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Abstract The justification for a less alkaline primordial ocean (than present) is briefly
reviewed, along with constraints on aqueous phosphate under such conditions. Based on the
assumption that CaHPO4 dihydrate determined the availability of phosphorus species, we
have carried out laboratory simulations to determine equilibrium concentrations as a func-
tion of pH (in PIPES buffer) with added NaCl and CaCl2. Consistent with expectations,
solubility declines with higher pH and [CaCl2], but increases only slightly with [NaCl].
Significantly, PIPES shows no specific effect on the dissolution beyond its influence on pH
and ionic strength. Data are also presented on the synthesis of pyrophosphate from the
NaOCN/CaHPO4·2H2O system, which could have provided a source of this phosphate
anhydride on the early Earth.
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Introduction

The low solubility of phosphate (≤3 μM) in marine environments has long been recognized
as an obstacle in the elucidation of prebiotic pathways to phosphate esters, if similar
constraints operated in the past (Gulick 1955; Keefe and Miller 1995). Two possible
strategies for enhancing aqueous concentrations have included the use of Ca2+-complexing
agents (such as oxalate) and a lower pH relative to the modern value near 8.3 (Schwartz
1971). Indeed, Gedulin and Arrhenius (1994) made the remarkable observation that in the
pH range of 6–7.5, brushite (CaHPO4·2H2O) is the (heat-annealed) mineral phase that
crystallizes during the controlled introduction of phosphate into a modified, sulfate-free
seawater medium, and constitutes the only solid species formed between pH 6 and 7; this
material is also substituted with several mole-percent magnesium, thus lowering the
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solubility toward whitlockite, Ca18Mg2H2(PO4)14. Although considerable uncertainty exists
regarding the composition of early ocean, aqueous acidity would have been sensitive to the
higher CO2 that is associated with the Archean atmosphere (Walker 1983). Whether partial
pressures ever reached 1,000-times the present value during the initial outgassing,
Grotzinger and Kasting (1993) have shown that a pCO2 of 0.03 would bring the marine
pH within the stability range of brushite. This level of carbon dioxide is consistent with the
upper limit of 0.04 atm. at 2.75 Gya proposed by Rye et al. (1995). CaHPO4·2H2O there-
fore merits closer scrutiny as a potential source of prebiotic phosphate compounds.

The central advantage of brushite for prebiotic simulations is its higher solubility
compared to the apatite phases (Jaynes et al. 1999). While the dissolution of the former has
been studied in the context of agricultural use (Bennett and Adams 1976), we have sought
to measure phosphate concentrations as a function of pH, salinity and added CaCl2 under a
wider range of conditions using an aqueous, magnesium-free medium. These equilibration
experiments have been carried out using a commercial form of CaHPO4·2H2O (Aldrich)
that is compositionally similar to authentic brushite, except for the absence of magnesium-
substitution. Remarkably, magnesium-free brushite is known to grow on human skeletons
that have been left in crypts and stone coffins (Piepenbrink 1984)!

A related question is whether brushite can react with cyanate to give pyrophosphate.
Miller and Parris (1964) reported an analogous transformation using the phosphate mineral,
hydroxyapatite, which is not regarded as prebiotic because below pH 8.5 apatite forms only
through an organism-mediated process. CaHPO4·2H2O has previously been investigated in
the synthesis of nucleoside triphosphates from the corresponding diphosphates in the
presence of cyanate as a condensing agent (Yamagata 1999), but there have been no studies
that address the formation of inorganic pyrophosphate.

Experimental Section

Materials

All chemicals were reagent grade. Sodium chloride, sodium cyanate, sulfuric acid, NaOH
(solid), NaH2PO4 and CaHPO4·2H2O were obtained from Aldrich Chemical Co., L-ascorbic
acid and piperazine-N,N′-bis(2-ethanesulfonic acid) were purchased from Sigma Chemical,
calcium chloride from J. T. Baker, ammonium molybdate and hydrochloric acid (37%) from
Mallinckrodt, aqueous sodium hydroxide (50%) and tetrasodium pyrophosphate (decahy-
drate) from Fisher, and trisodium naphthalenetrisulfonate from TCI-America. The
enzymatic “pyrophosphate reagent” (P-7275) was also purchased from Sigma. Glassware
was washed in phosphate-free detergent (lauryl sulfate) from Sigma, and deionized water
was used to prepare all solutions.

