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Abstract

Let A(n, k) represent the collection of all n x n zero-and-one matrices, with the sum of
all rows and columns equalling k. This set can be ordered by an extension of the classical
Bruhat order for permutations, seen as permutation matrices. The Bruhat order on A(n, k)
differs from the Bruhat order on permutations matrices not being, in general, graded, which
results in some intriguing issues. In this paper, we focus on the maximum length of antichains
in A(n, k) with the Bruhat order. The crucial fact that allows us to obtain our main results
is that two distinct matrices in A(n, k) with an identical number of inversions cannot be
compared using the Bruhat order. We construct sets of matrices in .A(n, k) so that each set
consists of matrices with the same number of inversions. These sets are hence antichains in
A(n, k). We use these sets to deduce lower bounds for the maximum length of antichains in
these partially ordered sets.
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1 Introduction and Main Results

The (0, 1)-matrices, or matrices with only zeros and ones, occur naturally in a wide range of
contexts, including mathematics, educational tests, ecological studies, and social networks. A
special class amongst these are the (0, 1)-matrices with a prescribed non-increasing row sum
vector R and a prescribed non-increasing column sum vector S. These classes are denoted
by A(R, S), and they have been the subject of intensive study by H.J. Ryser, D.R. Fulkerson,
R.M. Haber, and D. Gale, among others, since the 1950s (see [1-3, 12, 16], and the references
therein). When R and § are constant vectors with n components equal to k, kK < n, we write
A(n, k) for A(R, S).

One of the fundamental results involving classes A(R, S) is the characterization, in terms
of majorization, of the non-emptiness of these classes. That characterization was obtained
independently by D. Gale [13], using the theory of network flows, and by H.J. Ryser [19],
using induction and a direct combinatorial argument. In order to present this characterization,
we have to introduce some new concepts. Let R = (rq, ..., 1) be a partition, that is, a non-
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increasing vector of positive integers. We can identify R with its Ferrers diagram, which
we can obtain by placing r; left justified boxes in the i /1 row, for 1 < i < m. The conjugate
partition of R, denoted by R*, is the partition corresponding to the transposition of the Ferrers

diagram of R.
The majorization order on partitions with the same sum states that R = (r{...,ry,)
precedes S = (sq, ..., S,), and we write R < S if
n+...+ri <si+...4+s,
foralli =1, ..., min{m, n}.

Theorem 1 ( Gale-Ryser Theorem) Let R and S be partitions with the same sum. Then,
A(R, S) # @ ifand only if S < R*.

This result guarantees the non-emptiness of any class A(n, k).

Let R = (rq, ..., ry) be a partition and let gy, ..., g; integers such that g; > ... > g
and {g1,..., g} ={r1,..., rn}. From now on, we write R = (g’ll, R g;’),whereil, R P
are the multiplicities of g1, ..., g

The class A(n, 1) consists of all permutation matrices of order n and thus corresponds
with the symmetric group. This correspondence inspired Brualdi and Hwang to extend the
classical Bruhat order on the symmetric group to any nonempty class A(R, S), (see [5]). For
any m x n (0, 1)-matrix A, they define another m x n matrix, denoted by ¥ 4, whose (k, £)—
entry 1s

ke
ore(A) =YY ai;,

i=1 j=I

forallk=1,... . mandf=1,..., n.

If A, C € A(R, S), then A precedes C in de Bruhat order, written A g C if 0; j(A) >
0;,j(C),foralli =1,...,mand j =1,...,n.

Numerous studies have been conducted in recent years on a range of subjects connected to
these new partially ordered sets. These studies include the description of minimal elements
and the study of Bruhat order restrictions on subclasses of A(R, ), such as, for instance, the
subclass of symmetric matrices (see [4, 6, 9]).

Given a finite poset P, a chain is a completely ordered subset of P, and an antichain is a
subset of 77 whose elements are mutually unrelated. The cardinality of the largest antichain
of P is called the width of P, and the cardinality of the largest chain of P is called the
height. Two classical results, the Dilworth theorem [10] and the Mirsky theorem [17], state
a relationship between the width and the height of partially ordered sets. Dilworth’s theorem
states that the maximum number of elements in any antichain in a partially ordered set equals
the minimum number of chains into which the set can be partitioned. Mirsky’s theorem is
a dual of this theorem and states that the maximum number of elements in any chain in a
partially ordered set equals the minimum number of antichains into which the set can be
partitioned.

