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Abstract
Given partially ordered sets (posets) (P,≤P ) and (P ′,≤P ′), we say that P ′ contains a copy
of P if for some injective function f : P → P ′ and for any A, B ∈ P , A ≤P B if and
only if f (A) ≤P ′ f (B). For any posets P and Q, the poset Ramsey number R(P, Q) is the
least positive integer N such that no matter how the elements of an N -dimensional Boolean
lattice are colored in blue and red, there is either a copy of P with all blue elements or a
copy of Q with all red elements. We focus on the poset Ramsey number R(P, Qn) for a
fixed poset P and an n-dimensional Boolean lattice Qn , as n grows large. It is known that
n + c1(P) ≤ R(P, Qn) ≤ c2(P)n, for positive constants c1 and c2. However, there is no
poset P known, for which R(P, Qn) > (1 + ε)n, for ε > 0. This paper is devoted to a
new method for finding upper bounds on R(P, Qn) using a duality between copies of Qn

and sets of elements that cover them, referred to as blockers. We prove several properties of
blockers and their direct relation to the Ramsey numbers. Using these properties we show
that R(N , Qn) = n + �(n/ log n), for a poset N with four elements A, B,C, and D, such
that A < C , B < D, B < C , and the remaining pairs of elements are incomparable.
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1 Introduction

Apartially ordered set, shortly a poset, is a set P equippedwith a relation≤P that is transitive,
reflexive, and antisymmetric. For any non-empty set Z, let Q(Z) be the Boolean lattice of
dimension |Z| on a ground set Z, i.e. the poset consisting of all subsets of Z equipped with
the inclusion relation ⊆. We use Qn to denote a Boolean lattice with an arbitrary n-element
ground set. We refer to a poset either as a pair (P,≤P ), or, when it is clear from context,
simply as a set P . When clear from context, we shall write A ≤ B instead of A ≤P B, and
A < B when A ≤ B and A �= B. When A and B are not comparable, we write A ‖ B. The
elements of P are often called vertices.

A poset P1 is an (induced) subposet of P2 if P1 ⊆ P2 and for every X1, X2 ∈ P1,
X1 ≤P1 X2 if and only if X1 ≤P2 X2. An (induced) copy of a poset P1 in P2 is an induced
subposet P ′ of P2, isomorphic to P1. We shall be considering three special posets: V , V

, and

B Christian Winter
christian.winter@kit.edu

1 Karlsruhe Institute of Technology, Karlsruhe, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11083-024-09663-z&domain=pdf


Order

Fig. 1 Hasse diagrams of posets V , V

, andN

N , see Fig. 1. The poset V has three vertices A, B, and C , C < A, C < B, and A ‖ B. The
poset

V

has three vertices A, B, and C , C > A, C > B, and A ‖ B. The poset N has four
vertices A, B,C, D and relations A < C , B < D, B < C , A ‖ B, A ‖ D, and C ‖ D.

Extremal properties of posets and their induced subposets have been investigated in recent
years andmirror similar concepts in graphs. Carroll andKatona [4] initiated the consideration
of so called Turán-type problems for induced subposets. Most notable is a result by Methuku
and Pálvölgyi [16] which provides an asymptotically tight bound on the maximum size of a
subposet of a Boolean lattice that does not have a copy of a fixed poset P , for general P . Their
statement has been refined for several special cases, see e.g. Lu andMilans [13], andMéroueh
[15]. Further Turán-type results are, for example, given by Methuku and Tompkins [17], and
Tomon [18]. Note that Turán-type properties are also investigated in depth for non-induced, so
called weak subposets, which are not considered here. Besides that, saturation-type extremal
problems are studied for induced and weak subposets, see a recent survey of Keszegh, et al.
[12].

In this paper we are dealing with Ramsey-type properties of induced subposets in Boolean
lattices. Consider an assignment of two colors, blue and red, to the vertices of posets. Such a
coloring c : P → {blue, red} is a blue/red coloring of P . A colored poset is monochromatic
if all of its vertices share the same color. A monochromatic poset whose vertices are blue
is called a blue poset. Similarly defined is a red poset. Extending the classical definition of
graph Ramsey numbers, Axenovich and Walzer [1] introduced the poset Ramsey number
which is defined as follows. For posets P and Q, let

R(P, Q) = min{N ∈ N : every blue/red coloring of QN contains either

a blue copy of P or a red copy of Q}.
One of the central questions in this area is to determine R(Qn, Qn). The best bounds

currently known are 2n + 1 ≤ R(Qn, Qn) ≤ n2 − n + 2, see listed chronologically Walzer
[20], Axenovich and Walzer [1], Cox and Stolee [8], Lu and Thompson [14], Bohman and
Peng [3]. It should be highlighted that the upper bound on R(Qn, Qn) shows that R(P, Q)

is well-defined for any P and Q because any poset is contained as a copy in a Boolean lattice
Qn for sufficiently large n.

One subject of research on poset Ramsey numbers is the off-diagonal setting R(P, Qn)

for a fixed poset P and large n. As general bounds the first author and Walzer [1] showed the
following. The height h(P) of a poset P is defined as the size of a longest chain in P . The
2-dimension dim2(P) of a poset P is the dimension of the smallest Boolean lattice containing
a copy of P . It is an easy observation that the 2-dimension is well-defined for any P .

Proposition 1 (Axenovich-Walzer [1]) Let P be a fixed poset. Then

n + h(P) − 1 ≤ R(P, Qn) ≤ h(P)n + dim2(P).
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Here, the lower bound is trivial and is obtained by a coloring of Qn+h(P)−2 in which all
vertices in each layer {X ∈ Qn+h(P)−2 : |X | = �}, 0 ≤ � ≤ n + h(P) − 2, have the same
color, red or blue, and there are n red layers and h(P) − 1 blue layers.

For the off-diagonal setting R(Qm, Qn) with m fixed and n large, an exact result is
only known if m = 1. It is easy to see that R(Q1, Qn) = n + 1. For m = 2, it was
shown in [1] that R(Q2, Qn) ≤ 2n + 2. This was improved by Lu and Thompson [14] to
R(Q2, Qn) ≤ (5/3)n + 2, and by Grósz, Methuku, and Tompkins [11] who showed for
ε > 0 and sufficiently large n ∈ N: n + 3 ≤ R(Q2, Qn) ≤ n + (2+ε)n

log n . Finally, the present
authors [2] proved a lower bound asymptotically matching the upper one:

Theorem 2 (Grosz-Methuku-Tompkins [11], Axenovich-Winter [2])

R(Q2, Qn) = n + �
( n
log n

)
.

Further known bounds on poset Ramsey numbers include results of Chen et al. [6], [7],
Chang et al. [5] as well as Falgas-Ravry et al. [10].

It is unknown whether there exists a poset P such that R(P, Qn) ≥ (1 + c)n for some
c > 0. Therefore it is natural to consider the value of R(P, Qn) − n and determine its
asymptotic behaviour. We say that a tight bound on R(P, Qn) is a function f (n) such that
R(P, Qn) = n + �( f (n)). A tight bound is only known for a handful of posets, see for
example Theorem 2, and Winter [21].

A poset is trivial if it does not contain a copy of either V or

V

. Otherwise we refer to it as
non-trivial. For trivial posets P the trivial lower bound is asymptotically tight.

