
Vol.:(0123456789)

Order (2023) 40:455–468
https://doi.org/10.1007/s11083-022-09606-6

1 3

Order-Preserving Self-Maps of Complete Lattices

Bernhard Ganter1 

Received: 20 October 2021 / Accepted: 24 May 2022 / Published online: 13 February 2023 
© The Author(s) 2022

Abstract
We study isotone self-maps of complete lattices and their fixed point sets, which are 
complete lattices contained as suborders, but not necessarily as subsemilattices. We develop 
a representation of such maps by means of relations and show how to navigate their fixed 
point lattices using a modification of the standard Next closure algorithm. Our approach is 
inspired by early work of Shmuely [8] and Crapo [1]. We improve and substantially extend 
our earlier publication [4].
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1 Introduction

The interest in concept lattices [6] has stimulated the creation of algorithms for generating 
lattices, and the availability of fast algorithms may conversely have contributed to the popu-
larity of concept lattices. Moreover, concept lattices have easy representations either by a 
binary relation or by a set of implications, both of which can conveniently be used as input 
for the algorithms.

Although all complete lattices are isomorphic to concept lattices, they sometimes 
come in a form for which the above-mentioned algorithms are not easy to apply. There 
are, for example, many families of sets which form complete lattices when ordered 
by the subset relation ⊆ , but are neither closure nor kernel systems. We provide a 
relational representation for such lattices and adapt one of the standard algorithms 
accordingly.

Throughout the paper, (L,≤) will be some abstract complete lattice. The supremum 
and infimum of a subset S ⊆ L will be denoted by 

⋁
S and 

⋀
S . The reader may assume, 

without much loss of generality, that (L,≤) is a powerset lattice (�(M),⊆) . We use the 
abstract setting because we find it more transparent.
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2  Representing relations

A mapping  :  →  between two ordered sets  and  is called order-preserv-
ing1 if x ≤  always implies  ≤ .

Let   be an ordered set and let   be a complete lattice. An easy way to give 
examples of order-preserving maps  :  is to choose an arbitrary relation  
between  and  and to define for all v ∈ P

 obviously is order-preserving. It is also evident that conversely every order-preserv-
ing map  can be obtained via such a representing relation, since

is a trivial solution.
For a more compact representation define  to be a -proper preimage for  if

 and denote the set of all such -proper preimages by P . We say that  is represented on 
its 

⋁
-proper preimages if

holds for all . This is not always the case, a generalized finiteness condition is needed. 
The descending chain condition (dcc) requires that every non-empty subset has a mini-
mal element.
Proposition 1 Let (P,≤) be an ordered set and let (L,≤) be a non-trivial complete lattice. 
The following conditions are equivalent:

1. (P,≤) satisfies the dcc.
2. Every order-preserving mapping φ : (P,≤) → (L,≤) is represented on its 

⋁
-proper preimages.

Proof If there was an element violating equation (1) in an ordered set (P,≤) satisfying the dcc, 
then there also is a minimal such violating element, say, v. Every w < v fulfills the equation

 A violating element cannot be a 
⋁

-proper preimage, and thus

showing that v does not violate the equation, a contradiction.

𝜑(p) ≠
⋁

{𝜑(v) ∣ v < p}

(1)�(v) =
⋁

{�(p) ∣ p ∈ P�, p ≤ v}

�(w) =
⋁

{�(p) ∣ p ∈ P�, p ≤ w}.

