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Abstract
This paper is concerned with Riesz space structures on a lattice ordered abelian group,
continuing a line of research conducted by the author and the collaborators Antonio Di Nola
and Gaetano Vitale. First we prove a statement in a paper of Paul Conrad (given without
proof) that every non-archimedean totally ordered abelian group has at least two Riesz space
structures, if any. Then, as a main result, we prove that there is a non-archimedean lattice
ordered abelian group with strong unit having only one Riesz space structure. This gives a
solution to a problem posed in a paper of Conrad dating back to 1975. Thenwe combine these
results and the categorial equivalence between lattice ordered abelian groups with strong unit
and MV-algebras (due to Daniele Mundici) and the one between Riesz spaces with strong
unit and Riesz MV-algebras (due to Di Nola and Ioana Leustean). By combining these tools,
we prove that every non-semisimple totally ordered MV-algebra has at least two Riesz MV-
algebra structures, if any, and that there is a non-semisimple MV-algebra with only one Riesz
MV-algebra structure.

Keywords Lattice ordered abelian groups · MV-algebras · Riesz spaces · Riesz MV-algebras

1 Introduction

This paper belongs to a short list of papers on the relations between Riesz spaces and abelian
lattice ordered groups (abelian �-groups) on the one hand, and Riesz MV-algebras and MV-
algebras on the other hand; the predecessors of this paper are [14] and [8].

For the structures subject of this paper see [15] and [20] for Riesz spaces, [2] and [3]
for abelian �-groups, and [5] and [17] for MV-algebras. There is no real survey on Riesz
MV-algebras, but see [9] for some information.

Riesz spaces are expansions of lattice ordered abelian groups, and Riesz MV-algebras
are expansions of MV-algebras. Riesz spaces are sometimes called with other names, for
instance vector lattices in the paper [6] which is fundamental for our purposes, or K-lineal
or semi-ordered linear spaces as reported in [15] (and as noticed by a referee).
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Riesz spaces are real vector spaces equipped with a lattice order. They have applications,
for instance, in functional analysis [15, 20], dynamical systems [11], and economics [1]. It
seems that they have been invented by Riesz in [18]. Important early contributions are those
of Freudenthal [10] and Kantorovich [12]. Key examples are both the spaces of real valued
functions on a topological space, and the L p spaces on measure spaces.

Like real vector spaces are a particular case of abelian group (they have an abelian group
reduct), Riesz spaces are a particular case of abelian �-group (they have an abelian �-group
reduct).

In this paper we are interesting in developing the ideas of [6] on Riesz spaces. More
precisely, we are interested in an unproved assertion and an open problem of [6] (which are
actually strictly related to each other, since the former is a particular case of the latter).

The unproved assertion (page 336 of [6], last two lines) is that every totally ordered,
nonarchimedean abelian group admits at least two Riesz space structures, if any. In this
paper we prove this assertion in detail (Theorem 5).

The open problem we are interested in is the fourth and last problem in the final section
of [6]. The problem is whether all nonarchimedean lattice ordered abelian groups have at
least two Riesz structures (if any). For totally ordered abelian groups, this coincides with the
assertion above. In this paper we solve the fourth problem in the negative with a counterex-
ample.

As a related work, the first problem of [6] is whether all Riesz structures of a lattice
ordered abelian group (if any) are isomorphic. This problem has been solved in the negative
by [14], by showing a counterexample. In [8] the solution is refined by giving a totally ordered
example. Note that already [19], example 11.54 gives an abelian �-group with at least two
Riesz structures, correcting an inaccuracy of [4], p. 349 and [9], Corollary 2.

We are not aware of papers about the second and third problems of [6]. However they
look more technical than the other two and will be omitted in this paper.

I conclude the paper with some applications to Riesz MV-algebras. Recall that MV-
algebras are generalized Boolean algebras which give the algebraic semantics of fuzzy
Łukasiewicz logic, so they are applied to reasoning with uncertain information. Riesz MV-
algebras are obtained by adding amultiplication by real values in the interval [0, 1], intuitively
a truncated vector space structure.

Mundici in [16] discovered a categorial equivalence between abelian �-groups with strong
unit and MV-algebras. The equivalence arises from the study of AF C∗-algebras in quantum
mechanics and their K 0 group, which is a partially ordered abelian group, sometimes a lattice
ordered one; when this is the case, the K 0-group is associated with an MV-algebra via the
functor invented by Mundici. All countable MV-algebras arise in this way.