Theorem 3 (Axenovich-Winter [2]) If P is a trivial poset, then R(P, Qn) = n+ c(P) where
c(P) is a constant only depending on P. If P is a non-trivial poset, then R(P, Qn) ≥
R(V, Qn) ≥ n + n

15 log n .

For non-trivial posets P , there are only two known approaches for upper bounds on
R(P, Qn). The first one was introduced by Grosz, Methuku and Tompkins [11] for an upper
bound on R(Q2, Qn) and is based on the following idea. In a blue/red coloring of the host
lattice, there is either a red copy of Qn (and we are done) or there are many blue chains.
Then these chain counting arguments can be applied for finding a monochromatically blue
structure.

An alternative approach is given in [2] by the present authors for proving an upper bound
on R(V, Qn). With a careful analysis of the blue subposet of a hosting lattice with forbidden
red Qn one can obtain much more information than the existence of many chains. In this
paper we will elaborate on the second approach and formulate the central, intermediate step
as a theorem for general P . This approach involves so-called blockers, posets that contain a
vertex from each copy of Qn from a special, easier to analyse subclass.We show in Theorem 9
that extremal properties of P-free blockers immediately give an upper bound on R(P, Qn).
Our result on R(N , Qn) then follows:

Theorem 4
n + n

15 log n
≤ R(N , Qn) ≤ n + (1 + o(1))n

log n
.

Here and throughout the paper, ‘log’ refers to the logarithm with base 2. The lower bound
follows immediately from Theorem 3, so the focus of this paper is on the upper bound.

The paper is structured as follows. In Section 2 main definitions and basic results are
given. Section 3 deals with the main tool used - blockers. In Section 4 a proof of Theorem 4
is given.
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2 Main Definitions and Tools

A vertex Z of a poset F is a minimum of F if it is the unique minimal element of F , i.e.
Z ≤ F for every F ∈ F . Similarly, a maximum of F is a unique maximal vertex of F .
Given a fixed poset P , a poset F is P-free if it contains no (induced) copy of P . Let X and
Y be disjoint sets. For a subposet F ⊆ Q(Y), the X -shift of F is the poset F ′ with vertices
{Y ∪ X : Y ∈ F} ordered by inclusion. Note that F ′ is isomorphic to F .

Let F1 and F2 be two disjoint posets. The parallel composition of F1 and F2 is the poset
on vertices F1 ∪ F2 such that pairs of vertices in F1, as well as pairs of vertices in F2 are
comparable if and only if they are likewise comparable in F1 or F2, respectively, and any
two F1 ∈ F1 and F2 ∈ F2 are incomparable. In the literature this poset is also referred to as
the independent union of F1 and F2. If for a poset F there exists a partition F = F1 ∪ F2

into non-empty subposets F1 and F2 such that F is the parallel composition of F1 and F2,
we say that F is disconnected. Otherwise, we say that F is connected.

A weak homomorphism of a poset F1 into another poset F2 is a function φ : F1 → F2

such that for any two A, B ∈ F1 with A ≤F1 B, we have φ(A) ≤F2 φ(B). Similarly, a
function φ : F1 → F2 is a strong homomorphism if for any A, B ∈ F1, A ≤F1 B if and only
if φ(A) ≤F2 φ(B). An injective weak [strong] homomorphism is aweak [strong] embedding
of F1 into F2. Here we exclusively consider strong embeddings and weak homomorphisms,
so we usually simply refer to them as “embeddings” and “homomorphisms”, respectively.

Throughout this paper, we consider a set Z as the ground set of our hosting lattice Q(Z)

where |Z| = N for some integer N . We then partition Z into two disjoint sets X and Y ,
|Y| �= ∅, such that |X | = n and |Y| = k for some integers n and k, i.e. N = n+k. A (strong)
embedding ψ : Q(X ) → Q(Z) is X -good if for every X ⊆ X , ψ(X) ∩ X = X . We say
that a copy Q of Qn inQ(Z) is X -good if there exists an X -good embedding ofQ(X ) with
image Q. See Fig. 2 (a) for a {1, 2}-good copy of Q2 in Q({1, 2, x1, x2}). Moreover, we say
that X is a defining set for a copy of Qn if this copy is X -good. One of the main structural
observations we have is the following:

Lemma 5 (Axenovich-Walzer [1]) Let n ∈ N. Any copy of Qn in Q(Z) is X -good for some
subset X ⊆ Z with |X | = n.

We shall also need some definitions to describe N -free posets. Let F1 and F2 be two
disjoint posets. The series composition of F1 below F2 is the poset on vertices F1 ∪ F2,
where pairs of vertices in F1, as well as pairs of vertices in F2 are comparable if and only if
they are likewise comparable in F1 or F2, respectively, and F1 < F2 for any F1 ∈ F1 and
F2 ∈ F2. A poset is series-parallel if either it is a 1-element poset or it is obtained by series
composition or parallel composition of two series-parallel posets. Valdes [19] showed the
following characterization.

Theorem 6 (Valdes [19]) A non-empty poset is N -free if and only if it is series-parallel.

3 Y-Blockers

3.1 Definition and Examples ofY-blockers

Outline of the Main Idea The definition of R(P, Qn) implies that there is a coloring of
Q(Z), |Z| ≤ R(P, Qn) − 1, in blue and red such that the blue vertices “cover" all copies of
Qn , i.e. there is a blue vertex in each copy of Qn and there is no copy of P having only blue
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vertices, i.e. the set of blue vertices is P-free. We shall classify all copies of Qn according
to their defining sets and consider the set of only those blue vertices that “cover" copies of
Qn with a specific fixed defining set X . We refer to the poset induced by blue vertices as a
Y-blocker, where Y = Z \ X . We shall derive several properties of general Y-blockers and
those that are P-free. Then we will bound R(P, Qn) in terms of blockers. This generalises
an approach used in [2], where

V

-free Y-blockers were considered and called Y-shrubs.
Definition 7 Let Y and Z be two non-empty sets such that Y ⊆ Z. A Y-blocker in Q(Z)

is a subposet F in Q(Z) which contains a vertex from every X -good copy of Q(X ), where
X = Z \ Y . We say that a Y-blocker F in Q(Z) is critical if for any vertex F ∈ F the
subposet F \ {F} is not a Y-blocker in Q(Z).

Note that for any Y ⊆ Z, a Y-blocker inQ(Z) exists, for example take F = Q(Z). Later
on we consider “thinner” Y-blockers satisfying special properties, in particular being P-free.

Example Let Z = {1, 2, x1, x2}, Y = {1, 2}, and X = {x1, x2}. Let F be the {x1}-shift
of Q(Y), see Fig. 2 (a). To show that F is a Y-blocker, consider an arbitrary X -good copy
Q of Q(X ) in Q(Z), with a corresponding X -good embedding ψ : Q(X ) → Q(Z). Then
ψ({x1}) = {x1} ∪ Y for some Y ⊆ Y , and hence ψ({x1}) ∈ F . Thus, F is a Y-blocker in
Q(Z). Fig. 2 (b) also depicts a Y-blocker, which we shall verify by Theorem 11.

3.2 General Properties ofY-blockers

Lemma 8 (i) LetZ be a setwith |Z| > n. A blue/red coloredBoolean latticeQ(Z) contains
no red copy of Qn if and only if for eachX ⊆ Z of size |X | = n, there is aZ \X -blocker
with all vertices blue.