𝜑(v) =
⋁
{𝜑(w) ∣ w < v}

=
⋁
{
⋁
{𝜑(p) ∣ p ∈ P𝜑, p ≤ w} ∣ w < v}

=
⋁
{𝜑(p) ∣ p ∈ P𝜑, p ≤ v},

1 Synonyms are isotone and monotone
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For the converse assume that (P,≤) contains a non-empty subset without a minimal 
element. The order filter F generated by this subset has no minimal elements either. 
Mapping F to the largest and P ∖ F to the smallest element of (L,≤) yields a mapping that 
is order-preserving, but has no 

⋁
-proper preimages at all, since each 

⋁
-proper preimage 

would be minimal in F.                                                                                                       □

An interesting question is how to find the 
⋁

-proper preimages for a given order-preserving 
mapping φ. This is easy when a representing relation  of reasonable size is given, as the 
following proposition shows.
Proposition 2 If  is a representing relation for φ : (P,≤) → (L,≤), then the 

⋁
-proper preimages of φ are precisely the elements p ∈ P for which there esists a pair 

 such that

Proof According to the definition, p is a 
⋁

-proper preimage for φ iff

 Since  is a representing relation for φ, we can rewrite this condition to

Comparing this to

yields the claim of the proposition.                                                                                  □

Corollary 1 If φ is represented on its 
⋁

-proper preimages, then that representation is of 
minimum size.

Proposition 2 also allows to check if two relations represent the same order-preserv-
ing mapping (assuming dcc): they must have the same 

⋁
-proper preimages and produce 

the same images of these.
Example 1 Let (P,≤) and (L,≤) both be equal to the powerset lattice of the three-element 
set {a,b,c}. We give three examples E1, E2, and E3 in terms of representing relations , 
which we write in infix notation.

• Example E1 is represented by the relation  given as

𝜑(p) ≠
⋁

{𝜑(v) ∣ v < p}.
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  The resulting order-preserving map φ⊳ is as follows:

  {a}, {b}, and {c} are indeed the 
⋁

-proper preimages.
• Example E2 is represented by the relation  given as

  φ⊳ has the following values:

  {a} and {a,b,c} are the 
⋁

-proper preimages.
• For example E3 we use the powerset lattice of {a,b} with

  and obtain

The 
⋁

-proper preimages are ∅, {a}, and {b}.

E1, E2, and E3 will be used as separating examples in Theorem 1 below.
Proposition 3 All proper preimages of a 

⋁
-preserving map φ : L1 → L2 between com-

plete lattices (L1,≤) and (L2,≤) are 
⋁

-irreducible.

Proof Let p ∈ V be a proper preimage for φ. Then 𝜑(p) ≠
⋁
{𝜑(q) ∣ q < p} and thus, 

since φ is 
⋁

-preserving, 𝜑(p) ≠ 𝜑(
⋁
{q ∣ q < p}) . As a consequence we get that 

p ≠
⋁
{q ∣ q < p} , which shows that p must be 

⋁
-irreducible. □

3  Order‑preserving self‑maps
Definition 1 Let (L,≤) be a complete lattice. An order-preserving mapping φ : L → L 
is called
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idempotent if φ(x) = φ(φ(x)) for all x ∈ L,
extensive if x ≤ φ(x) for all x ∈ L,
contractive2 if x ≥ φ(x) for all x ∈ L,
tensive if φ(x) = φ(x ∧ φ(x)) for all x ∈ L,
increasing3 if φ(x) ≤ φ(φ(x)) for all x ∈ L, and
decreasing if φ(x) ≥ φ(φ(x)) for all x ∈ L.

Theorem 1 Figure 1 shows the logical hierarchy of the properties given in Definition 1. 
In particular, if φ : L → L is order-preserving, then the following statements hold (as well 
as their duals):

1. If φ is extensive, then φ is tensive.
2. If φ is tensive, then φ is increasing.
3. φ is idempotent iff φ is both increasing and decreasing.
4. If φ is idempotent and extensive, then φ is dually tensive.

Moreover, there are examples of order-preserving mappings falsifying other implications, 
as indicated in the diagram.4

Fig. 1  The result of an attribute exploration [5] for order-preserving self-maps, see Theorem 1

2 A synonym is intensive
3 Following Shmuely [8]. Tarski [9] uses “increasing” in the sense of “order-preserving”
4 Assertions 1., 3. and 4. hold even without assuming that φ is order preserving, as one of the reviewers has 
pointed out.
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Proof 1) If x ≤ φ(x), then x ∧ φ(x) = x and thus φ(x ∧ φ(x)) = φ(x). 2) From x ∧ φ(x) ≤ 
φ(x) we infer φ(x) = φ(x ∧ φ(x)) ≤ φ(φ(x)). 3) is obvious. 4) If x ≤ φ(x) then φ(x ∨ φ(x)) = 
φ(φ(x)) = φ(x).