Later Di Nola and Leustean in [9] lifted the Mundici’s equivalence to Riesz spaces with
strong unit and Riesz MV-algebras.

Using these categorial equivalences one can transfer our results on Riesz spaces and
abelian �-groups to Riesz MV-algebras and MV-algebras.

2 Preliminaries

Let us denote as usual the natural numbers by N, the positive natural numbers by N
+, the

integers by Z, the rationals by Q, the reals by R and the positive reals by R+.
An abelian �-group is a structure

(G,+, 0,−,∧,∨)

123



Order

where (G,+, 0,−) is an abelian group, (G,∧,∨) is a lattice and the compatibility equations
hold: x + (y ∧ z) = (x + y) ∧ (x + z) and x + (y ∨ z) = (x + y) ∨ (x + z).

These equations imply that if x ≤ y then x + z ≤ y + z.
A strong unit of an �-group G is an element u such that for every x there is n ∈ N such

that x ≤ nu.
Given g ∈ G its absolute value is |g| = g ∨ −g. Absolute values are always positive (or

zero if g = 0).
The abelian �-groups are an equational variety (in the language above) and, by [2], the

variety of abelian �-groups is generated by Z. So the following properties of Z extend to
every abelian �-group:

Lemma 1

x = (x ∨ 0) + (x ∧ 0) (1)

|x | = (x ∨ 0) − (x ∧ 0) (2)

|x + y| ≤ |x | + |y| (3)

An element x ≥ 0 of an abelian �-group is said to be well above an element y ≥ 0, written
x � y, if x ≥ ny for every n ∈ N.

An abelian �-group is archimedean if there are no x, y ≥ 0 with x � y unless y = 0.
Two elements x, y ≥ 0 are called archimedean equivalent if there is n ∈ N such that

nx ≤ y and ny ≤ x .
Now let us turn to Riesz spaces.
A Riesz space is a structure

(G,+, 0,−, ρ,∧,∨)

such that (G,+, 0,−, ρ) is a real vector space, with ρ : R×G → G, (G,+, 0,−,∧,∨)

is an abelian �-group, and ρ(r , x ∨ y) = ρ(r , x) ∨ ρ(r , y) for every r ∈ R
+.

The map ρ is called a Riesz space structure on the abelian �-group (G,+, 0,−,∧,∨).
The equations of Riesz spaces imply that, if x ≥ 0 and r ∈ R

+, we have ρ(r , x) ≥ 0.
As explained in [13], Riesz spaces are a variety in the language (+, 0,−, ρr ,∧,∨) where

ρr (x) = ρ(r , x) for every r ∈ R, and the variety of Riesz spaces is generated by R.
As groups, Riesz spaces have the following well known properties:

Lemma 2 Every Riesz space G is a divisible and torsion free abelian group.

By the previous lemma, if q ∈ Q and q = m/n with m ∈ Z and n ∈ N
+ we can write

qx = m((1/n)x) and every Riesz space has a vector space structure over Q restricting the
Riesz space (and independent of the Riesz structure).

Moreover we give the following estimate:

Lemma 3 Let G be a Riesz space. If x ∈ G and ρ, ρ′ are two Riesz structures on G, and
r ∈ R, then

|ρ(r , x) − ρ′(r , x)| � |x |.
Proof Suppose x ≥ 0 and n ∈ N. Let q ≤ r ≤ q ′ be two rationals with q ′ − q ≤ 1/n. Then

ρ(r , x) − ρ′(r , x) ≤ ρ(q ′, x) − ρ′(q, x) = q ′x − qx = (q ′ − q)x ≤ (1/n)x

likewise
ρ′(r , x) − ρ(r , x) ≤ (1/n)x
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and passing to the absolute value

|ρ′(r , x) − ρ(r , x)| ≤ (1/n)x .

Since n is arbitrary we have the thesis for x ≥ 0.
Likewise if x ≤ 0 we obtain

|ρ(r , x) − ρ′(r , x)| = |ρ(r ,−x) − ρ′(r ,−x)| ≤ (1/n)(−x).

If x ∈ G is not positive or negative, then anyway one can write x = (x ∨ 0) + (x ∧ 0).
So, using the subadditivity of absolute value one has

|ρ(r , x) − ρ′(r , x)| = |ρ(r , x ∨ 0) + ρ(r , x ∧ 0) − ρ′(r , x ∨ 0) − ρ′(r , x ∧ 0)|
|ρ(r , x ∨ 0) − ρ′(r , x ∨ 0) + ρ(r , x ∧ 0) − ρ′(r , x ∧ 0)|

≤ |ρ(r , x ∨ 0) − ρ′(r , x ∨ 0)| + |(ρ(r , x ∧ 0) − ρ′(r , x ∧ 0))|
≤ (1/n)(x ∨ 0) − (1/n)(x ∧ 0) = (1/n)|x |.