Methods

Equilibration experiments were carried out in quadruplicate at ambient temperature, main-
tained at 21+1°C over a 15-day period. A typical dissolution mixture consisted of 0.100 g
CaHPO4·2H2O in a 20 ml glass vial with 5.00 ml of a mixture containing NaCl (0.25–
1.00 M), CaCl2 (0.01–0.04 M) and PIPES (0.05–0.4 M) adjusted with dilute NaOH to the
desired pH before addition. A plastic bead (1 cm diameter) was added before sealing to
facilitate agitation, and the suspension was placed on a mechanical shaker. At intervals of

114 Orig Life Evol Biosph (2007) 37:113–122



three to four days, 200–400 μl was withdrawn with a micropipettor and sedimented using a
Fisher MicroV Centrifuge for 10 min at 7,000 r.p.m. An aliquot of 40 μl was removed from
the clear supernatant for subsequent analysis of soluble phosphate by a spectrophotometric
method described below.

Reactions (with three to four replicates) were carried out by adding 50 mg CaHPO4·2H2O
to a screw-cap test tube (10×1.3 cm) to which was added 2.00 ml of aqueous NaOCN
(5–20 mM), adjusted to the appropriate pH with HCl. After mixing on a “Vortexer”
(VWR), the tubes were incubated for two weeks at 60°C in a VWR dry-block, and then
centrifuged with a Clay‐Adams centrifuge after cooling to room temperature. The pH of the
supernatant liquid was recorded using a Fisher Accumet meter (Model 10) equipped with a
pencil-thin electrode.

Phosphate analysis

Phosphate was assayed by a modification of the procedure of Chen et al. (1956): 40 μl of
the supernatant was added to 3.96 ml of a reagent mixture containing 0.32 M H2SO4, 0.5%
(w/v) ascorbic acid and 0.13% (w/v) in an 8 ml screw-cap test tube. After mixing, the
capped tube was incubated at 37°C for 1 h, and the absorbance at 810 nm was measured in
a 1 cm cuvette (with water as a reference) using a Perkin‐Elmer λ-6 UV‐VIS Spectro-
photometer. Standards were prepared by adding 60–300 nmol of a stock solution of
0.0300 M NaH2PO4 to the mixture of molybdate/ascorbic acid/sulfuric acid under the same
conditions of volume and concentration. A pair of blanks with only water added were
averaged to correct for the background absorption at 810 nm; phosphate concentrations for
the unknowns were calculated from a least-squares equation obtained from the plot of five
standards (not shown). For each set of four replicate analyses, the phosphate concentrations
were expressed as the mean along with the 95% confidence limits obtained by using the
appropriate Student t-value. The one exception to this procedure was during the 15-day assay
of the dissolution in 1.0 M NaCl (Table II), where only three data were used.

Pyrophosphate analysis

A liquid chromatographymethod described by Shamsi andDanielson (1993) was employed, in
which analyte concentrations are calculated from the decrease in UVabsorption of the mobile
phase (indirect photometric detection). The assay was carried out with a Buck BLC-20
system equipped with a Hamilton PRP-X100 column (15×0.4 cm) at a flow of 2 ml/min and
a wavelength of 280 nm. A mobile phase of 1.5×10−4 M naphthalenetrisulfonate in 5% (v/v)
acetonitrile and an injection volume of 20 μl were used in all cases. The presence of
pyrophosphate in the reactions was also confirmed by the oxidation of nicotinamide adenine
dinucleotide in the enzyme mixture from Sigma.

Results and Discussion

A primary objective of this study was to explore the effect of pH on phosphate solubility
using CaHPO4·2H2O as the source. Since “manual” adjustment by addition of acid did not
seem practical for a large number of replicate samples, we chose to use 1,4-piperazinebis
(ethanesulfonic acid) as a buffer. Although PIPES itself was unlikely to have been present
on the early Earth, it has a pKa (25°C) near 6.8 that allows effective control over the pH in
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our studies. Moreover, because of its poor ability to bond to metals such as Ca2+ (Good
et al. 1966), we believed that PIPES could regulate the pH without dramatically affecting
the solubility of phosphate.