The separating examples E1, E2, E3 are defined in Example 1. Ed
1
 , Ed

2
 , Ed

3
 are dual to E1, 

E2, E3.                                                                                                                                    □

In Example 1 above we have used infix notation for the relation , writing  instead of 
. Note that  always implies , but that the converse does not hold 

in general. It will be convenient to have a short notation for this case as well. We therefore 
define

and keep in mind that  implies .
We say that  entails a relation R ⊆ L × L , when  and  represent the same 

mapping.
Proposition 4  entails R if and only if  holds for every (r,s) ∈ R.

Proof For arbitrary x ∈ L we have

 The two images are the same if

 and this holds if for all (r,s) ∈ R

 But  and r ≤ x imply s ≤ φ⊳(r) ≤ φ⊳(x), showing that the condition is sufficient. It is also 
necessary, because if s ≰ 𝜑⊳(r) for some (r,s) ∈ R, then φ⊳ and φ⊳∪R are different since s 
≤ φ⊳∪R(r). □

Proposition 5 The order-preserving mapping φ⊳ represented by  is

1. extensive iff  holds for all x ∈ L,
2. increasing iff  holds for all x ∈ L, and
3. decreasing iff  and  together always imply .

Proof The first two claims are immediate from the definitions of being extensive (x ≤ 
φ⊳(x)) or increasing (φ⊳(x) ≤ φ⊳(φ⊳(x))). The third requires a few more words: The 
condition of being decreasing is φ⊳(φ⊳(x)) ≤ φ⊳(x), which obviously is equivalent to

This is, up to notation, exactly the condition given in the proposition.                            □

𝜑⊳∪R(x) = 𝜑⊳(x) ∨
⋁

{s ∣ (r, s) ∈ R, r ≤ x}.

⋁
{s ∣ (r, s) ∈ R, r ≤ x} ≤ 𝜑⊳(x),

r ≤ x ⟹ s ≤ 𝜑⊳(x).
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We say that  is an upward relation iff

Proposition 6 Let (L,≤) be a complete lattice and φ : L → L be order-preserving. φ has 
an upward representing relation if and only if φ is tensive.

Proof If v,x,y are elements of L with x ≤ v, , and x ≤ y, then x ≤ y ≤ φ(v) and 
thus x ≤ v ∧ φ(v). If  is upward, then  always implies x ≤ y, and thus

A consequence is that φ(v) = φ(v ∧ φ(v)) holds for all v ∈ L, i.e., φ is tensive. For the 
converse we prove that if φ is tensive, then the relation

which obviously is upward, represents φ. Recall that for arbitrary y ∈ L

 From y ∧ φ(y) ≤ y and  we conclude that φ⊳(y) ≥ φ(y). If x ∧ φ(x) ≤ y holds 
for some x, then φ(x) = φ(x ∧ φ(x)) ≤ φ(y) (since φ is order-preserving and tensive), and 
thus φ⊳(y) ≤ φ(y). This proves φ⊳ = φ. □

4  Closed and fixed points
Definition 2 If φ : L → L is a mapping and x ∈ L, then we say that x is a fixed point of φ 
iff φ(x) = x, and that x is a closed point of φ iff φ(x) ≤ x.

Proposition 7 Every fixed point is closed. If φ is order-preserving and increasing, and x 
is closed, then φ(x) is fixed.