The last equality follows from Lemma 1. Since n and x are arbitrary we conclude the
proof. �

The following proposition is known:

Proposition 4 Every archimedean Riesz space has only one Riesz space structure.

Proof It follows from Lemma 3. �
Conrad in [6] asks about the converse of this proposition: if a Riesz space has only one

Riesz structure, is it archimedean? In this paper we give a negative answer by exhibiting an
example of non-archimedean Riesz space with only one Riesz space structure. The example
is quite natural and is inspired by McNaughton functions, a fundamental kind of functions
in MV-algebra theory, where they are used to build free MV-algebras.

A further section of the paper is devoted to MV-algebras and Riesz MV-algebras.
MV-algebras are a kind of generalization of Boolean algebras, where sum and product are

not necessarily idempotent.
More precisely, an MV-algebra is a structure (A,⊕, 0,¬) such that (A,⊕, 0) is a com-

mutative monoid, x ⊕ ¬0 = ¬0, ¬¬x = x , and ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x . We can
think of ⊕ as a truncated sum and of ¬ as a negation.

A useful symbol is x � y = ¬(¬x ⊕ y) (a kind of truncated difference).
The real interval [0, 1] is an MV-algebra with x ⊕ y = min(x + y, 1) and ¬x = 1 − x .
MV-algebras are partially ordered by saying that x ≤ y if there is z with y = x ⊕ z.
An infinitesimal in an MV-algebra is an element x �= 0 such that nx ≤ ¬x for every

n ∈ N. Intuitively this means x ≤ 1/n for every n, but 1/n need not exist in an MV-algebra.
An MV-algebra is called semisimple if it does not contain infinitesimals.
A Riesz MV-algebra is a structure (A, {∇r }r∈[0,1]) where A is an MV-algebra, moreover

∇r (x � y) = ∇r x � ∇r y, ∇r�s x = ∇r x � ∇s x , and ∇r∇s x = ∇rs x . Finally, ∇1x = x .
By [16] there is an equivalence� between the category ofMV-algebras and the category of

abelian �-groups with strong unit. This equivalence has been extended to Riesz MV-algebras
and Riesz spaces with strong unit in [9].

In particular, if (G, u) is a lattice ordered abelian group with strong unit, then �(G, u) is
an MV-algebra where the domain is the interval [0, u] in G and the operations are x ⊕ y =
(x + y) ∧ u and ¬x = u − x .

For instance, [0, 1] = �(R, 1) and {0, 1} = �(Z, 1).
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3 The Totally Ordered Case

We begin by giving a complete proof of the result stated in [6], page 336, without proof:

Theorem 5 (originally from [6]) Every non-archimedean totally ordered Riesz space G has
at least two Riesz space structures.

Proof Let G be a non Archimedean totally ordered real vector space. Let us call levels the
Archimedean equivalence classes, which are ordered by Archimedean domination.

Let L be a nonzero level in G. Let us define

L+ = {x ∈ G|level(x) ≥ L}
L− = {x ∈ G|level(x) < L}

Let m ∈ G ∩ L−,m �= 0 and M ∈ G ∩ L+. Note that m and M are linearly independent
over R, so there is a basis B of G as a real vector space containing m and M .

Let B0 be a basis of L− containingm, letC be a complement space of L− in G containing
M , B1 a basis of C containing M and B = B0 ∪ B1.

We need the following lemma:

Lemma 6 There is a nonlinear group isomorphism f : RM → Rm.

Proof Let b ∈ R such thatM and bM are linearly independent elements ofRM overQ. Let x
be linearly independent from {m, bm} inRm. Let B1 be a base ofRM extending {M, bM} and
B2 a base of Rm extending {m, x}. There is a group isomorphism f : RM → Rm sending
the first base B1 to the second base B2. In this isomorphism, f (bM) = x �= bm = b f (M).
So, f is not linear. �

By the previous lemma we can fix a nonlinear group isomorphism f : RM → Rm. We
define a function τ : G → G as follows.

Fix n ∈ N and ai ∈ R (i = 0, . . . , n) and bi ∈ B \ {M} (i = 1, . . . , n). Define

τ(a0M + a1b1 + . . . + anbn) = a0M + f (a0M) + a1b1 + . . . + anbn .