(ii) Let F be a Y-blocker where Y �= ∅ and let Y ⊆ Y . Then there is a vertex Z ∈ F with
Z ∩ Y = Y . In particular, if Z is a minimum of F , then Z ∩ Y = ∅; and if Z is a
maximum of F , then Z ∩ Y = Y .

(iii) If F is a Y-blocker, then |F | ≥ 2|Y|.

Proof Part (i) follows immediately from Lemma 5 and the definition of a Y-blocker. For
(i i), let F be a Y-blocker inQ(Z) and X = Z \Y . Observe that F contains a vertexU with
U ∩ Y = Y for every Y ⊆ Y , because otherwise the Y -shift of Q(X ) is an X -good copy of
Q(X ) that does not contain a vertex from F . Considering Y = ∅, we see that there isU ∈ F
such that U ∩ Y = ∅. If Z is a minimum of F , then it has Y-part Z ∩ Y ⊆ U ∩ Y = ∅.
Similarly, if there is a maximum Z of F , it has Y-part Z ∩ Y = Y . For (i i i), since there are
2|Y| subsets of Y , part (i i) immediately implies that |F | ≥ 2|Y|. �

Fig. 2 Two {1, 2}-blockers in Q({1, 2, x1, x2})
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Theorem 9 Let P be a poset and let n ∈ N be an integer. Then

R(P, Qn) ≤ min{N : there is no P-free Y-blocker in Q([N ]) for some Y ⊆ [N ], |Y| = N −n}.
Proof Let N be the smallest integer such that for some Y ⊆ [N ], |Y| = N − n, there is no
P-free Y-blocker in Q([N ]).

Consider an arbitrarily blue/red colored Boolean lattice Q([N ]) and let B be the induced
subposet of Q([N ]) consisting of all blue vertices. We shall show that there is either a blue
copy of P or a red copy of Qn . Let X = [N ] \ Y . If in Q([N ]) there is a monochromatic
red copy of Qn which is X -good, the proof is complete. Otherwise each X -good copy of Qn

contains a blue vertex, i.e. the blue subposet B is a Y-blocker. By the definition of N , B is
not P-free. Thus there is a blue copy of P in Q([N ]).

It remains to show that this minimum is well-defined, i.e. we shall find an integer N such
that there is no P-free Y-blocker in Q([N ]), where Y ⊆ [N ] with |Y| = N − n. In order to
show this, we bound the size |F | of a P-free Y-blocker F in Q([N ]) from above and from
below. On the one hand, by a result of Methuku and Pálvölgyi [16] the size of the P-free
subposet F ⊆ Q([N ]) is bounded by

|F | ≤ c(P)

(
N

N/2

)
≤ c′(P) · 2N√

N/2
,

where c and c′ are constants depending only on P . On the other hand, Lemma 8 provides
that

|F | ≥ 2|Y| = 2N−n .

For sufficiently large N , we have that
√
N/2

c′(P)
> 2n , which implies that there is no P-free

Y-blocker |F | in Q([N ]). �
Definition 10 For a subposet F of Q(Z) and Y ⊆ Z, we say that a (weak) homomorphism
φ : F → Q(Y) is Y-hitting if there exists some F ∈ F with φ(F) = F ∩ Y . Conversely, φ
is Y-avoiding if φ(F) �= F ∩ Y for every F ∈ F .

Remark In the following we show that the existence of a Y-blocker is equivalent to the non-
existence of a Y-avoiding homomorphism. One can think of an homomorphism φ : F →
Q(Y) as a “recipe” encoding an X -good copy of Qn in Q(X ∪ Y). Recall that a Y-blocker
is defined as a poset which has a vertex in common with every X -good copy of Qn . If a
“recipe” φ is Y-hitting, then a vertex F ∈ F with φ(F) = F ∩Y is contained in the X -good
copy encoded by φ, i.e. the Y-blocker F has a vertex in common with this copy. However,
there is no 1-to-1 correspondence between homomorphisms φ and embeddingsψ ofX -good
copies of Qn , and the presented constructions building ψ from φ as well as φ from ψ are
not inverse of each other.

Theorem 11 LetY be a non-empty subset of a setZ. A subposetF of a Boolean latticeQ(Z)

is a Y-blocker if and only if every (weak) homomorphism φ : F → Q(Y) is Y-hitting.
Example Let Z = {1, 2, x1, x2} and Y = {1, 2}. In the Boolean lattice Q({1, 2, x1, x2})
consider the subposet F on vertices ∅, {1, x1}, {1, 2, x1}, {2, x2}, {1, 2, x2}, see Figure 2
(b). Then F is a {1, 2}-blocker. In order to prove this, we can use Theorem 11. Assume
towards a contradiction that there is a homomorphism φ : F → Q(Y) such that for every
F ∈ F we have φ(F) �= F ∩ Y . Then φ(∅) ∩ Y �= ∅, say without loss of generality
1 ∈ φ(∅) ∩ Y . Since φ is a homomorphism φ(∅) ⊆ φ({1, x1}), so 1 ∈ φ({1, x1}) ∩ Y .
Now, because φ({1, x1}) ∩Y �= {1}, we obtain that φ({1, x1}) ∩Y = {1, 2}. Then using that
φ({1, x1}) ⊆ φ({1, 2, x1}), we obtain φ({1, 2, x1}) ∩ Y = {1, 2}, a contradiction.
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Proof of Theorem 11 Let Y ⊆ Z be a non-empty subset and let X = Z \Y . For the first part
of the proof let F be a subposet in Q(Z) such that every homomorphism φ : F → Q(Y)

is Y-hitting. We shall show that F is a Y-blocker. Let Q be an arbitrary X -good copy of
Q(X ) in Q(Z) with a corresponding X -good embedding ψ : Q(X ) → Q(Z). Consider the
function φ : F → Q(Y) given by φ(F) := ψ(F ∩ X ) ∩ Y for each F ∈ F . Using the
properties of ψ , it is easy to see that if F ⊆ F ′ for F, F ′ ∈ F , then φ(F) ⊆ φ(F ′), so φ is
a homomorphism. Thus φ is Y-hitting and we find some Z ∈ F with φ(Z) = Z ∩ Y . Then
ψ(Z ∩X )∩Y = φ(Z) = Z ∩Y . Sinceψ isX -good, we know thatψ(Z ∩X )∩X = Z ∩X .
Therefore ψ(Z ∩ X ) = Z . Since the image of ψ is Q, we obtain Z = ψ(Z ∩ X ) ∈ Q, thus
F and Q have the vertex Z in common.

From now on let F be a subposet inQ(Z) for which there exists a Y-avoiding homomor-
phism φ : F → Q(Y). We shall show thatF is not aY-blocker. For that we shall construct an
X -good embedding ψ : Q(X ) → Q(Z) such that the image of ψ does not contain a vertex
from F . Fix some X ∈ Q(X ), now we define ψ(X) iteratively: Informally spoken, in step i
we introduce a set fi (X) ⊆ Y and check whether X ∪ fi (X) is a “feasible” choice for ψ(X);
and if not, we extend fi (X) to its strict superset fi+1(X) and repeat.