Proof The first statement is obvious. Suppose that x is closed, i.e., that x ≥ φ(x). Then φ(x) 
≥ φ(φ(x)) ≥ φ(x), when φ is order-preserving and increasing. We conclude that φ(x) = 
φ(φ(x)) and thus φ(x) is fixed. □

The proposition may suggest a pairing between fixed and closed elements. But note for 
example that when φ is the function which maps everything to the least element of (L,≤), 
then every element of (L,≤) is closed, but only the least element is fixed.

A function that is both idempotent and order-preserving is called a closure operator on 
(L,≤) if it is extensive, and is a kernel operator if contractive. The set of fixed points of a 
closure operator is called a closure system. It is well known that the closure systems are 
precisely the 

⋀
-subsemilattices. Each complete meet-subsemilattice of a complete lattice is 

𝜑⊳(y) =
⋁

{𝜑(x) ∣ x ∧ 𝜑(x) ≤ y}.
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itself a complete lattice, because the join operation can be expressed in terms of the meet 
operation: the join of a subset S equals the meet of all upper bounds of S. However, this 
join operation usually is not identical with the join in the original complete lattice. The 
meet-subsemilattice therefore is a complete lattice, but not a complete sublattice in gen-
eral. In a closure system of sets, for example, the join of two elements is usually not given 
by their set union, but by the closure of this union. Thus a closure system, ordered by set 
inclusion, is a complete lattice, but not necessarily a sublattice.

The fixed points of a kernel operator are closed under arbitrary joins and thus form a 
⋁

-subsemilattice, also called a kernel system. Again we get the second operation from the 
first, so that each kernel system also is a complete lattice.

This shows that closure systems are not the only subsets yielding order-embedded com-
plete lattices. In fact, the following is well known5:
Lemma 1 A subset of a complete lattice (L,≤), with the induced order, is a complete lat-
tice if and only if it is the image of an idempotent order-preserving function φ : L → L.

Proof Suppose that F = {�(x) ∣ x ∈ L} for some idempotent order-preserving function φ 
: L → L. We claim that for any subfamily S ⊆ F  the element �(

⋀
S) is the infimum of 

S in F  . Clearly 
⋀

S ≤ s holds for every s ∈ S . Since φ is order-preserving, we get that 
�(
⋀

S) ≤ �(s) = s for all s ∈ S , which shows that �(
⋀

S) is a lower bound of S . But any 
lower bound b of S must satisfy b ≤ s for all s ∈ S and therefore b ≤

⋀
S . If b ∈ F  , then 

b = �(b) ≤ �(
⋀

S) , as desired.
For the converse suppose that F ⊆ L is a complete lattice and define a function φ : L → 

L by �(x) ∶= supF{f ∈ F ∣ f ≤ x} (where supF  denotes the supremum in F  ). This function 
is clearly idempotent and order-preserving, and its image is F  .                                           □

Lemma 1 adds a kind of converse to the celebrated Knaster-Tarski theorem [7, 9], which 
states that the set of fixed points of any order-preserving function on a complete lattice is 
itself a complete lattice:
Corollary 2 A subset F ⊆ L of a complete lattice (L,≤), with the induced order, is a com-
plete lattice if and only if F  is the set of fixed points of some order-preserving function.

The second part of the proof of Lemma 1 is more informative than required, since the 
function which was used not only is order-preserving and idempotent, but has an additional 
property:
Proposition 8 The function which was used in the proof of Lemma 1,

 is tensive.

Proof If f ≤ x and f ∈ F  , then f ≤ φ(x) and so f ≤ x ∧ φ(x). Thus

which implies that φ(x) ≤ φ(x ∧ φ(x)). Since φ is order-preserving, we conclude 
equality.                                                                                                                      □

x ↦ �(x) ∶= sup
F

{f ∈ F ∣ f ≤ x},

{f ∈ F ∣ f ≤ x} ⊆ {f ∈ F ∣ f ≤ x ∧ 𝜑(x)},

5 Crapo [1] cites Duffus and Rival [2], while Shmuely [8] cites older notes by Crapo.



463Order (2023) 40:455–468 

1 3

A simple consequence of the Knaster-Tarski result which we shall use is
Proposition 9 If (L,≤) is a complete lattice, φ : L → L is order-preserving, and x ∈ L is an 
element for which x ≤ φ(x), then there is a least fixed point of φ that is greater or equal to x.