The primary goal of this paper is to present new lower bounds for the maximal length of
antichains of the matrix classes .A(n, k) in the Bruhat order. This is an intriguing problem
because these posets are not often graded. In fact, the authors of [4] provided an example
showing that .A(4, 2) is not graded. We denote by w(n, k) the width of A(n, k) in the Bruhat
order, and by h(n, k) we denote the height. The theorems of Dilworth and Mirsky imply

h(n, kyw(n, k) = [An, k)|,
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where |A(n, k)| denotes the cardinality of A(n, k).

There have been some advances in recent years regarding the width and the height in the
Bruhat order for the matrix classes A(2k, k) and A(n, 2) (see [7, 8, 14, 15]). This paper
focuses on the width of classes A(n, k) with the Bruhat order. For classes .A(n, 2) Ghebleh
proved that:

Theorem 2 [15] Let n be a positive integer, n > 2. Then

! . .

L, if nis even
22

wn,2) >

n—=3

@=D! "if 5 is odd.
2

Conflitti et al. [8] proved that k® is a lower bound for w(2k, k). Ghebleh improved this
result, showing that:

Theorem 3 [15] Let k be a positive integer, and let w(2k, k) be the width of the Bruhat order
of A2k, k). Then

n4 . .
(IZ,() s if k is even

w2k, k) >
WD if ke is odd.

The following results are the paper’s main results. We present lower bounds for the width
of A(n, k) in the Bruhat order that, for the particular case of .A(2k, k), are better than those
stated in Theorem 3.

Theorem 4 Let n and k be two positive integers with k < n and n an even integer. Then,
n k
[A(3.3)

A S [AG 5

2

, if k is even

, if k is odd.

Theorem 5 Let n and k be two positive integers with k < n and n an odd integer. Then,

A", 5)] L JAR, BRI, if kis even

WOLRZ (a5 )| AR R if ks odd,

n—k—1 k—1

where R = ((%)T, (k;22)§> and R’ = ((kizl)%k, (kz;l) 2 )

This paper is organised as follows: In the next section, we will present some auxiliary
results that will be utilised in the third section to prove the main results. In the last section we
compare these novel lower bounds with bounds established by Ghebleh for classes .A(2k, k).
We also discuss the methods used to derive the bounds and explain why these new bounds
are superior to those of Ghebleh.

@ Springer



Order

2 Auxiliary Results

As previously stated, the symmetric group is naturally identified with the class A(n, 1) of
permutation matrices of order n. A permutation inversion corresponds in this sense to a pair
of ones in the corresponding permutation matrix P, one to the top-right of the other. As
a result, an inversion in P consists of two ones in the entries (i, j) and (k, ), such that
(i —k)(j —1) < 0. Ghebleh adopted the same definition of inversion for any (0, 1)-matrix.

Definition 1 [14] Let A = [a;, ;] be a (0, 1)-matrix. In A, an inversion is a pair of entries a; ;
and ay 7, both of which equal to 1, satisfying (i — k)(j —[) < 0. We denote the total number
of inversions in A by v(A).

Example 1 Let

1010
1100
0101
0010

A =la; ] =

This matrix has four inversions: (aj 3, a2.1), (a1,3,a2.2), (a1,3,a32), and (a3 4, a43).
Hence v(A) = 4.

The next result states the monotonicity of the number of inversions with respect to the
Bruhat order in A(R, S):

Theorem 6 [11] Let A, C € A(R, S) such that A xp C, A # C. Then v(A) < v(C).

Remark 7 From this Theorem, we can conclude thatif v(A) = v(C) for two distinct matrices
A and C in A(n, k), then A and C are incomparable in the Bruhat order. Therefore, the set
v~L() of all matrices A € A(n, k) with v(A) = ¢ is an antichain in the Bruhat order of
A, k).

Given a matrix A, the matrix obtained by flipping the columns of A in the right/left
direction is referred to as the conjugate of A, and it is denoted by A. Namely, if A = [a; ;] is
an m X n matrix, then A is the matrix B = [bi,;], where b; j = a; p—j+1 foralll <i <m
and 1 < j < n. A matrix A is said to be self-conjugate if A = A.

The following Lemma is an elementary application of the inclusion-exclusion principle.