Let f0(X) = ∅. For i ∈ N, let Fi (X) = {Z ∈ F : Z ⊆ X ∪ fi−1(X)} be the
down-set of X ∪ fi−1(X) and let fi (X) = ⋃

Z∈Fi (X) φ(Z). Clearly fi (X) ⊆ Y . Note
that ∅ = f0(X) ⊆ f1(X), thus F1(X) ⊆ F2(X) and so f1(X) ⊆ f2(X). Iteratively, we
obtain that Fi (X) ⊆ Fi+1(X) and fi (X) ⊆ fi+1(X) ⊆ Y , see Fig. 3 (a). Thus after finitely
many steps f j (X) = f j+1(X) for some j ∈ N, i.e. this set is “feasible”, and let j(X) be
the minimal such index j . Observe that f j(X)(X) = f j(X)+1(X) = f j(X)+2(X) = . . . as
F j(X)+1(X) = F j(X)+2(X) = . . . . We set ψ(X) := X ∪ f j(X)(X).

Claim 1 ψ is an X -good embedding of Q(X ).

Proof of Claim 1. Note that for every X ∈ Q(X ), we have f j(X)(X) ⊆ Y and so ψ(X) ∩
X = X . Thus it remains to show that ψ is an embedding in order to prove the claim. Let
X1, X2 ∈ Q(X ). We shall show that X1 ⊆ X2 if and only if ψ(X1) ⊆ ψ(X2).

First suppose that X1 ⊆ X2. Then X1 ∪ f0(X) = X1 ⊆ X2 = X2 ∪ f0(X), so F1(X1) ⊆
F1(X2). This implies that f1(X1) ⊆ f1(X2), so X1 ∪ f1(X) ⊆ X2 ∪ f1(X), see Fig. 3 (b).
Iteratively, Fi (X1) ⊆ Fi (X2) and fi (X1) ⊆ fi (X2). We obtain that

f j(X1)(X1) = fmax{ j(X1), j(X2)}(X1) ⊆ fmax{ j(X1), j(X2)}(X2) = f j(X2)(X2),

thusψ(X1) ⊆ ψ(X2). Now suppose thatψ(X1) ⊆ ψ(X2). Then in particular X1 = ψ(X1)∩
X ⊆ ψ(X2) ∩ X = X2, so X1 ⊆ X2.

Claim 2 The image of ψ contains no vertex from F .

Proof of Claim 2. Let X ∈ X and assume thatψ(X) ∈ F . We shall find a contradiction by
consideringφ(ψ(X)). Observe thatψ(X) = X∪ f j(X)(X) ∈ F j(X)+1(X) and soφ(ψ(X)) ⊆
f j(X)+1(X). Since φ is Y-avoiding, φ(ψ(X)) �= ψ(X) ∩ Y = f j(X)(X) = f j(X)+1(X).
Consequently, there exists an element a ∈ f j(X)+1(X) \ φ(ψ(X)). By definition of fi (X),
we find a vertex Z ∈ F j(X)(X) ⊆ F with a ∈ φ(Z). Now, since Z ∈ F j(X)(X), we obtain
that Z ⊆ X ∪ f j(X)(X) = ψ(X) whereas element a witnesses φ(Z) � φ(ψ(X)). This
contradicts the fact that φ is a homomorphism. So, indeed, F is not a Y-blocker.

This concludes the proof of Theorem 11. �
In the following we use the characterization from Theorem 11 to analyse properties of

critical blockers. Recall that for Y ⊆ Z, a Y-blocker F in Q(Z) is critical if for any vertex
F ∈ F the subposet F \ {F} is not a Y-blocker in Q(Z).
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Fig. 3 (a) Construction of ψ(X), (b) Iteration in Claim 1

Lemma 12 LetF be a criticalY-blocker for a non-empty setY . ThenF is a connected poset.

Proof Assume that F is the parallel composition of two non-empty posets F1 and F2, i.e.
F1 and F2 are vertex-wise incomparable in F . Then each of F1 and F2 is not a Y-blocker by
criticality ofF . Thus there areY-avoiding homomorphisms φ1 : F1 → Q(Y) and φ2 : F2 →
Q(Y). Now the function ψ : F → Q(Y),

ψ(F) =
{

φ1(F), if F ∈ F1

φ2(F), if F ∈ F2.

is a homomorphism of F and Y-avoiding. Recall that F is a Y-blocker, so this is a contra-
diction to Theorem 11. �
Lemma 13 Let F be a critical Y-blocker for a non-empty set Y . Let U1,U2 ∈ F with
U1 �= U2. If either U1 ∩ Y = ∅ = U2 ∩ Y or U1 ∩ Y = Y = U2 ∩ Y , then U1 and U2 are
not comparable.

Proof Assume thatU1∩Y = ∅ = U2∩Y andU1 ⊆ U2.AsF is a criticalY-blocker, the poset
F ′ = F \ {U2} is not a Y-blocker, so by Theorem 11 we find a Y-avoiding homomorphism
φ : F ′ → Q(Y). Let U = {U ∈ F ′ : U ⊂ U2}, note that U �= ∅, see Fig. 4 (a). We extend φ

to a function ψ : F → Q(Y) by defining

ψ(F) =
{

φ(F), if F �= U2⋃
U∈U φ(U ), if F = U2.

In order to reach a contradiction, it remains to show that ψ is a Y-avoiding homomorphism.
We shall show that ψ is a homomorphism by considering any two F1, F2 ∈ F such that
F1 ⊆ F2 and verifying that ψ(F1) ⊆ ψ(F2). We need to consider cases whether either of
F1 or F2 is equal to U2. We repeatedly use the fact that φ is a homomorphism:

◦ If F1 �= U2 and F2 �= U2, then ψ(F1) = φ(F1) ⊆ φ(F2) = ψ(F2).
◦ If F1 = U2, then ψ(F1) = ψ(U2) = ⋃

U∈U φ(U ) ⊆ ⋃
U∈U φ(F2) ⊆ φ(F2) = ψ(F2).

Here we used the property that for any U ∈ U , U ⊆ U2 ⊆ F2.
◦ If F2 = U2, then ψ(F1) = φ(F1) ⊆ ⋃

U∈U φ(U ) = ψ(U2) = ψ(F2). Here, we used
that F1 ∈ U and thus F1 ⊆ ⋃

U∈U U . Therefore, ψ is a homomorphism.
To show that ψ is Y-avoiding, we need to verify that ψ(F) �= F ∩Y for any F ∈ F . First

consider F ∈ F with F �= U2, i.e. F ∈ F ′. Since φ is Y-avoiding, ψ(F) = φ(F) �= F ∩Y .
For F = U2, ψ(U2) = φ(U1) �= U1 ∩Y since φ is Y-avoiding. We selectedU1 andU2 such
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Fig. 4 (a) Setting in Lemma 13, (b) Setting in Lemma 14

thatU1 ∩Y = ∅ = U2 ∩Y , thus ψ(U2) �= U2 ∩Y . We conclude that ψ is Y-avoiding. This
contradicts Theorem 11 and the fact that F is a Y-blocker.

Under the assumption thatU1 ∩Y = Y = U2 ∩Y andU1 ⊆ U2, a symmetric proof holds
for U = {U ∈ F \ {U1} : U ⊃ U1} and ψ : F → Q(Y) with

ψ(F) =
{

φ(F), if F �= U1⋂
U∈U φ(U ), if F = U1.

