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Abstract The origin of auto-catalytic networks has been proposed as an initial step in pre-

biotic evolution. It is possible to derive simple models where auto-catalytic networks naturally

arise from simple chemical mixtures. In order for such a system to develop, there needs to be

some degree of stability, what is characterised as ‘robustness’. We demonstrate that competing

systems generate this robustness as they create a distributed network of catalytic pathways.
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Introduction

Theories about the origin of life can generally be classified into the ‘replication first’ and

‘metabolism first’ approaches. The ‘replication first’ approach imagines the first proto-life

forms were polymers capable of self-replication, generally RNA (Gilbert, 1986; Sievers

and von-Kiedrowski, 1994; Bolli et al., 1997). RNA’s potential for catalysis (Kruger et al.,
1982) has suggested that metabolism could evolve in such an ‘RNA world’. A major problem

with this approach involves the Eigen paradox (Eigen, 1971; Maynard-Smith and Szathmáry,

1995; Scheuring, 2000). Errors in replication limit the size of a polymer that can be replicated

without the loss of genetic information. Proto-nucleic acids could only be 10–100 residues

long, too small to encode the replicases necessary for replication. One proposed solution

is the development of ‘hypercycles’ of RNA – interactions of a number of different short

self-replicating RNA molecules, each catalysing the replication of another.

An alternative is the ‘metabolism first’ approach, where self-sustaining chemical reactions

occur before the origin of replication (Oparin, 1953; Oparin and Gladilin, 1980; Kauffman,

1986; Fontana and Buss, 1994; Dyson, 1999; Segre et al., 2000; Segre and Lancet, 2000). By

the rise of auto-catalytic networks (ACNs), these chemical reactions could develop, expand,
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and ‘replicate’ themselves in the sense of producing more systems containing these same

autocatalytic networks. One specific model is the ‘garbage bag model’, which imagines that

there are ‘bags’ formed by, as an example, amphipathic molecules, containing or composed

of ACNs but permeable to the reactants necessary for the autocatalytic networks to continue

in an out-of-equilibrium state. If the ACNs result in an expansion of the contents of the bag,

the bag could divide in a manner similar to mitosis. In this case, the ‘information’ passed from

parent to daughter would consist of the ‘composome’, that is, the relative concentrations of

the various members of the ACNs (Segre et al., 2000; Segre and Lancet, 2000). A ‘mutation’

in the composome, such as the addition of a new chemical species into the ACNs, would be

inherited by the daughters. RNA might represent the ‘first parasite’, taking advantage of the

pre-existing pre-evolved ACN for its own replication.

It is not difficult to describe a how an ACN can develop. For instance, Jain and Krishna

(Jain and Krishna, 2001; Jain and Krishna, 2002) developed a specific model where different

chemical species either work for the creation or annihilation of the other chemical species.

The ‘Jain-Krishna’ dynamics proceeds on two different time scales. The rapid time-scale

involves the generation of a steady-state equilibrium in the concentration of the various

chemical species. The slower process is the changing in the parameters in the model, allowing

different reactants to be removed or added to the system. They demonstrated that ACNs arise

naturally in these dynamics, gradually extending to encompass essentially all of the various

chemical species. Generally, the ‘core’ of the ACN is small – a few chemical species which

form a small autocatalytic network - surrounded by other ‘parasitic’ species whose formation

is catalysed by either one of these core species or another parasite but do not contribute to the

catalysis of any of the core members of the ACN, either directly or indirectly. Unfortunately,

these networks are fragile. After a period of time, one of the essential (‘keystone’) core

members of the ACN is lost, the autocatalytic cycles are broken, and the network collapses.

It is difficult to see how transient ACNs can be the initial starting material for the de-

velopment of life. Given this fragility, how is it possible to develop robust ACNs, that is,

ACNs that do not so quickly lose an essential core member and collapse as a response to the

removal and addition of various reactants? If such a development is possible, how does this

robustness arise? What is its nature?

The ‘replication first’ hypercycle models are also susceptible to collapse. There can be the

rise of cheaters, parasites, and short-cuts. One solution to this problem is by having selection

occur at a larger level, by compartmentalising hypercycles in membrane vesicles and letting

selection occur between vesicles (Eigen et al., 1981; Maynard-Smith and Szathmáry, 1995).