τ is well defined on G since B is a basis of G.
Let us list some properties of τ .

Lemma 7 τ is a group endomorphism of G.

Proof This follows because f is a group homomorphism. �
Lemma 8 τ is increasing.

Proof Since τ is a group endomorphism, it is enough to check that τ preserves positivity.
Suppose g > 0. Then

g = a0M + a1b1 + . . . + anbn

for some b1, . . . , bn ∈ B \ {M} and for some a0, . . . , an ∈ R.
If a0 = 0, then τ(g) = g > 0.
Suppose a0 �= 0. Then g is a sum of a nonzero combination C of elements of L+ ∩ B

and finitely many elements of L−. By construction of B, one has C ∈ L+, so C is positive,
and τ(g) > 0 since it is obtained from a positive element of L+ by adding finitely many
elements in L−. �
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Lemma 9 τ is injective.

Proof Since τ is a group endomorphism, it is enough to check that its kernel is zero.
Suppose τ(g) = 0. Then

g = a0M + a1b1 + . . . + anbn

for some b1, . . . , bn ∈ B \ {M} and for some a0, . . . , an ∈ R.
If a0 = 0, then τ(g) = g = 0.
On the other hand, a0 �= 0 is impossible. In fact, if a0 �= 0, then τ(g) = a + b, where

a ∈ L+ and b ∈ L−. So a = −b, but two elements of different archimedean levels cannot
be equal. �
Lemma 10 τ is surjective.

Proof One has G = V + W , where V is generated by {m, M} and W is generated by
B \ {m, M}.

τ sends V into V and W identically into W . Let g ∈ G. Then g = aM + bm + w, where
a, b ∈ R and w ∈ W .

We prove that there are x, y ∈ R such that τ(xM + ym + w) = g. In fact, it is enough
to find a pair of reals (x, y) such that τ(xM + ym) = aM + bm. Now τ(xM + ym) =
xM + f (xM)+ ym. Suppose f (xM) = zxm. Then one has xM + zxm + ym = aM + bm,
so x = a and y = b − za is a solution. �
Lemma 11 The inverse of τ is increasing.

Proof This is to say that τ(g) ≥ 0 implies g ≥ 0. But this holds because G is totally ordered
and τ is increasing. �
Lemma 12 τ is nonlinear.

Proof By definition of τ we have

τ(rM) = rM + f (rM).

It is enough to prove that τ(rM) − rM is nonlinear. But τ(rM) − rM = f (rM) and f
is a nonlinear group isomorphism. �

Summing up the previous lemmas, τ is a nonlinear automorphism of the ordered real
vector space G. So, as suggested in [6], we have in G another Riesz space structure given by
the multiplication

r�g = τ−1r(τg).

�

4 TheMain Result

The following result solves the fourth problem of [6] and is the main result of the paper.

Theorem 13 There is a non-archimedean Riesz space G (with strong unit) having only one
Riesz space structure.
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Proof LetR∗ be a nonprincipal ultrapower ofR. Let B be the set of all functions from [0, 1]N
to R

∗.
Let F be the set of all bounded functions from [0, 1]N to R which depend only on finitely

many variables.
Let ε be a positive infinitesimal in R

∗. Let G be the Riesz space generated by F and the
constant ε in B. Now B, F,G are Riesz spaces and G is the Riesz space we are looking for.

I summarize some commutation (or anticommutation) properties in Riesz spaces, where
I abbreviate ρ(r , x) by r x :

Lemma 14 For every x, y, z in a Riesz space and for every r , r ′ ∈ R one has

x + (y ∧ z) = (x + y) ∧ (x + z)

x + (y ∨ z) = (x + y) ∨ (x + z)

0x = 0

r(x ∧ y) = r x ∧ ry, r > 0

r(x ∨ y) = r x ∨ ry, r > 0

r(x ∧ y) = r x ∨ ry, r < 0

r(x ∨ y) = r x ∧ ry, r < 0

r(x + y) = r x + ry

r(r ′x) = (rr ′)x

(4)

Proof These equations hold because the variety of Riesz spaces is generated by R and they
are easy to check in R. �

More explicitly G has the following structure:

Lemma 15 The elements of G are the finite lattice combinations of sums f + rε, where
f ∈ F and r ∈ R.

Proof Let T be the set of the lattice combinations of sums f + rε. Clearly every Riesz
subspace of B containing F and ε contains T . So it is enough to show that T is a Riesz space.