�

Lemma 14 Let F be a critical Y-blocker where Y �= ∅. Let F1 ⊆ {U ∈ F : U ∩ Y = ∅}
such that F is a series composition of F1 below F \ F1, then |F1| ≤ 1. Similarly, let
F2 ⊆ {U ∈ F : U ∩ Y = Y} such that F is a series composition of F \ F2 below F2, then
|F2| ≤ 1.

Proof For the first part, assume towards a contradiction that there are two distinct vertices
U1,U2 ∈ F1. Since F is a critical Y-blocker, there is a Y-avoiding homomorphism φ : F \
{U2} → Q(Y). Let ψ : F → Q(Y) such that

ψ(F) =
{

φ(F), if F �= U2

φ(U1), if F = U2.

We shall prove that ψ is a Y-avoiding homomorphism of F . By Lemma 13, F1 is an
antichain. In order to show thatψ is a homomorphism, we consider two arbitrary F1, F2 ∈ F
with F1 ⊆ F2 and show that ψ(F1) ⊆ ψ(F2).

◦ If F2 = U2, then in particular F2 ∈ F1 and so F1 ∈ F1, becauseF is a series composition
of F1 below F \ F1. Since F1 is an antichain, we obtain that F1 = U2 = F2. Then trivially
ψ(F1) = ψ(U2) = ψ(F2).

◦ If F1 = U2 and F2 �= U2, we know that F2 ∈ F \ F1 because F1 is an antichain.
Then U1 ⊆ F2. Because φ is a homomorphism and by definition of ψ , we obtain that
ψ(U2) = φ(U1) ⊆ φ(F2).

◦ If F1 �= U2 and F2 �= U2, then ψ(F1) = φ(F1) ⊆ φ(F2) = ψ(F2). Thus ψ is a
homomorphism of F .
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For every F ∈ F \ {U2}, we know that ψ(F) = φ(F) �= F ∩ Y . Furthermore, ψ(U2) =
φ(U1) �= U1 ∩ Y = ∅ = U2 ∩ Y . Thus ψ is Y-avoiding, a contradiction.

If we assume that there are distinct U1,U2 ∈ F2, a symmetric argument considering the
same function ψ : F → Q(Y),

ψ(F) =
{

φ(F), if F �= U2

φ(U1), if F = U2.

yields a contradiction. �
Lemma 15 Let X and Y be two disjoint sets with |Y| = 1. Let F be a critical Y-blocker in
Q(X ∪ Y). Then F is a chain consisting of two vertices X1, X2 ∪ Y , where X1 ⊆ X2 ⊆ X .

Proof Since |Y| = 1, we find that for every Z ∈ F either Z ∩Y = ∅ or Z ∩Y = Y . Consider
subposets F1 = {Z ∈ F : Z ∩ Y = ∅} and F2 = {Z ∈ F : Z ∩ Y = Y} partitioning F .
Lemma 8 provides thatF1 �= ∅ andF2 �= ∅. By Lemma 12,F is connected, so in particular
there are two vertices from F1 and from F2 which are comparable. Let these vertices be
X1 ∈ F1 and X2 ∪ Y ∈ F2, where X1, X2 ⊆ X . Then X1 ⊆ X2 ∪ Y , so X1 ⊆ X2.

Nextwe need to show thatF = {X1, X2∪Y}. Consider the subposetF ′ = {X1, X2∪Y} ⊆
F . We show that F ′ is a Y-blocker inQ(X ∪Y), i.e. by Theorem 11 we shall show that there
is no Y-avoiding homomorphism from F ′ to Q(Y). A homomorphism φ : F ′ → Q(Y) is
Y-avoiding only if φ(X1) = Y and φ(X2 ∪ Y) = ∅, but such a homomorphism does not
exist, since φ(X1) ⊆ φ(X2 ∪Y) because of X1 ⊆ X2 ∪Y . We obtain that F ′ is a Y-blocker,
therefore F = {X1, X2 ∪ Y} since F is critical. �
Lemma 16 Let Y be a set of size at least 2 and let a ∈ Y . Let F be a Y-blocker. Then the
induced subposets {F ∈ F : a ∈ F} and {F ∈ F : a /∈ F} are (Y \ {a})-blockers.
Proof LetF ′ = {F ∈ F : a ∈ F}. Assume thatF ′ is not a (Y \{a})-blocker, i.e. by Theorem
11 there is a (Y \ {a})-avoiding homomorphism φ : F ′ → Q(Y \ {a}). We find a Y-avoiding
homomorphism of F in order to reach a contradiction. Let ψ : F → Q(Y) with

ψ(F) =
{

φ(F) ∪ {a}, if F ∈ F ′

{a}, if F /∈ F ′.

Observe that ψ is a homomorphism, because {a} ⊆ φ(F) ∪ {a} for all F ∈ F ′ and φ is a
homomorphism.

For every F ∈ F \ F ′, note that a ∈ ψ(F) but a /∈ F ∩ Y , thus ψ(F) �= F ∩ Y . On
the other hand, recall that φ is (Y \ {a})-avoiding. Hence for every F ∈ F ′ we know that
φ(F) �= F ∩ (Y \ {a}) where a /∈ φ(F) and a /∈ F ∩ (Y \ {a}). This implies

ψ(F) = φ(F) ∪ {a} �= F ∩ (Y \ {a}) ∪ {a} = F ∩ Y.

As a result, ψ is a Y-avoiding homomorphism of F , which is a contradiction.
The second part of the lemma follows from a symmetric argument forF ′′ = {F ∈ F : a /∈

F} using the function ψ : F → Q(Y),

ψ(F) =
{

φ(F), if F ∈ F ′′

Y \ {a}, if F /∈ F ′′.

�
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3.3 Properties ofN -freeY-blockers

Theorem 17 LetX andY be disjoint sets withY �= ∅. LetF be anN -free, criticalY-blocker
in Q(X ∪ Y). Then F has at least one of a minimum vertex or a maximum vertex.

Proof of Theorem 17 Since Y �= ∅, Lemma 8 implies that |F | ≥ 21. By Theorem 6, F is
series-parallel, so it can be partitioned into two disjoint, non-empty posets F1 and F2 such
that F is either the parallel composition of F1 and F2 or the series composition of F1 below
F2. The former could not happen by Lemma 12. Thus,F can be partitioned into two disjoint,
non-empty posets F1 and F2 such that for every F1 ∈ F1 and F2 ∈ F2, F1 ⊆ F2.

Let Y1 = (
⋃

F∈F1
F) ∩ Y be the Y-part of the union of all vertices in F1 and let Y2 =

(
⋂

F∈F2
F)∩Y be the Y-part of the intersection of all vertices in F2. Clearly, Y1 ⊆ Y2 ⊆ Y .

First assume that Y1 /∈ {∅,Y}. Then there are a ∈ Y1 and b ∈ Y \ Y1. Lemma 8 provides
that the Y-blocker F contains a vertex U with U ∩ Y = {b}. Then U /∈ F1 since b ∈ U
while b /∈ Y1, but also U /∈ F2 as a /∈ U while a ∈ Y1 ⊆ Y2. We arrive at a contradiction,
hence Y1 ∈ {∅,Y}. Symmetrically, Y2 ∈ {∅,Y}. Take an arbitrary Y-part Y ⊆ Y such that
Y /∈ {∅,Y}. By Lemma 8 there is a vertex Z ∈ F with Z ∩ Y = Y . Then Z ∈ F1 or
Z ∈ F2. In the first case we obtain that Y1 �= ∅, thus Y1 = Y and hence Y2 = Y (because
Y1 ⊆ Y2 ⊆ Y). In the second case Y2 �= Y , so Y1 = Y2 = ∅.