Lemmal [15] Let A € A(R, S), withR = (r1,...,rpm)and S = (s1, ..., s,).Then

—. r+r+...+r “ ri - S
v(A)—i—v(A):(l 22 ")—Z<2>—Z(21>
i=1 j=1
If A € A(n, 2) is self-conjugate, then we get v(A) = n?— 37”

From this equality, we conclude that if » is odd, then there are no self-conjugate matrix
in the class A(n, 2), but for n even, self-conjugate matrices were used in [15] to construct
antichains.

In the next section we are going to build antichains in A(n, k) using the same ideas. To
begin, if A € A(n, k), then, by Lemma 1,

V(A) + v(A) = (’;”) — <’;)
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and hence, if A is self-conjugated, then

(kn)>  2nk? — nk
4 4 '

As aresult, if n and k are odd, then A(n, k) contains no self-conjugate matrices. We also
conclude that all self-conjugate matrices have the same number of inversions and thus, they
form an antichain in the Bruhat order of A(n, k).

Another difficult issue with classes A(R, S) is determining the precise number of its
elements. The exact number of elements in A(R, §) is represented by | A(R, S)|. As Ryser
predicted, “the exact number of them is undoubtedly an extremely intricate function of the
row and column sums”. Formulas that provide the exact number of (0, 1)-matrices in A(R, S)
can be found in [20] or in [18]. A lower bound for the cardinality of the class .A(n, k) was
presented in [21]:

V(A) = ey

Proposition 8 [21] Let n and k be two positive integers such that k < n. Then
(nH*

(L

This section concludes with the following result:

A, k)| =

Proposition 9 Let t and [ be two positive integers such that | > t. Let R = 1/~ (t — 1)")
and let R = ((t + 1)'=', 1"). Then A(R, R) # ¥, and if | > t, then A(R', R') # .

Proof If R = (:'~, (r—1)"), then R* = (I' "', 1 —1). Since ! > ¢, we conclude that R < R*,
and according to Theorem 1, A(R, R) # . The proof that A(R’, R’) # (¥ is similar. O

3 Proof of Theorems 4 and 5

This section is primarily concerned with the proofs of Theorems 4 and 5. As previously
stated, a set of matrices in A(n, k) with an equal number of inversions forms an antichain
in A(n, k) with the Bruhat order. We present antichain constructions in the Bruhat order of

A(n, k), which are made up of matrices with a fixed number of inversions.
Proof of Theorem 4: We divide the proof into the two cases of the statement:

o={lr7)sreaa))

A=[SS]GB,

Case 1: k is even.
Let

Then, a matrix

TT
is a self-conjugated matrix of A(n, k). Therefore, by Eq. 1,
(kn)>  2nk*> — nk

4 4

We showed how to generate self-conjugated matrices of .A(n, k) from any pair of
matrices S, T € A (% %) A set of self-conjugate matrices, as previously demon-
strated, is an antichain of A(n, k). Therefore,

n k
A(E’E)

V(A) =

2
w(A(n, k)) >
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Case 2: k is odd.

Let
CcS n k—1 n k+1
B_{[Sf}.CEA(E,T )and5e,4(2 : )}

We will show that all matrices in B have the same number of inversions. Let A € B.
Then, there are matrices C € A (” k- 1) and S € A (” k“) such that

a=[23],
SC

To count the number of inversions of A first notice that v(C) + v(C) is constant for
any C as it happens with v(S) + v(S).

Any nonzero entry of C does not result in an inversion when combined with any
nonzero entry of C. Any nonzero entry of S produces inversion with all nonzero
entries of S, resulting in more ("(kH) )2 inversions.

The nonzero entries in the ith row of S produce inversions when combined with all
the nonzero entries of C that lie in therows i + 1, ..., % Since each row of S has

k“ nonzero entries and each row of C has £ 21 nonzero entries, we have more

XZ: (k= Dk +1) (g_ )

~ 4 2!

inversions. Observe that this number is independent of the choice of S and C.

The nonzero entries in the jth column of S, produce inversions when combined with
any nonzero entries of C that lie in the columns 1, ..., ] — 1. Since each column

of S has k+ nonzero entries and each column of C has 451 l nonzero entries, these
entries produce

n

i(k—1)(k+1)

1 @—1).

i=1
inversions.
The nonzero entries in the ith row of S produce inversions with the nonzero entries
of C that lie in rows 1, ...,i — 1, and the nonzero entries in the jth column of §
produce inversions with the nonzero entries of C that lie in columns j + 1, ..., %
This results in

L k—Dk+D) k- Dk
Yo G (e

additional inversions. Therefore the total number of inversions of A is
V(A) = V(C) +(C) + 1(S) + v(S) + (&2
2( CHERG -+ DL SRR - ).