The direct effect of PIPES was tested as shown in Table I: total phosphate in the
supernatant solution was assayed after equilibration over 15 days at several different
concentrations of buffer, from 0.05 to 0.4 M. These mixtures also contained 0.50 M NaCl
and 0.010 M CaCl2, in order to approximate the average concentrations typical of the
modern ocean (Krauskopf and Bird 1995). Although the pH increased slightly from that of
the initial buffer, the final values span a relatively narrow range (<0.06 within replicate
sets), and the associated phosphate concentrations do not show a strong dependence on
[PIPES] as would be expected if there were a specific interaction with the CaHPO4·2H2O.

The effect of [NaCl] on the solubility of CaHPO4·2H2O is also of interest, especially
since Holland (1984) has suggested that the chloride concentration in the early ocean might
have been slightly higher: 0.7 mol kg−1 (vs. about 0.53 mol kg−1 today). Although salinity
levels are largely uncontrained in the Archean, Knauth (2005) has estimated that they may
have been up to twice the current concentrations (based on revised halite deposits). As
shown in Table II, we find that there is a linear increase in soluble phosphate associated
with higher [NaCl] – using the results from the 15 day equilibration, [Pi]=(1.896×10

−3)
[NaCl]+(3.025×10−3 M) with R=0.994. A doubling in the ionic strength causes only about
a 20% rise in phosphate, and an even smaller effect has been reported with KCl (Bennett
and Adams 1976); however, this influence is consistent with the very slight increases
observed with higher [PIPES] in Table I. Thus, if phosphate availability in the early seas
were determined by CaHPO4·2H2O, it is unlikely that a higher salinity would have a
significant impact (unless it was associated with Mg2+ salts that could cause substitution in
the brushite mineral).

Table II also includes phosphate concentrations measured after 11 and 15 days of
mixing. As described in the Experimental Section, we analyzed the supernatant at three to
four day intervals over a 15 day period, in order to be confident that equilibrium had been
reached; a comparison of the data at these times indicated no statistically significant
differences, so that this interval was used for other assays (Table I and Figure 1).
Equilibration over 15 days is similar to the two-week period employed by Bennett and
Adams (1976).

The effect of pH and added CaCl2 is shown in Figure 1. A medium containing 0.5 M
NaCl and 0.1 M PIPES was allowed to equilibrate for 15 days at ambient temperature
(21°C) before analysis. The addition of calcium ions was relevant, because Krauskopf and
Bird (1995) have pointed out that as pCO2 increases and the pH of the early ocean likely

Table I Phosphate concentrations as a function of buffer concentration (21°C)

[PIPES] (M) [Pi]ave (mM) pH range pHave

0.05 4.23T0.16 6.59T6.65 6.62
0.20 5.12T0.35 6.64T6.66 6.65
0.30 5.18T0.59 6.68T6.69 6.69
0.40 5.32T0.26 6.70T6.71 6.71

Mixtures contained 0.100 g CaHPO4 2H2O in 0.010 M CaCl2 and 0.50 M NaCl (5 ml) at initial pH of 6.50;
mean phosphate concentrations (with 95% confidence limits) and pH ranges in the supernatant liquid were
determined after 15 days as described in the Experimental Section. [Pi] denotes the total phosphate in
solution.
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became more acidic, the enhanced solubility of calcium and magnesium carbonates would
result in higher Ca2+ and Mg2+ concentrations. Not surprisingly, we find that calcium
depresses the concentration of soluble phosphate, in a manner that is roughly proportional
to added CaCl2: the lowest value was in the presence of 40 mM calcium, where a
concentration of 0.70 mM at pH 6.8 was recorded. By comparison, 20 mM CaCl2 “raised”
the [Pi] to 1.48 mM (pH 6.7) and 10 mM CaCl2 caused a phosphate concentration of
3.17 mM (pH 6.7). This effect is a natural consequence of Le Chatelier’s Principle, shifting
the equilibrium toward solid CaHPO4·2H2O as exogenous calcium is introduced:

Ca2þ aqð Þ þ HPO2�
4 aqð Þ þ 2H2O lð Þ ! CaHPO4�2H2O sð Þ pK25C

sp ¼ 6:57
(Bennett and Adams 1976)

However, this solubility product (extrapolated to zero ionic strength) does not take into
account the formation of ion pairs (CaHPO4

0 and CaH2PO4
+ ) in solution, which slightly

lessens the precipitation of phosphate by added CaCl2 (McDowell et al. 1970). It should be
noted that a higher concentration of aqueous Mg2+ would also have suppressed brushite
solubility through the replacement of calcium ions.