In this way, hypercycles infected with parasites would be eliminated. ‘Altruistic’ members

of hypercycles can be selected through population dynamics similar to ‘kinship selection’.

The same mechanism of selective pressure occurring at a higher level might be able to

generate robust ACNs. In this paper, we describe what happens to a chemical ACN model

when we have selection occurring at the garbage-bag level. We observe a rapid rise in the

robustness of the ACNs, corresponding to an increase in catalytic formation. In particular,

we find a rapid increase in the complexity of the ACNs, including a decrease in the number of

parasitic chemical species. The ACNs develop distributed robustness, where the robustness

results from the overall complexity of the catalytic network.

Methods

We use the Jain-Krishna chemical system evolution model (Jain and Krishna, 2001; Jain

and Krishna, 2002). In this model, there are N = 100 different chemical species that

Springer



Orig Life Evol Biosph (2006) 36:381–389 383

can either catalyse the formation or destruction of any of the other species, or of them-

selves, with the exception that no chemical species is allowed to be autocatalytic, that

is, to catalyse its own formation. The relative concentration of the N species is given by
{x1, x2, x3...xN } (

∑
i xi = 1, xi ≥ 0 | ∀i). These concentrations change according to the for-

mula

xi (t + �t) = (1 − λ) max

(
xi (t) +

∑
j

ci j x j , 0

)
, (1)

where λ represents the dilution to maintain
∑

i xi = 1, and thus represents the increase of

the system. A positive value of ci j means that species j catalyses the formation of species i,
while a negative value means j catalyses the destruction of i. (An alternative interpretation is

that these represent how much chemical species i catalyses the process of species j joining

or leaving of system (Segre et al., 2000).) The ci j values are chosen at random; only a

small fraction (P = 0.005) of ci j values are chosen to be non-zero, with the non-zero values

chosen randomly from a uniform distribution in the interval [−1, 1], except for non-zero cii

values which are chosen randomly from a uniform distribution in the interval [−1, 0] (i.e. no

autocatalytic chemical species). There are presumably a number of other simple molecules

that serve as reactants in the various catalytic reactions. It is assumed that these are fed into

the network through a steady diffusive flux.

As discussed in the Introduction, the model involves chemical dynamics occurring on a fast

time-scale, combined with evolutionary dynamics occurring on a much slower time-scale.

For a given set of {ci j }, the chemical dynamics represented by Equation (1) are continued until

convergence. This then represents the ‘steady-state’ of the system as described by {ci j }. For

the evolutionary dynamics, the chemical species with the smallest value of xk is eliminated,

and replaced with a new chemical species with a small (0.0001) initial concentration. The

various coefficients representing the properties of this new species (cik and ck j ) are again

chosen randomly. The chemical dynamics are then repeated until convergence. Each cycle

of replacement of the rarest chemical species and establishment of the new steady-state

represents one generation.

Two different types of evolutionary runs were simulated. The first involved the simple dy-

namics described above, run for 100,000 generations (independent evolution). A total of 2000

such simulations were performed. The second type involved a population of 100 chemical

systems undergoing Jain-Krishna dynamics, with these systems competing against each other

(competing systems). An initial system was created as described above and replicated 100

times, forming the initial generation. In each system the chemical species with the smallest

concentration was eliminated and replaced with a new chemical species with random values

of cik and ck j , and chemical dynamics were simulated until convergence. In order to repre-

sent the stochastic nature of the system population dynamics, the next generation of systems

were chosen at random from the systems in the current generation, with replacement, with

relative probability equal to the fitness of each system. The ‘fitness’ of each system was

defined as the final steady-state value of λ, that is, the excess chemical species that had to be

drained away in order to maintain a constant total chemical concentration, equal to the rate

of excess production of the ACS. This systems population dynamics continued for 100,000

generations. 20 such simulations were performed.

In the competing systems simulations there are three different dynamics processes: chem-

ical dynamics on an extremely rapid time-scale, and evolution of the different chemical

systems as well as system population dynamics occurring on a slower time-scale.
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Fig. 1 Dynamics of a discrete chemical systems undergoing Jain-Krishna dynamics (Jain and Krishna, 2001;
Jain and Krishna, 2002). (A) The total number of chemical species with non-negligible concentrations (red)
and the total number involved in the ACS (blue). (B) Number of positive (green) and negative (magenta)
catalytic interactions in the system

Results

A typical simulation for a chemical system undergoing independent Jain-Krishna dynamics

is shown in Figure 1. As described, there is a random formation of an ACS, involving a small

number of chemical species. Once this ACS is formed, other chemical species add to the

ACS, generally in a parasitic manner. This continues until the vast majority of the species

are members of the ACS. The broad participation of nearly all of the chemical species, with

non-negligible concentrations, was a characteristic feature of the presence of an ACS. There

is a correspondingly large increase in the number of positive interactions in the system, as

species whose formation is not catalysed by a member of the ACS are generally eliminated.