We demonstrated how to construct a family of matrices on .A(n, k) with the same
n k+1

number of inversions, using any S € A (%, %) and C € A (%, %51). Conse-
quently, this set is an antichain of .A(n, k), and hence,

n k—1 n k+1
““(E’T ) "““(z’z )’

w(n, k) >
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Proof of Theorem 5: We divide the proof into the two cases of the statement:

Case 1: k is even.

Let [ and ¢ be two positive integers such that n = 2/ 4+ 1 and k = 2¢. Since n > k
wehavel > ¢.Let R = (t'~, (t — 1)"). According to Proposition 9, A(R, R) # @.
Let L =1[0...01...1] be the row matrix with / entries, ¢ of which are 1 and the
rest are 0. Let

LT
B= 0 :CeAl,t) and T € A(R, R)
LT

Enlle!
Al N

Then B € A(n, k). We will prove that all matrices in B have the same number of
inversions which implies that 5 is an antichain in A(n, k). Let A € B. Then there
exits a matrix C € A(l, t) and a matrix T € A(R, R) such that

C LT
A=|Ls 0 Lo |,
T Ly C

where L1 = L3 = LT,iLz = L and Ly = L. B
Eirst, Ahas v(T)+v(T)+v(C)+ v(C) inversions in the submatrices C, C, T and
T. According to Lemma 1,

u(T)+v(T)+u(C)+v(€):(g)+(l’;’>—4l<;>+
t tr—1 (2)
2 _ .
((2)-("2")

This summation has the same value for any C € A(l, t) and any T € A(R, R).
The nonzero entries of L produce inversions when combined with the nonzero
entries of L4. The identical is true for the nonzero entries of L, and Lj3. Therefore,
these entries result in a total of

212 (3)

inversions.

Each nonzero entry of 7, when combined with all nonzero entries of T and all
nonzero entries of L4 and L3, results in an inversion. Because matrices T and T
have (I — t)t + (t — 1)t = It — t nonzero entries and matrices L4 and L3 have ¢
nonzero entries, a total of

(It — t)2 +2tdt —t) =t —t)(It —t +2t) = (It — )t + 1) “4)

inversions are produced by these entries.

The nonzero entries in the ithrow of 7 produce inversions with the nonzero entries of
C and with the nonzero entries of L thatlieintherowsi+1tol.Ifi € {1, ...,[—t},
then the ith row of T has ¢ entries equal to 1, that produces a total of

I—t l
th—l- Z tt+1)

k=i+1 k=l—t+1
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inversions when combined with the nonzero entries of C and L. Ifi € {{ — ¢t +
., 1}, then the ith row of T has ¢ — 1 entries equal to 1 that produces a total of

1
Y @=DE+D

k=i+1

inversions when combined with the nonzero entries of C and L;. Therefore, the
nonzero entries of 7 produce a total of

I—t /1=t ! 1 !
Z(Z 2+ Z t(t+1))+ Z (Z(r—l)(r+1)> 5)
i=1

k=i+1 k=l—t+1 i=l—t+1 \k=i+1

inversions when combined with the nonzero entries of C and L.
The nonzero entries in the jth column of T produce inversions with the nonzero
entries of C and with the nonzero entries of L, that lie in the columns 1 to j — 1. If

jef{l,...,1 —1t}, then the jth column of T has ¢ entries equal to 1 that produces
j—1
>
k=1

inversions when combined with the nonzero entries of C. If j € {{ — ¢t +1,...,1},

then the jth column of T has ¢ — 1 entries equal to 1 that produces

Z(t— Dt + Z (t— D+ 1)

k=l—t+1

inversions when combined with the nonzero entries of C and L,. Therefore, the
nonzero entries of 7 produce a total of

j—1 l

1—t
YA+ > Z(r—l)t—l— Z t— D +1) (©6)
j=1

k=1 j=l—t+1 \k= k=l—t+1

inversions when combined with the nonzero entries of C and L.
Eachnonzero entry of T produce inversions when combined with the nonzero entries
of L and L, resulting in more