Thus either Y1 = Y2 = ∅ or Y1 = Y2 = Y . For the rest of the proof we suppose that
Y1 = Y2 = ∅. If Y1 = Y2 = Y , a symmetric argument holds.

Because Y1 = (
⋃

F∈F1
F) ∩ Y = ∅, we obtain F ∩ Y = ∅ for every F ∈ F1. By

Lemma 14, there is at most one vertex in F1. The unique vertex Z ∈ F1 is the unique
minimal vertex of F and Z ∩ Y = Y1 = ∅. In the case that Y1 = Y2 = Y , we can argue
symmetrically and obtain that Z is a maximum of F and Z ∩ Y = Y2 = Y . �

3.4 Construction of the Family {(FS, ZS,AS, BS) : S ∈ S}

In the following proof we will define posets and vertices indexed by ordered sets.

Definition 18 An ordered set S is a sequence S = (y1, . . . , ym) of distinct elements yi ,
i ∈ [m]. Given a set Y , S is an ordered subset of Y if yi ∈ Y for all i ∈ [m]. We denote
the empty ordered set by ∅o = (). The underlying unordered set of S is denoted by S, and
|S| = |S| is the size of S. For an ordered set S = (y1, . . . , ym) and an element ym+1 /∈ S,
we write (S, ym+1) for the ordered set (y1, . . . , ym, ym+1). We say that an ordered set S′ is a
prefix of S if |S′| ≤ |S| and each of the first |S′| members of S coincides with the respective
member of S′. Note that ∅o is a prefix of every ordered set. For i ∈ {0, . . . , |S|}, we denote
by S[i] the unique prefix of S of size i . A prefix S′ of S is strict if S′ �= S. For a set Y
and an ordered subset S of Y , we denote the set of all elements of Y that are not in S by
Y − S = Y \ S.

In the following we analyse the structure of an N -free critical Y-blocker by selecting
smaller and smaller subposets which are critical Y ′-blockers for some Y ′ ⊆ Y . Recall that
Theorem 17 implies that any critical Y ′-blocker has either a minimum or a maximum vertex,
we call such a vertex a root of the blocker. Note that the blocker could have both a minimum
vertex and a maximum vertex. In this case we select one of them to be the assigned root of
the blocker and ignore the second root.

Construction 19 Let Y be a set with |Y| = k. Let F be an N -free, critical Y-blocker in
Q(Z), Y ⊆ Z. Let S be the set of all ordered subsets of Y of size at most k − 1. In the
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following we recursively construct a family {(FS, ZS, AS, BS) : S ∈ S}, where FS is a
critical (Y − S)-blocker, FS ⊆ F , and ZS is the root of FS . In addition AS ∪ BS = S, where
each element of AS is included in each vertex of FS and each element of BS is excluded
from each vertex of FS . The sets AS and BS are used as tools to encode crucial information
on the blocker FS and its root ZS as well as FS′ and ZS′ for prefixes S′ of S. If the root ZS

is a minimum vertex in FS , we say that S is min-type, otherwise we say that S is max-type.

Initial Step. Let S = ∅o. In this case let FS = F . Let ZS be an arbitrarily chosen root of
F , i.e. a minimum or maximum of F , which exists due to Theorem 17. Let AS = BS = ∅.

General Iterative Step. Consider an arbitrary non-empty ordered subset S of Y with
|S| ≤ k − 1. Let S′ be the prefix of S such that (S′, a) = S for some a ∈ Y . Given
(FS′ , ZS′ , AS′ , BS′) such that FS′ is a critical (Y − S′)-blocker, ZS′ is a root of FS′ , and
AS′ , BS′ are disjoint sets partitioning AS′ ∪ BS′ = S′, we shall construct FS , ZS , AS , and
BS . By Lemma 16 and since (Y − S′) \ {a} = Y − S, the sets {F ∈ FS′ : a ∈ F} and
{F ∈ FS′ : a /∈ F} induce (Y − S)-blockers.

If S′ is min-type, we define FS to be an arbitrary critical (Y − S)-blocker which is
an induced subposet of {F ∈ FS′ : a ∈ F}. Note that a ∈ F for every F ∈ FS . Let
AS = AS′ ∪ {a} and BS = BS′ .

If S′ is max-type, we define FS to be an arbitrary critical (Y − S)-blocker which is an
induced subposet of {F ∈ FS′ : a /∈ F}. Note that in this case a /∈ F for every F ∈ FS . Let
AS = AS′ and BS = BS′ ∪ {a}.

It remains to select ZS . Theorem 17 provides the existence of a root in FS . If |S| ≤ k − 2,
let ZS be an arbitrary root of FS . If |S| = k − 1, we need to be more careful in choosing ZS .
We have thatFS is a critical (Y − S)-blocker, for |Y − S| = 1. By Lemma 15,FS has exactly
two vertices, a minimum and a maximum. If S′ is min-type, let ZS be the minimum of FS ,
i.e. S is min-type. If S′ is max-type, let ZS be the maximum of FS , here S is max-type.

The construction terminates after all ordered subsets of Y of size at most k − 1 have been
considered. The family {(FS, ZS, AS, BS) : S ∈ S} gives a recursive structural decom-
position of F into “up” and “down” components, i.e. max-type and min-type blockers, as
illustrated in Fig. 5. Note that blockers FS may heavily overlap. Several properties follow
immediately from the construction.

Lemma 20 Let S be an ordered subset of Y of size at most k − 1 and let S′ be a prefix of S.
Then

(i) FS′ ⊆ FS, AS′ = AS ∩ S′ and BS′ = BS ∩ S′.
(ii) The size of the set AS is equal to the number of min-type strict prefixes S′ of S. The size

of BS is equal to the number of max-type strict prefixes S′ of S.
(iii) If S is min-type, Y ∩ ZS = {y ∈ Y : y ∈ ZS} = AS. If S is max-type, Y \ ZS = {y ∈

Y : y /∈ ZS} = BS.

Proof (i) and (i i) are easy to see. For part (i i i), recall that FS is a (Y − S)-blocker. If S is
min-type, then ZS is a minimum of FS , so ZS ∩ (Y − S) = ∅ by Lemma 8. Thus

ZS ∩ Y = ZS ∩ S = AS .

Similarly, if FS is max-type, then Lemma 8 provides ZS ∩ (Y − S) = (Y − S). Hence

ZS ∩ Y = (
ZS ∩ S

) ∪ (Y − S) = AS ∪ (Y − S) = Y \ BS,

therefore Y \ ZS = BS . �
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Fig. 5 Exemplary construction of F(1,3) and F(1,2) for Y = {1, 2, 3}

Lemma 21 Let S be an ordered subset of Y of size k − 1 and let S′ be a strict prefix of S.
Then ZS ∩ (Y − S′) /∈ {∅,Y − S′}.

Proof Note that |Y − S| = 1, so let Y − S = {b}. First we consider the case that |S′| = k−2,
i.e. S = (S′, a) for some a ∈ Y . Note that Y − S′ = {a, b}. We shall show that one of the
two elements a, b is in ZS while the other is not.