The number of negative interactions remains roughly constant. The ACS continues until one

of the key members of the ACS ‘core’ is eliminated, and the ACS collapses. Some time later,

a similar or dissimilar ACS may form, again lasting for a period of time before collapsing.

After an initial period of development of approximately 5000 generations, the independent

evolution simulations had a roughly constant fraction (18%) of systems in the ACS state.

Conversely, with the competing systems simulations, after approximately 3000 generations

essentially all systems were in the ACS state. ACS states in general have higher fitnesses (λ)

than non-ACS states, so any system with a collapsed ACS would be rapidly removed from

the population of systems.
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Fig. 2 Comparison of the average values of various quantities resulting from competing populations of
chemical systems (solid) and independent evolution (dashed). Only simulations with ACSs were included in
the averages. (A) Average longevity, that is, the mean length of time an active ACS can undergo independent
evolution before the collapse of the ACS. (B) Average number of positive (green) and negative (magenta)
catalytic interactions in the system. (C) Average number of participating members of the ACS (red), compared
with the number of non-parasitic members of the ACS (blue). Parasitic members were defined recursively as
those that do not catalyse the formation of any chemical species except for those previously designated as
parasitic

We can calculate the ‘longevity’ of a given chemical system by creating multiple copies of

the system, and having each undergo independent chemical dynamics until the ACS collapsed.

(The ACS was considered to be still present as long as 80% of the chemical species had non-

negligible concentrations.) The longevity is defined as the average time to collapse of that

system. As shown in Figure 2, the average longevity of the independent evolution systems

rapidly increases to approximately 1500 generations, where it remained for the rest of the

simulation. Conversely, the average longevity of the systems resulting from the competing

systems simulations maintains a strong upward trend, reaching over 20,000 generations by the

end of the simulation. This corresponded to a large increase in the average number of positive

interactions in resulting from the competing systems simulations, increasing to around 175,
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Fig. 3 Two ACSs resulting from competitive population dynamics between chemical systems (A) and from
independent evolution (B), showing the positive (catalysing) reactions, with relative strength (magnitude of
cii ) represented by the width of the connecting vector. Both ACSs had the same total number of positive
catalytic interactions. Parasitic species have been removed for clarity

in comparison with the average number of positive interactions in the independent evolution

systems which plateaued at approximately 120. The average numbers of negative interactions

in these two groups were similar.

As shown in Figure 2, the average number of species involved in the ACS states is not

dissimilar in the two different types of simulations, being slightly higher for the systems

undergoing inter-system competition (99.2) than for systems evolving independently (96.9).

The majority of involved species in both cases were parasitic, defined recursively as those that

do not catalyse the formation of any chemical species except for those previously designated

as parasitic. There was, however, a significant difference – on average approximately 32

of the species in systems involved in competition were non-parasitic, compared with only

18 of the chemical species in the individually-evolving systems. It was this increase in the

non-parasitic ‘core’ of the ACS that might provide much of the robustness.

Figure 3 shows two ACS cycles, one from the set of competing systems, the other from the

independently-evolving systems, from generation 10,000. These two were chosen so that the

two ACSs had the same number of positive interactions (132), yet the longevity of the ACS

resulting from inter-system competition was significantly longer (4250) than the longevity

of the ACS from the independently evolving system (980). In Figure 3 the parasitic residues

have been removed. It is clear how much larger and more extensive the competing systems

ACS is, with 25 non-parasitic species in the results of the population evolution compared

with the 11 in the independent evolution system ACS. Each non-parasitic species in the

competing systems ACS catalyses (and is catalysed by) on average 1.5 other non-parasitic

species, compared with 1.3 for the independent evolution system. In fact, there is a single

species in the independent evolution ACS (16) that, if removed, would destroy the ACS.

Figure 4 shows how the concentration of the various species evolves during two typical runs

by measuring the similarity of the concentration vectors at different times in the simulation.