2(lt — 1)t @)
inversions. B
The nonzero entries in the ith row of 7" also produce inversions with the nonzero
entries of C and L3 that lieintherows 1toi — 1. Ifi € {1, ..., —t}, then the ith

row of T has ¢ entries equal to 1 that produces a total of
i—1
2.7
k=1

inversions when coglbined with the nonzero entries C. If i € {l — ¢+ 1,...,1},
then the ith row of T has t — 1 entries equal to 1 that produces a total of

Z(r— Dt + Z t—D(t+1)

k=l—t+1
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inversions when combined with the nonzero entries of C and L3. Therefore, the
nonzero entries of 7' produce a total of

-t fi—1
Z(Zrz) Z (Z(r—l)H— Z (t—l)(t+1)) ®)
i=1 \k=1

i=l—t+1 k=l—t+1

inversions when combined with the nonzero entries of C and L3.

The nonzero entries in the jth column of 7 also produce inversions when combined
with the nonzero entries of C and with the nonzero entries of L4 that lie in the
columns j + 1 to /. These entries give rise a total of

-t [—t i I I

> i(r—l)(H—l)Jr Yooa=brf+ Y | X7 ©)

j=1 \k=j+1 k=l—t+1 j=l—t+1 \k=j+1

inversions.

Hence, by adding Egs. 2, 3, 4, 5, 6, 7, 8, and 9 we obtain the total number of
inversions of A, which has the same value regardless the choice of C € A(l, t) and
T € A(R, R) due to the fact that it only depends on / and z. Therefore,

n—1
2

w(n, k) > |B] = A, 1)].| AR, R)| = 'A( , I;)’ .JA(R, R)|.

Case 2: k is odd.
Let/ and ¢ be two positive integers such thatn = 2/ 4+1and k = 2t + 1. Sincen > k
wehavel > t.Let R" = ((t+1)'*, ). According to Proposition 9, A(R’, R') # @.
Let L =1[0...01...1] be the row matrix with / entries, ¢ of which are 1 and the
rest are 0. Let

cCLTT
B={|L 1L|:CeAl, ) and T € A(R,R)
TLTC

Then B C A(n, k). Proceeding as in the previous case we conclude that B’ is an

antichain of A(n, k). Therefore,

n—1 k-1
272

wn, k) > |B| = Al 0. |AR, R)| = ‘A( )‘ JAR', R)|.

Using Theorem 4 and Proposition 8 we can state the following result:

Corollary 1 Let n and k be two positive integers with k < n and n an even integer. Then,

(v

, if k is even
(3"

— GV ifkis odd
=2

‘We may use this corollary in the next section to compare these new bounds to the bounds
obtained by Ghebleh in Theorem 3. Such a comparison is obviously only possible in the
classes A(2k, k).
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4 Concluding Remarks

We present antichain constructions in the Bruhat order of the classes A(n, k), where n and k
are positive integers. The main tool in our constructions of antichains in the Bruhat order of
A(n, k) is the fact that if two matrices in this class have the same number of inversions, then
they are incomparable in the Bruhat order.

It is important to compare these new lower bounds for the width of A(2k, k) with those
obtained by Ghebleh in Theorem 3. Examining the proofs of Ghebleh, we observe that the
construction of an antichain in A(2k, k) just requires an antichain D in the Bruhat order of
A(k, 2). Theorem 2 determines a lower bound for | D|, and Ghebleh proves that A(2k, k) has
an antichain of length |D[*, which leads to Theorem 3. In our approach, we do not employ
antichains of any class to find a lower bound for the width of A(2k, k). Instead, we use the
entire class A (k, %) if k is even or the classes A (k, %) and A (k, %) if k is odd. This
allows to improve the Ghebleh bounds in most situations as we can see in the next example:

Example 2 In this example, we present lower bounds for the width of A(16, 8) and .A(14, 7).
Using Theorem 4 we get

(8)*
w(l6, 8) > anie = 576 480 100 000 000,
and
ay’
w(14,7) > ———— = 64 339 296 875.
(3! x 417
If we apply Theorem 3, then we obtain
8n*
w(l6, 8) > —— =40 327 580 160 000,
48
and

(6)*
w(l4,7) = o5 = 1049 760 000,

so in these cases our result outperforms Ghebleh’s.
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