The relationship between pH and solubility was investigated for each of the three levels
of added CaCl2. As noted above, a buffer of 0.10 M PIPES (adjusted with NaOH to an
initial pH of 6.0, 6.5, 7.0 or 7.5) was used to control the acidity; after the 15 day
equilibration the final pH was about 0.2–0.3 units lower. In the presence of 10 mM CaCl2,
the concentration of soluble phosphate doubled from 2.82 mM (pH 7.3) to 5.63 mM
(pH 5.8). Although we studied only a small number of different acidities, the curves over
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Figure 1 Effect of Ca2+ on
phosphate solubility. Figure 1
Shows the correlation between
final pH and soluble phosphate
for three different concentrations
of added CaCl2 (10, 20, and
40 mM). All equilibration
mixtures contained 0.50 M NaCl
and 0.1 M PIPES, and were
assayed after 15 days at 21°C.
Error bars represent the 95%
confidence limits for replicate
samples.

Table II Phosphate concentrations as a function of NaCl concentration (21°C)

[NaCl] (M) [Pi]11d ave (mM) pH11d ave [Pi]15d ave (mM) pH15d ave

0.25 3.47T0.27 6.61 3.44T0.12 6.55
0.50 4.09T0.13 6.62 4.03T0.13 6.54
0.75 4.50T0.11 6.60 4.55T0.13 6.56
1.00 4.88T0.22 6.59 4.86T0.47 6.54

Mixtures contained 0.100 g CaHPO4 2H2O in 0.010 M CaCl2 and 0.10 M PIPES (5 ml); mean phosphate
concentrations (with 95% confidence limits) and pH ranges in the supernatant liquid were determined after
15 days as described in the Experimental Section. [Pi] denotes the total phosphate in solution.
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this range suggest an exponential increase in solubility as the pH is lowered, due to the
conversion of HOPO3

2− to (HO)2PO2
−:

H3O
þ þ HOPO2�

3 ! H2Oþ HOð Þ2PO�
2 pK25C

eq ¼ �7:2
(Krauskopf and Bird 1995)

As [H3O
+] becomes higher, a greater proportion of phosphate is present as the mono-

anion, which does not precipitate as readily as the dianion in the presence of calcium ions.
Table III shows the yields of pyrophosphate, analyzed by HPLC after two weeks at 60°C,

which is within the estimated range of Archean ocean temperatures published by Knauth
(2005). These data represent the actual concentrations in the supernatant phase after cooling
to room temperature, without any specific treatment to extract the product. (A few of the
chromatograms did show a peak for the inorganic triphosphate, but the results were not
reproducible and are therefore not included.) The pH drops as the reaction reaches
completion, presumably a consequence of the hydrolysis of cyanic acid (initially to carbamic
acid), but no attempt was made to buffer the solutions beyond adjusting the initial pH (Amell
1956). The yields of pyrophosphate represent averages of three to four measurements, and are
based on the assumption that one molecule of cyanate would produce one pyrophosphate.

The highest yield (4.5+1.4%) was observed starting with 5 mM NaOCN, initially at
pH 7. Surprisingly, the percentage declines (by half) when one compares the results starting
with 10 mM cyanate at the same pHi, and drops by the same amount when the concen-
tration is doubled to 20 mM cyanate. However, it is known (Vieyra et al. 1995) that
pyrophosphate can also suppress its synthesis from the intermediate carbamoyl phosphate
in the presence of calcium phosphate precipitates (presumably due to competitive binding
to catalytic sites), and the limiting concentration of pyrophosphate (0.2 mM) may reflect
such a product inhibition of the catalysis. Only a narrow range of acidities was examined
(6.5<pHi<7.5) to keep within the stability field of brushite, but these limited data
nevertheless do suggest that the highest concentrations of pyrophosphate are obtained at a
near-neutral starting pH.