First, 0 ∈ T trivially, and by definition, T is closed under the lattice operations ∧ and ∨.
To prove that T is closed under sum, I have to show that if t, t ′ ∈ T then t + t ′ ∈ T . To

this aim, if u is a Riesz space polynomial in F and ε, let us denote by n(u) the number of
lattice operations in u.

Closure under sum can be proved by induction on n(t + t ′). In fact, if n(t + t ′) = 0 then
clearly t + t ′ ∈ T . If n(t + t ′) > 0 then at least one of t, t ′ begins with ◦, where ◦ is one of
∧,∨. By symmetry we can suppose t ′ = u ◦ v. Now t + t ′ = t + (u ◦ v) = (t + u) ◦ (t + v)

by Lemma 14. But t + u and t + v have less lattice operators than t + t ′, so we can apply the
inductive hypothesis and find t + u ∈ T and t + v ∈ T , so t + t ′ = (t + u) ◦ (t + v) ∈ T .
This completes the inductive proof.

Finally, T is closed under multiplication by any r ∈ R since the latter commutes (or anti-
commutes)with lattice operations and rational linear combinations, in the sense ofLemma 14.
In particular taking r = −1, T is closed under additive inverse, so is a group. �

From the previous lemma we derive:

Lemma 16 All functions in G are bounded by a real number and depend only on a finite
number of components.
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Proof ByLemma 15, every element ofG is a Riesz polynomial in F and ε, so we can proceed
by induction on the length of this polynomial. �

Since every element of G is bounded by a real number, the constant function 1 is a strong
unit of G. Moreover 0 < ε � 1, so G is not archimedean. Finally, by Lemma 15, all values
of a function g ∈ G have the form g(x) = r + sε, where r , s ∈ R and the possible pairs
(r , s) are finitely many for each g.

Given x ∈ R
∗, let st(x) be the standard part of x and ns(x) = x − st(x), the nonstandard

part of x , if it exists. For every value of a function in G, the nonstandard part exists and is a
real multiple of ε. Moreover from Lemma 15 we derive a crucial result:

Lemma 17 For every g ∈ G, the values of g have only finitely many nonstandard parts.

Proof By Lemma 15 there is a finite set C(g) ⊆ F × R such that g is a lattice combination
of f + sε with ( f , s) ∈ C(g). Let g(x) be a value of g. Then g(x) = f (x) + sε where
f (x), s ∈ R. So, for some f , we have ( f , s) ∈ C(g) and therefore s ranges over a finite set.

�
The standard Riesz structure (ρr )r∈R on G sends f ∈ F to r f and ε to rε.
Suppose for a contradiction there is another Riesz structure ρ′ �= ρ on G.
We begin with a technical lemma.

Lemma 18 Let f ∈ F, r ∈ R and x ∈ [0, 1]N. If f (x) = 0 then ρ′(r , f )(x) = 0.

Proof If f ≥ 0 everywhere then for every q ∈ Q, ρ′(q, f )(x) = q f (x) = 0. If r ∈ R
there are q ′, q ′′ ∈ Q with q ′ < r < q ′′, so ρ′(q ′, f ) ≤ ρ′(r , f ) ≤ ρ′(q ′′, f ), hence
ρ′(r , f )(x) = 0.

Likewise if f ≤ 0 then ρ′(r , f )(x) = 0.
If f is arbitrary then f = ( f ∨ 0) + ( f ∧ 0) and ( f ∨ 0)(x) = ( f ∧ 0)(x) = 0, and we

have f ∨ 0 ≥ 0 and f ∧ 0 ≤ 0, so by the previous cases

ρ′(r , f )(x) = ρ′(r , f ∨ 0)(x) + ρ′(r , f ∧ 0)(x) = 0 + 0 = 0.

�
Corollary 19 Let f , g ∈ F, r ∈ R and x ∈ [0, 1]N. If f (x) = g(x) then ρ′(r , f )(x) =
ρ′(r , g)(x).

Proof It follows by applying the previous lemma to f − g. �
Suppose there is a function f ∈ F such that ρ′(r , f ) �= r f . By Eq. 1 we can suppose

f ≥ 0.Moreoverwe can suppose f ≥ 1, since either ρ′(r , 1) �= r or ρ′(r , f +1) �= r( f +1).
Then ρ′(r , f ) − r f is a nonzero infinitesimal by Lemma 3, so there is a ∈ [0, 1]N such

that ρ′(r , f )(a) = r f (a) + sε where s ∈ R, s �= 0.
In particular,

ns(ρ′(r , f )(a)) = sε.