The periods of ACS in the independent evolution simulations appear as small ‘blocks’ along

the diagonal. It is clear that different ACSs occurring during the independent evolution

simulation have relatively little similarity. In contrast, there is a clear longevity in the ACSs

in the competing systems simulations. Figure 5 shows the strong correlation between fitness

and longevity, both for the independent evolution and competing systems runs.
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Fig. 4 Representation of changes in the chemical species concentrations, measured as similarities between
the concentrations between different time-points in the simulations. (A) Evolution of a member of a set of
chemical systems undergoing population dynamics. (B) Evolution of a chemical system undergoing inde-
pendent evolution. The simulation represented in (B) is the same as that represented in Figure 1. (Note the
difference in scales.) Similarity between two concentration vectors �xi and �x j was measured by first computing
the scaler-product of the concentrations �xi · �x j (Segre et al., 2000). The entries of one of the vectors were then
randomly permuted 1000 times, and the scaler-product computed for each permutation. Figure 4 shows the
fraction of the permutations that have smaller dot-products than that of the original pair of concentrations

1

10

102

103

104

105

1.0 1.5 2.0 2.5 3.0 3.5

Fitness

yti
v

e
g

n
o

L

Fig. 5 Relationship between
fitness (λ) and longevity for
systems with ACSs.
Independently-evolving systems
at generation 100,000 (open
circles) are compared with
systems undergoing competitive
population dynamics at
generation 10,000 (red), 20,000
(purple), 50,000 (blue), and
100,000 (green)

Discussion

In the individual evolution of discrete chemical systems, we observe, as did Jain and Krishna

(Jain and Krishna, 2001; Jain and Krishna, 2002), a rise and collapse of autocatalytic networks.

As the ACN expand to include essentially all chemical species, the core members of the

network do not have any specific advantage over their parasitic neighbours. It is only a
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matter of time before one of these core members are removed by the evolutionary dynamics

and the network collapses.

Conversely, when different systems compete with each other in a population context,

there is a rapid rise in robust ACN systems. There is an increase in the number of positive

(catalysing) interactions. There is also an increase in the complexity of the ACNs, measured

by the number of core members of the network. As a result, the ACNs are able to survive for

much longer, including in subsequent evolution as a discrete chemical system. The ACNs have

become robust. As demonstrated in Figure 4, the ACS also has a strong tendency to remain

in a relatively consistent state, lasting on the order of 30,000 generations. In comparison, the

transient ACSs formed by chemical systems in the independent evolution simulations have

statistically-insignificant similarity to each other.

How does this robustness arise? There are generally three possible mechanisms for its

origin. Firstly, it might be that robustness is its own reward, that there may be selection

pressure acting at the individual level for robustness. As an example, a certain level of

robustness can result in an organism that is better able to survive changes in the external

environment or normal statistical fluctuations in the internal state. Secondly, robustness

might be correlated with some other important property. In this manner, robustness might

be a fortuitous ‘hitchhiking’ quality. The third is a consequence of Eigen’s quasispecies

model (Eigen and McCaskill, 1988; Eigen et al., 1989); the fact that fitness is calculated

over a polymorphic ensemble of different species results in an increased fitness for flatter

regions of the fitness landscape (Schuster and Swetina, 1988; Bornberg-Bauer and Chan,

1999; Nimwegen et al., 1999; Wilke, 2001a,b; Taverna and Goldstein, 2002).

The mechanism of the robustness in this situation seems to lie with the second explanation.

As is demonstrated in Figure 5, longevity is highly correlated with fitness, even among

systems evolving independently where there is no selective pressure either for longevity or

for fitness. The selective pressure for increased fitness in the systems undergoing competitive

population dynamics result in more complex ACNs, with more positive interactions. In this

manner, there is selection for complexity, which is correlated with the greater degree of

robustness, as measured by the increased longevity.

Robustness can generally arise either through direct redundancy, that is, duplication of

essential elements, or through ‘distributed robustness’ where the robustness is the result of

the network topology and architecture; the robustness of biological systems often comes

from this distributed robustness (Wagner, 2005). In the population dynamics of competing

chemical systems, as is clear from Figure 5, involves distributed robustness – no chemical

species share the same catalytic reactions. It is rather the dense network of catalytic reactions

that results in a distribution of importance among a number of different species.
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