Relevance to Prebiotic Chemistry

These results provide a very tentative estimate of phosphate concentrations in the
primordial ocean at 21°C, if they were controlled by equilibration with CaHPO4·2H2O:
dependent on pH and [Ca2+], soluble phosphate may have been 102–103 times higher than
the maxima observed today in deep ocean environments where abiotic processes
(dissolution of apatite from skeletons and hydrolysis of biogenic organics) are believed to

[NaOCN]o
(mM)

pHI pHf Percent
yielda

5 7.0 6.8 4.5T1.4
10 7.0 5.7 2.5T0.2
10 7.5 5.8 0.93T0.07
10 6.5 5.9 0.41T0.07
20 7.0 5.4 1.1T0.2

TABLE III Pyrophosphate
synthesis from CaHPO4·2H2O

Reaction mixtures consisted of
50 mg CaHPO4 with 2 ml cya-
nate solution maintained at 60°C,
for two weeks.
a Based on cyanate as the limiting
reagent (error limits represent the
95% confidence limits).
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dominate (Atlas and Pytkowicz 1977). If these concentrations are in any sense representative
of Archean seawater, they provide a more pragmatic basis for the design of prebiotic
phosphorylation reactions, which are extremely difficult to study if one is limited to micro-
molar levels of aqueous phosphate. Local environments nevertheless may have played an
important role in enhancing rates of prebiotic processes, as in the interlayer space of “anti-
clays” that can readily adsorb and phosphorylate organic anions (Kolb et al. 1997). While
alternative scenarios, such as phosphonic acids as analogs, have been proposed in order to
circumvent the solubility problem of phosphate (De Graaf et al. 1997), we should also
consider the possibility that a neutral or slightly acidic pH in marine environments allowed
[Pi] to approach the millimolar level.

An important factor in applying these results is that our reaction system was chosen to
ignore the effects of the magnesium ion. Modern seawater is distinguished by a molar ratio
of about 5:1 (Henderson 1982) for the relative amounts of Mg2+ (0.05 M) and Ca2+

(0.01 M). While the composition of the Archean ocean is poorly constrained, Silurian
seawater (Brennan and Lowenstein 2002) may have contained similar levels of magnesium,
but also a higher concentration of calcium (or a ratio of approximately 1.4:1). As noted
above, Mg2+ can replace Ca2+ within the brushite structure, thereby diminishing the phos-
phate solubility. Such concentrations of aqueous magnesium (and ammonium ion) may also
have favored the synthesis of another reactive phosphate species, known as struvite
(MgCaPO4·6H2O), as shown by Handschuh and Orgel (1973). On the other hand, mag-
nesium has virtually no effect on the rate of brushite formation (Salimi et al. 1985).

Pyrophosphate was suggested by Lipmann as an activated form of phosphate (Lipmann
1965), and indeed it can phosphorylate adenosine in the presence of apatite (Neuman et al.
1970). (While not considered a prebiotic mineral for the reasons noted above, such an
observation does demonstrate the power of surface catalysis from a chemical perspective.)
Cyanoguanidine (a dimer of cyanamide) gave a 1.8% conversion to pyrophosphate in the
presence of kaolinite, but only under acidic (pH<2) conditions and 0.1 M concentrations of
both reactants (Steinman et al. 1965). Condensing agents investigated by Keefe and Miller
(1996) that were effective in the synthesis of pyrophosphate include maleic anhydride,
pantoyl lactone and ammonium formate, but these are noteworthy for the use of high
concentrations (0.25 M) and high temperatures (100°C) that render the syntheses im-
plausible; of particular interest was a mixture of thiocyanate, hydrogen peroxide and
phosphate, which gave efficient conversion to pyrophosphate under milder conditions, but
as Keefe and Miller noted, the yields are too sensitive to the ratio of the reagents to regard it
as “robust.” Thioesters such as N, S-diacetylcysteamine are compelling because of their
relevance to modern metabolism, but the prebiotic importance to the formation of pyro-
phosphate is diminished by the high concentrations: 0.1–0.2 M for the thioester, 0.2–0.4 M
for the imidazole catalyst and 0.08–0.4 M for inorganic phosphate (Weber 1981, 1982).
Recently, the hydrolysis of iron phosphide has been investigated as a model for the
meteoritic delivery of phosphorus species, but the final concentration of pyrophosphate
reported for a degassed, aqueous phase is an order of magnitude lower than that obtained in
our reaction system (Pasek and Lauretta 2005). We therefore believe that the synthesis
reported here is more prebiotically significant than these previous studies, especially
because of the low concentration of cyanate (down to 5 mM) and the reliance on CaHPO4

dihydrate as the sole source of phosphate at near-neutral pH.
Thermal syntheses of pyrophosphate has been reported, including the heating of Ca