If S is min-type, we obtain from the construction that a ∈ AS . By Lemma 20 (i i i),
AS = ZS ∩ Y , so in particular a ∈ ZS ∩ (Y − S′). On the other hand, AS ⊆ S, so
b /∈ AS = ZS ∩ Y and thus b /∈ ZS ∩ (Y − S′).

If S is max-type we can argue similarly. Note that a ∈ BS . By Lemma 20 (i i i), BS =
Y \ ZS , so a /∈ ZS ∩ (Y − S′). Furthermore, BS ⊆ S, so b /∈ BS = Y \ ZS . Thus b ∈ ZS ∩Y
and hence b ∈ ZS ∩ (Y − S′).

It remains to consider the case |S′| < k − 2. Let S′′ = S[k − 2] be the prefix of S of size
k − 2, then S′ is a prefix of S′′. Observe that Y − S′′ ⊆ Y − S′. We already showed that
ZS ∩ (Y − S′′) /∈ {∅,Y − S′′}, so in particular ZS ∩ (Y − S′) /∈ {∅,Y − S′}. �

4 Proof of Theorem 4

Proof of Theorem 4 Let k and N be arbitrary integers with N ≥ k, let n such that N = n+ k.
Let Y be a set on |Y| = k elements, say without loss of generality Y = {1, . . . , k}. Fix Z
with Y ⊆ Z and |Z| = N . Suppose that there is anN -free, critical Y-blocker F inQ(Z). In
other words, suppose that the integer N is sufficiently large with respect to k such that there
exists an F with these properties in Z.

In the following we show that F contains at least k!2−k−1 vertices. Since |F | ≤ 2|Z|, it
follows that n + k = N = |Z| ≥ k log k, which implies that k ≤ (1 + o(1))n/log n, i.e.
N = n + k ≤ n + (1 + o(1))n/log n. Then Theorem 9 provides the required bound. Next
we argue that there exists a subposet in F with many vertices.

Let S be the set of all ordered subsets of Y of size at most k − 1. Consider the family
{(FS, ZS, AS, BS) : S ∈ S} given by Construction 19. Let S1 be the family of all ordered
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subsets of Y of size exactly k − 1. We introduce two kinds of equivalence between elements
in S1, type-equivalence and intersection-equivalence. In the following we will show the
existence of a large subfamily S3 ⊆ S1 such that its elements are pairwise type-equivalent
but not intersection-equivalent. We further prove that the vertices {ZS : S ∈ S3} induce a
large antichain in Q(X ∪ Y).

Let S1, S2 ∈ S1 be two ordered subsets of Y of size k − 1. We say that S1 and S2 are
type-equivalent if for any prefixes S′

1 of S1 and S′
2 of S2 of the same size, S′

1 is min-type if
and only if S′

2 is min-type. Equivalently, S′
1 is max-type if and only if S′

2 is max-type. The
ordered sets S1 and S2 are intersection-equivalent if for any same-sized prefixes S′

1 of S1 and
S′
2 of S2, ZS′

1
∩ Y = ZS′

2
∩ Y . It is obvious that both notions define equivalence relations

on S1. Note that intersection-equivalence of two ordered sets in S1 is a very strong property.
It provides a good intuition to think of intersection-equivalent ordered sets as equal. Several
technical parts of the proof, in particular in Claim 1, arise from the fact that there might be
intersection-equivalent ordered sets which are distinct.
Claim 1. There exists a subfamily S3 ⊆ S1 of size at least 2−k−1k! such that any two distinct
ordered sets S1, S2 ∈ S3, are type-equivalent but not intersection-equivalent.

Proof of Claim 1.Recall that |S1| = k!. For every i ∈ {0, . . . , k−1} and for every S ∈ S1,
the prefix S[i] of S of size i is either min-type or max-type. By pigeonhole principle for fixed
i , there are at least |S1|/2 ordered subsets S ∈ S1 such that all prefixes S[i] are of the same
type. Inductively, we find a subfamily S2 ⊆ S1 of size at least 2−k |S1| such that for any fixed
i ∈ {0, . . . , k − 1}, all prefixes S[i], S ∈ S2 have the same type. Equivalently, the elements
of S2 are pairwise type-equivalent.

In the following we show that each intersection-equivalence class in S2 has size at most 2.
Thus by selecting a representative of each equivalence class we obtain a subfamily S3 as
required.

Given an arbitrary fixed S1 ∈ S2, consider an ordered set S2 ∈ S2 such that S1 and S2
are intersection-equivalent, i.e. ZS′

1
∩ Y = ZS′

2
∩ Y for every two same-sized prefixes S′

1
of S1 and S′

2 of S2. Without loss of generality suppose that S1 = (1, 2, . . . , k − 1) and
Y − S1 = {k}. Let S2 = (y1, . . . , yk−1) and Y − S2 = {yk}. We shall show that yi = i for all
but at most two indices i ∈ [k], which implies that S2 is either equal to S1 or obtained from
S1 by interchanging the two differing members, and therefore the intersection-equivalence
class of S1 consists of at most 2 members.

Since S1 and S2 are both in S2, i.e. type-equivalent, we know that for every i ∈ {0, . . . , k−
1} either both S1[i] and S2[i] aremin-type or both S1[i] and S2[i] aremax-type.We enumerate
the index set {0, . . . , k − 1} as follows. Let i1, . . . , i p be the indices i ∈ {0, . . . , k − 1} such
that S1[i] and S2[i] are min-type in increasing order. Similarly, let j1, . . . , jq enumerate in
increasing order the indices j ∈ {0, . . . , k − 1} where S1[ j] and S2[ j] are max-type. Note
that {i1, . . . , i p} ∪ { j1, . . . , jq} = {0, . . . , k − 1}.

Now consider any two consecutive indices i = i� and i ′ = i�+1 for some fixed � ∈ [p−1].
Note that i < i ′, so in particular i + 1 ≤ i ′ as well as i < k − 1. We know from Lemma 20
(i i i) that ZS1[i] ∩ Y = AS1[i] and ZS1[i ′] ∩ Y = AS1[i ′]. Our next step is to show that i + 1
is the unique element in the set difference of those two sets.

Recall that S1[i] is min-type. In Construction 19 in the iterative step for S1[i + 1] =
(S1[i], i + 1), we defined AS1[i+1] = AS1[i] ∪ {i + 1}. Observe that i + 1 /∈ AS1[i] because
by Lemma 20 (i) we know AS1[i] ⊆ S1[i] = {1, . . . , i}. Furthermore, the fact that i + 1 ≤ i ′
implies that AS1[i+1] ⊆ AS1[i ′], so i + 1 ∈ AS1[i ′]. Lemma 20 (i i) provides that |AS1[i]| = �

and |AS1[i ′]| = � + 1, thus

(ZS1[i ′] ∩ Y) \ (ZS1[i] ∩ Y) = AS1[i ′] \ AS1[i] = {i + 1}.
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Similarly for S2 we obtain

(ZS2[i ′] ∩ Y) \ (ZS2[i] ∩ Y) = AS2[i ′] \ AS2[i] = {yi+1}.
Since S1 and S2 are intersection-equivalent, we find that yi+1 = i + 1.