Proof Note that since φ is order-preserving, the set ↑ x ∶= {y ∈ L ∣ x ≤ y} is mapped into 
itself by φ: when y ≥ x, then φ(y) ≥ φ(x) ≥ x. But ↑ x is a complete lattice as well, to which 
the Knaster-Tarski result can be applied. So there is a least fixed point of φ in ↑ x.             □

Lemma 2 If φ : L → L is order-preserving and increasing, then for each x ∈ L there is a 
least closed element �(x) ≥ x, and there is a least fixed element �̂(x) ≥ �(x) . Both � and �̂ 
are order preserving, in fact, � is a closure operator. �̂ has the same fixed points as φ. If φ 
is tensive, then so is �̂.

Proof For the first claim define a function ρ(x) := x ∨ φ(x). Clearly ρ is order-preserving 
and extensive, so by Proposition 9 there is a least fixed point y of ρ which is greater or 
equal to x. But the fixed points of ρ are precisely the closed points of φ, and thus y also is 
the least closed point of φ which is greater or equal to x. The second claim follows again 
from Proposition 9, assuming that the function φ is increasing. Proving that � is a closure 
operator and that �̂ is order-preserving is straightforward.

If x is a fixed point of φ, then x also is the smallest fixed point greater or equal to φ(x) = 
x, i.e., x = �̂(x) . Conversely if x = �̂(x) , then x is a fixed point of φ by definition.

Finally, assume that φ is tensive. By definition, �̂(x ∧ �(x)) is the least 
fixed point of φ greater or equal to φ(x ∧ φ(x)). But when φ is tensive, the lat-
ter equals φ(x), and therefore �̂(x ∧ �(x)) = �̂(x) . But since �(x) ≤ �̂(x) , we get 
�̂(x) = �̂(x ∧ �(x)) ≤ �̂(x ∧ �̂(x)) ≤ �̂(x) , which concludes the proof.                                □

Lemma 3 If φ is order-preserving and increasing, then for all x ∈ L

Proof �̂(x) is fixed and therefore closed, and contains φ(x), thus �̂(x) ≥ �(�(x)) . It remains 
to show that �̂(x) ≤ �(�(x)) . Proposition 7 yields that �(�(�̂(x))) is fixed and less or 
equal to �(�(x)) . The proof is complete if we show that this fixed element contains φ(x), 
because that forces it to be equal to �̂(x) (which is the least such fixed point). But from 
�(x) ≤ �(�(x)) and the fact that φ is increasing and order-preserving we conclude that 
�(x) ≤ �(�(x)) ≤ �(�(�(x))) .                                                                                               □

Corollary 3 Let  be an upward relation over (L,≤). Then the function �𝜑⊳ ∶ L → L 
defined by

�𝜑⊳(x) is the least fixed point of φ⊳ greater or equal to φ⊳(x),
is idempotent, order-preserving, and tensive and has the same fixed points as φ⊳. 

Moreover,

The corollary shows how an order embedded complete lattice, i.e., a subset which, 
with the induced order, also is a complete lattice, can be constructed from an upward 
relation. We summarize our findings in the following theorem.

�̂(x) = �(�(x)).

�𝜑⊳(x) = 𝜑⊳(𝜑⊳(x)) for all x ∈ L.
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Theorem 2 Let (L,≤) be a complete lattice and let F ⊆ L be an order embedded com-
plete lattice. Then there is an upward relation  over (L,≤) such that F  is the set of fixed 
points of φ⊳. Conversely it holds for every upward relation  over (L,≤) that the set of fixed 
points of φ⊳ is an order embedded complete lattice. In both cases the fixed points of φ⊳ are 
exactly the images of �𝜑⊳.