(H2PO4)2·H2O and other dihydrogen phosphates at 160°C (Rabinowitz et al. 1968), but these
acidic species are not found as minerals in nature today (Keefe and Miller 1995). Of greater
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relevance is the observation that pyrophosphate (and oligophosphates up to the octamer or
longer depending on reaction time and water removal) can be formed from heating brushite in
the dry state at 500°C, and more slowly at lower temperatures (Gedulin and Arrhenius 1994).
Such conditions would (likely) have been limited to volcanic environments, which must have
been even more widespread and active on the early Earth, due to juvenile radioactive decay
(Arrhenius et al. 1997; Schwartz and Henderson-Sellers 1983).

The condensing agent, cyanate, has been synthesized under a variety of experimental
conditions, including from CO2/H2/N2 atmospheres subjected to electrical discharge
(Yamagata and Mohri 1982) as well as UV photolysis of CO/NH3 (Ferris et al. 1974)
and HCN/H2O/NH3 mixtures (Garakines et al. 2004). The first of these routes, which the
authors observed was strongly dependent upon the presence of molecular hydrogen (mixing
ratios of 0.14–0.50), has acquired new relevance in view of revised estimates of H2 escape
that favor a more hydrogen-rich atmosphere for the early Earth (Tian et al. 2005). While the
importance of heterogeneous catalysis in the cyanate-mediated synthesis of pyrophosphate
has been noted by previous authors (Vieyra et al. 1995; Beck and Orgel 1965), such studies
have employed calcium phosphate precipitates that are not as well characterized as the
CaHPO4·2H2O used in this work. Similarly, the observation that iron minerals promote
pyrophosphate formation at near-neutral pH is a significant finding, but that investigation
was restricted to highly activated starting materials, such as phosphoenolpyruvate and
acetyl phosphate (De Zwart et al. 2004).

Conclusion

Gedulin and Arrhenius (1994) found that apatite formed from seawater exclusively at high pH
(>8.5) or by organismic mediation at lower values, while whitlockite and Mg3(PO4)3·5H2O
crystallized in the range of pH 7–9; as noted in the introduction, most likely Mg2+-substituted
brushite was the only mineral phase found upon thermal annealing of the nanocrystalline
phosphate gel from slightly acidic seawater (pH 6–7). A neutral or mildly acidic ocean is
consistent with elevated CO2 levels that likely prevailed in the early atmosphere, so that
concentrations of soluble phosphate were probably much higher compared to the deep ocean
regions today, where micromolar amounts represent the upper limit.

Our equilibrations employed a commercial form of CaHPO4·2H2O, which differs from true
brushite in that the former is an amorphous powder and obviously a magnesium-free
analytical reagent. However, we believe that these results reflect the actual solubility, since
both the dihydrate and the anhydrous form (monetite) have nearly identical Ksps (suggesting
that solubility is dictated by the ratio of Ca2+/HPO3

2− and even more by the Mg/Ca ratio rather
than the mineral phase). Indeed, monetite probably goes into solution via surface hydration to
brushite. Furthermore, the dihydrate occurs only as the brushite form (Jaynes et al. 1999),
which in aquatic environments undergoes substitution by Mg2+ as noted above.

Our data indicate that the solubility of CaHPO4·2H2O would be sensitive to pH and total
[Ca2+], but NaCl has little effect. Even if the concentration of aqueous calcium were several
times higher than in the modern ocean, these data suggest that dissolved phosphate would
have approached or exceeded the millimolar level, if the effects of magnesium incor-
poration are ignored. Conditions that govern the structure of brushite in marine environ-
ments merit additional study, but these data are intended as a coarse estimate of equilibrium
concentrations of phosphate that might have existed early in the history of the Earth, when
elevated CO2 and lower pH may have dominated the chemistry of seawater.
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Finally, we have reported the first example of the cyanate-mediated synthesis of pyro-
phosphate from CaHPO4·2H2O. It is encouraging that this heterogeneous system can
provide a source of phosphate for the reaction, especially at cyanate concentrations that are
relatively low (5–20 mM). If brushite were the favored form of phosphate in marine sedi-
ments on the early Earth, then it may have undergone condensation to pyrophosphate.
Future work will address the ability of cyanate to promote the synthesis of pyrophosphate
and longer chains within the interlayer region of layered double hydroxides.
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