field theories.

An asymptotic relation for f (R) would be of particular biological interest, imply-
ing that ‘language richness’ increases to a limiting value with population growth. Such
a pattern is broadly consistent with calculations of the degree of allelic heterozygosity
as a function of population size under a balance between genetic drift and neutral
mutation (Hartl and Clark 1997; Ridley 1996). Taking

f (R) = exp[m(R − 1)/R] (68)
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gives a system which begins at 1 when R = 1, and approaches the asymptotic limit
exp(m) as R → ∞. Mathematica 4.2 finds

RC = my/z
W[A] , (69)

where

A ≡ (my/z) exp(my/z)
[
21/y[KC/(KC − K)

]−1/y]y/z
.

These developments indicate the possibility of taking the theory significantly
beyond arguments by abduction from simple physical models, although the notorious
difficulty of implementing information theory existence arguments will undoubtedly
persist.

Universality Class Distribution

Physical systems undergoing phase transition usually have relatively pure renormal-
ization properties, with quite different systems clumped into the same ‘universality
class,’ having fixed exponents at transition (Binney et al. 1986). Biological and social
phenomena may be far more complicated:

If the system of interest is a mix of subgroups with different values of some
significant renormalization parameter m in the expression for f (R, m), according to
a distribution ρ(m), then the first expression in Eq. 56 should generalize, at least to
first order, as

H[KR, JR] = E[ f (R, m)]H[K, J]

≡ H[K, J]
∫

f (R, m)ρ(m)dm, (70)

so that E[g] represents the mean of g over some distribution.
If f (R) = 1 + m log(R) then, given any distribution for m,

E[ f (R)] = 1 + E[m] log(R). (71)

Other forms of f (R) having more complicated dependencies on the distributed
parameter or parameters, like the power law Rδ , do not produce such a simple result.
Taking ρ(δ) as a normal distribution, for example, gives

E[Rδ] = RE[δ] exp
[
(1/2)(log(Rσ ))2

]
, (72)

where σ 2 is the distribution variance. The renormalization properties of this function
can be determined from Eq. 62.

Thus the information dynamic phase transition properties of mixed systems will
not in general be simply related to those of a single subcomponent, a matter of
possible empirical importance: If sets of relevant parameters defining renormaliza-
tion universality classes are indeed distributed, experiments observing pure phase
changes may be very difficult. Tuning among different possible renormalization
strategies in response to external signals would result in even greater ambiguity in
recognizing and classifying information dynamic phase transitions.

Important aspects of mechanism may be reflected in the combination of renormal-
ization properties and the details of their distribution across subsystems.
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In summary, real biological, or prebiotic, systems are likely to have very rich
patterns of phase transition which may not display the simplistic, indeed, literally
elemental, purity familiar to physicists. Overall mechanisms will, however, still
remain significantly constrained by the theory, in the general sense of probability
limit theorems.
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