5  The Next fixed poiNt algorithm

Many years ago the author suggested a simple algorithm [3] for finding all closed sets of a 
given closure operator ϕ on a (finite, linearly ordered) set G. One starts with the closure A 
:= ϕ(∅) of the empty set and then repeats the procedure shown in Fig. 2, using the output 
of each application as the input of the next one, until it returns ⊥.

The algorithm is extremely useful for browsing and navigating in closure systems. And 
since it is so simple, many variations and generalizations have been invented, see [5].

It is easy to generalize the algorithm to closure operators on complete lattices, not only 
powerset lattices. It therefore seems natural to ask if a modification of Next closure can 
be used for generating all images of any given idempotent, order-preserving, and tensive 
function. If such a mapping is given as a “black box” only, then unfortunately, the answer 
is “no”. Our pessimism is prompted by the following example:
Example 2 Let A ⊆ L be an antichain in a complete lattice (L,≤), let  0L be the least and 
and  1L be the greatest element of (L,≤), and let f be an element of A. The function

 is idempotent, order-preserving, and tensive.

In this example it is tedious to determine the fixed points by repeated invocation of φ. Since 
the number of antichains may be exponential6 in the size of L, it seems difficult to find an 
algorithm which determines the fixed point f reasonably fast. Stronger assumptions are needed. 
What we shall assume is that an upward representation of reasonable size for φ is given.7

To a given upward relation  we associate an extensive operator, which then 
will be iterated to compute a closure. This operator will be set valued. Its base set, named 
G in Fig. 2, will be  (considered as a set of pairs).

𝜑(x) ∶=

⎧
⎪⎨⎪⎩

f if x = f

1L if a < x for some a ∈ A

0L else

Fig. 2  The Next closure algorithm, from [5]

6 For example, the Dedekind numbers in case that L is a powerset lattice.
7 At this stage of the development, we are not yet studying the exact complexities.
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Definition 3 Let  be an upward relation over (L,≤). We define two mappings 
 and  as follows: for  and for w ∈ L let

and finally their composition,

Proposition 10 

1. A↦A+ is order-preserving and extensive (wrt. the ⊆-order).
2. S ∘ T = φ⊳,
3.  (T(w))

n times

+……+ = T(𝜑⊳
n(w)) holds for all w ∈ L and all n > 0.

4. The fixed points8 of the mapping A↦A+ form a closure system.

Proof 1) If A ⊆ B , then obviously S(A) ≤ S(B) and T(S(A)) ⊆ T(S(B)) , so that T ∘ S is ⊆
-preserving. If (u,v) ∈ A, then u ≤ v ≤ S(A) and thus (u,v) ∈ T(S(A)), which equals A+. 2) 
is immediate from the definition of φ⊳. 3) (T(w))+ = T(S(T(w))) = T(φ⊳(w)) according to 
2), and substituting φ⊳(w) for w iterates. 4) This is generally true for any order-preserving 
extensive mapping f : (L,≤) → (L,≤): Let I be some index set, let Ai,i ∈ I, be fixed points, 
and let B ∶=

⋀
i∈I Ai . From B ≤ Ai we infer f(B) ≤ f(Ai) = Ai, and therefore f (B) ≤

⋀
i∈I Ai . 

But since f is extensive, we also have f (B) ≥
⋀

i∈I Ai , which concludes the proof, since it 
shows that f(B) = B. □

Theorem 3 The mappings S and T, restricted to the fixed point sets of the operator A↦A+ 
and of φ⊳, induce mutually inverse bijections.

Proof If A = A+ then S(A) = S(A+) = S(T(S(A))) = φ⊳(S(A)). Conversely, if w = φ⊳(w) and 
A = T(w), then A = T(w) = T(φ⊳(w)) = (T(w))+ = A+. Moreover, if A = A+, then T(S(A)) = 
A+ = A, and if w = φ⊳(w), then S(T(w)) = φ⊳(w) = w, according to Proposition 10, (2). □

Now we have everything we need to compute the lattice of fixed points of an order-
preserving mapping φ⊳ : (L,≤) → (L,≤), provided it is given by an upward representig 
relation . We use the Next closure algorithm for the closure system which is in bijective 
corespondence to (in fact, isomorphic to) the lattice of fixed points of φ⊳. Of course some 
finiteness condition is required, and we assume that  is finite. If so, then the closure 
operator ϕ, which is associated to this closure system, is easy to describe: it is computed by 
applying the set operator repeatedly until a fixed point is reached.