We obtain that yi�+1 = i� +1 for every � ∈ [p−1]. For j1, . . . , jq a symmetric argument
for j = j� and j ′ = j�+1 considering the set difference

(ZS1[ j] ∩ Y) \ (ZS1[ j ′] ∩ Y) = (Y \ BS1[ j]) \ (Y \ BS1[ j ′]) = BS1[ j ′] \ BS1[ j] = { j + 1}
yields that y j�+1 = j�+1 for every � ∈ [q−1]. Thus yi+1 = i+1 for all indices i ∈ {0, . . . , k−
1} \ {i p, jq}, so S1 and S2 coincide in all but at most two members. As a consequence, S2 is
either equal to S1 or obtained from S1 by interchanging the two differing members. Therefore
the intersection-equivalence class of S1 consists of at most 2 ordered sets. As S1 was chosen
arbitrary, every intersection-equivalence class of S2 has size at most 2. Select S3 ⊆ S2 by
choosing an arbitrary representative fromeach intersection-equivalence class, i.e. letS3 be the
largest subfamily of S2 where every two distinct S2, S3 ∈ S3 are not intersection-equivalent.
Then

|S3| ≥ |S2|/2 ≥ 2−k−1|S1| = 2−k−1k!,
which concludes the proof of Claim 1.
Claim 2. The set {ZS : S ∈ S3} has size |S3| = k!2−k−1.

Remark Although not necessary for the proof of Theorem4, Claim 2 holds in greater general-
ity. Analogously to the following proof, one can obtain that for every familyS ′ of ordered sets
such that any two distinct members of S ′ are type-equivalent and not intersection-equivalent,
the vertices {ZS : S ∈ S ′} induce an antichain in Q(Z) of size |S ′|.

Proof of Claim 2.Recall that any two distinct, ordered sets inS3 are type-equivalent but not
intersection-equivalent. We shall prove that for every two distinct S1, S2 ∈ S3, the vertices
ZS1 and ZS2 are distinct. We show an even stronger property: In fact, any two vertices ZS1
and ZS2 are incomparable. Assume towards a contradiction that ZS1 ⊆ ZS2 . Since S1 and
S2 are not intersection-equivalent, there are same-sized prefixes S′

1 of S1 and S′
2 of S2 such

that ZS′
1
∩Y �= ZS′

2
∩Y . Since S1 and S2 are type-equivalent, both S′

1 and S′
2 have the same

type, suppose that they are min-type.
First we argue that the sets ZS′

1
∩ Y and ZS′

2
∩ Y are not comparable. Lemma 20 (i i i)

shows that ZS′
1

∩ Y = AS′
1
and ZS′

2
∩ Y = AS′

2
. Type-equivalence implies that pairs of

same-sized prefixes of S′
1 and S′

2 always have the same type. Thus Lemma 20 (i i) yields that
|AS′

1
| = |AS′

2
|. We obtain that ZS′

1
∩ Y = AS′

1
and ZS′

2
∩ Y = AS′

2
are distinct but of the

same size, consequently ZS′
1
∩ Y and ZS′

2
∩ Y are not comparable.

If S′
1 = S1 and S′

2 = S2, then ZS1 ∩ Y and ZS2 ∩ Y are incomparable, and so ZS1 ||ZS2 ,
a contradiction to our assumption that ZS1 ⊆ ZS2 . For the remaining proof suppose that
the size |S′

1| = |S′
2| is strictly less than k − 1. We will show that there is a copy of N in

F contradicting the definition of F to be an N -free poset. Let Y ′ = Y − S′
2, note that FS′

2

is a Y ′-blocker. Since ZS′
1

∩ Y and ZS′
2

∩ Y are not comparable, there exists an element
a ∈ ZS′

1
∩ Y with a /∈ ZS′

2
. Lemma 8 (i i) yields the existence of a vertex U ∈ FS′

2
with

U ∩ Y ′ = Y ′ \ {a}.
Now we verify that ZS′

1
, ZS2 , ZS′

2
and U form a copy of N in F , see Fig. 6.

• ZS′
2

⊆ ZS2 because ZS′
2
is a minimum of FS′

2
and ZS2 ∈ FS2 ⊆ FS′

2
by Lemma 20 (i).

• ZS′
1

⊆ ZS1 ⊆ ZS2 as ZS′
1
is a minimum of FS′

1
and ZS1 ∈ FS1 ⊆ FS′

1
by Lemma 20 (i).
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Fig. 6 Copy ofN constructed in the proof of Claim 2

• ZS′
1
||ZS′

2
because ZS′

1
∩ Y and ZS′

2
∩ Y are not comparable.

• ZS′
2

⊆ U because ZS′
2
is a minimum of FS′

2
and by definition U ∈ FS′

2
.

• Note that a /∈ U and a ∈ ZS′
1
, so ZS′

1
� U . Since ZS′

2
� ZS′

1
but ZS′

2
⊆ U , transitivity

yields U � ZS′
1
. Therefore U and ZS′

1
are incomparable.

• We know that a /∈ U but a ∈ ZS2 , thus ZS2 � U . Note that ZS2 ∩ Y ′ �= Y ′ \ {a} since
a ∈ ZS2 . Furthermore, Lemma 20 provides that ZS2 ∩ Y ′ �= Y ′. Thus ZS2 ∩ Y ′ is not a
superset of Y ′ \ {a} = U ∩ Y ′, therefore U � ZS2 . We obtain that U ||ZS2 .

• The four vertices are distinct because otherwise we find an immediate contradiction to
one of the above relations.

Thus, there is a copy of N in F , which is a contradiction to the fact that F is N -free.
If S′

1 and S′
2 are max-type, a symmetric argument can be applied: As a first step, it follows

similarly that ZS′
1
∩ Y and ZS′

2
∩ Y are incomparable, and then for Y ′ = Y − S′

1 and for a
vertex U ∈ FS′

1
with U ∩ Y ′ = {a} we find a copy of N on vertices ZS′

1
, ZS1 , ZS′

2
and U ,

which is a contradiction as before. This concludes the proof of Claim 2.
Claims2 implies the existence of a subposet ofF of size at least k!2−k−1. SinceF ⊆ Q(Z),

we know that k!2−k−1 ≤ |F | ≤ 2|Z|, so

|Z| ≥ log

(
k!

2k+1

)
≥ log

(
kk

2k+1ek

)
≥ k(log(k) − c),

for a fixed constant c > 0. Recall that |Z| = n+ k, so we obtain that n ≥ k log k − (
1+ c

)
k,

which implies that k ≤ (
1 + o(1)

) n
log n . Then Theorem 9 provides that

R(N , Qn) ≤ N = n + k ≤ n + (
1 + o(1)

) n

log n
.

The lower bound on R(N , Qn) follows from Theorem 3. �

5 Concluding Remarks

In this paper we showed that R(N , Qn) ≤ n+�
(

n
log n

)
. A key ingredient in our approach is

Theorem 9 where we showed a connection between the poset Ramsey number of R(P, Qn)
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for a poset P and the extremal function mP (n) defined as

mP (n) := min{N : there is no P-freeY-blocker in Q([N ]) for some Y ⊆ [N ], |Y|= N−n}.
A Y-blocker can be seen as a transversal of a set of specific Boolean lattices, and is related
to other notions of transversals, e.g. clique-transversals in graphs as introduced by Erdős,
Gallai and Tuza [9]. Seen in this context, research on mP (n) or similar extremal functions
on Y-blockers might be of independent interest.
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