Let us enumerate the components of a : a = (a0, a1, a2, . . .).
Since f and ρ′(r , f ) belong to F , there is n ∈ N such that f (x) and ρ′(r , f )(x) depend

only on the first n coordinates of x .
For every q ∈ [0, 1] ∩ Q let me write xq = (a0, . . . , an−1, q, an+1, . . .). Then for every

q , we have
ns(ρ′(r , f )(xq)) = sε.
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Let me define the function h : [0, 1]N → R such that

h(x) = xn f (a).

Note that h ∈ F .
For every (rational) q ∈ [0, 1], we have h(xq) = q f (xq). By Corollary 19, we have

ns(ρ′(r , h)(xq)) = ns(ρ′(r , q f )(xq)) = ns(qρ′(r , f )(xq)) = q×ns(ρ′(r , f )(xq)) = qsε.

So, the values of ρ′(r , h) have infinitely many nonstandard parts (at least all qsε for
q ∈ [0, 1] ∩ Q), hence by Lemma 17, the function ρ′(r , h) cannot belong to G. This is a
contradiction.

This shows ρ′(r , f ) = r f for every f ∈ F . Since ρ′ and ρ coincide on F and on the
infinitesimals (by Lemma 3), they coincide everywhere in G by Lemma 15. �

5 Applications to MV-Algebras

The results of the previous sections on Riesz spaces and lattice ordered abelian groups can
be transferred to MV-algebras thanks to the Mundici functor � and the Di Nola-Leustean
functor, which we call also �.

First we need three well known lemmas:

Lemma 20 Let G be an abelian �-group, and let g, h ∈ G. Let n ∈ N. Then n(g ∧ h) =
ng ∧ nh.

Lemma 21 Let G be an abelian �-group, and let g, h ∈ G. Let m ∈ N. If mg ≤ mh then
g ≤ h.

Lemma 22 Suppose G is an abelian �-group, u is a strong unit of G and A = �(G, u). Then:

1. G is archimedean if and only if A is semisimple.
2. G is totally ordered if and only if A is totally ordered.

Now the following lemma comes from [9], Proposition 3:

Lemma 23 Let A be an MV-algebra and A = �(G, u). Every Riesz MV-algebra structure
on A can be extended to a Riesz space structure on G.

Here is a further lemma.

Lemma 24 If A is a semisimple MV-algebra, then A has at most one Riesz MV-algebra
structure.

Proof Suppose A = �(G, u) is semisimple. Then G is semisimple. By Lemma 23, every
Riesz MV-algebra structure on A extends to G. Now the thesis follows from Lemma 22. �

From the results of this and theprevious sectionswederive twocorollaries onMV-algebras:

Corollary 25 Every totally ordered, non-semisimple MV-algebra A has at least two Riesz
MV-algebra structures.
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Proof Let A = �(G, u). Then G is totally ordered and non archimedean. So G has at least
two Riesz space structures ρ1, ρ2. Restricting the two structures to A, the two restricted
structures cannot be equal, since by [9], proof of Proposition 1, every element of G is a finite
sum of elements of A and their opposites. �
Corollary 26 There is a non-semisimple MV-algebra A with only one Riesz MV-algebra
structure.

Proof Let A = �(G, u) where G is the abelian �-group constructed in Theorem 13 and u is
the constant function with value 1. Note that u is a strong unit of G. By Lemma 23, every
Riesz MV-algebra structure on A can be extended to a Riesz space structure on G. But G has
only one Riesz space structure. So, the Riesz MV-algebra structure on A is also unique. �

6 Conclusion

We think that the relation between abelian �-groups and their Riesz space structures can be
expanded upon. The same can be said for MV-algebras and Riesz MV-algebras, thanks to the
categorial equivalences mentioned earlier in this paper. There are many interesting classes
of MV-algebras or abelian �-groups. For these classes one can ask whether a Riesz structure
can exist, and if this is the case, how many. For instance, one can consider Riesz spaces of
the form G = �(R lex H , (1, 0)), where H is a Riesz space and lex denotes lexicographic
product of groups. These Riesz spaces have been studied in [7] and correspond to local Riesz
MV-algebras, the Riesz MV-algebras with only one maximal ideal. They inherit from H the
natural Riesz structure ρ(r , (s, g)) = (rs, rg). One can ask whether other Riesz structures,
not inherited by H , are present in G.

Finally, it would be interesting to complete the list of problems of [6] by solving the second
and the third.
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