 The process terminates after finitely many steps because each application of A↦A+ that 
does not produce a fixed point A = A+ requires a previously unused element  

A+ ∶= T(S(A)).

A ↦ A+
↦ A++

↦ … ↦ A
n times

+……+ = A
n times

+……+ ∶= �(A).

8 i.e., the sets  with A = A+
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with u ≤ S(A) and v ≰ S(A) . We expect that the idea behind the well-known liNclosure 
algorithm can be carried over to this recursive construction.

We conclude the section with an example.
Example 3 Let (L,≤) = {0 < 1 < 2 < 3}×{0 < 1 < 2 < 3} be the direct product of two 
4-element chains, and let  be given as follows:

For the linear order of the base set , as required by the Next closure algorithm, we 
use the order in the table. For a shorter notation, we leave out parentheses. Writing abcd 
instead of ((a,b),(c,d)), we obtain

This relation represents the following order-preserving map φ⊳:

This table is so small that we can easily read off the final result: φ⊳ has eight fixed 
points. They are marked in boldface.

Next we show how the same result is obtained by the Next closure algorithm. We skip 
the first three steps where that algorithm computes the closed sets ∅, {0303}, and {1010}, 
which correspond to the fixed points (0,0), (0,3), and (1,0). We continue from there and 
show how the next two fixed points are computed:

A = {1010}, g = 0303: S({1010,0303}) = 10 ∨ 03 = 13. A+ = T(13) = 
{1323,1212,1010,0303}. Since A+ contains an element smaller than g, no value for B is 
returned and we continue with
A = {1010}, g = 1010: Here g ∈ A, so g is removed from A.
A = ∅, g = 1212: S({1212}) = 12, (A ∪{g})+ = T(12) = {1212,1010}. Since 
S({1212,1010}) = S({1212}), we have reached the closure B := {1212,1010}, and 1212 
is indeed the smallest element of B ∖ A. B is returned as a new closed set. The corre-
sponding fixed point of φ⊳ is (1,2). We continue with A := B.
A = {1212,1010}, g = 0303: S(A ∪{g}) = 12 ∨ 10 ∨ 03 = 13. T(13) contains the element 
1323, which is smaller than g, so nothing is returned. Instead, we try the next smaller g.
A = {1212,1010}, g = 1010: Here g ∈ A, so g is removed from A.
A = {1212}, g = 1212: Here g ∈ A, so g is removed from A.
A = ∅, g = 1323: S(A ∪{g}) = 23, T(23) contains 2232, which is smaller than g. Noth-
ing is returned.
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A = ∅, g = 2121: S(A ∪{g}) = 21, T(21) = {2121,1010}, S(T(21)) = S(2121) is a closed 
set in which g is the smallest element. Therefore B := {2121,1010} is returned. The 
corresponding fixed point is (2,1).

Continuing in the same way yields the remaining three fixed points.

6  Discussion

Apart from closure and kernel systems, there are many “lattices of sets”, i.e., families of sets 
which form complete lattices, when ordered by set inclusion. We have studied those and, more 
generally, subsets of arbitrary complete lattices which, endowed with the induced order, are 
complete lattices themselves. We have shown that each such complete lattice can be described 
by an “upward” relation, in a way which is very similar to the representation of closure systems 
by implications. The Next closure algorithm can be tweaked to work with this representation, 
so that we were able to give an algorithm for generating such lattices. We did not discuss 
complexity questions in detail, because we expect that there is room for improvements. Many 
mathematical questions remain open. For example, we did not investigate how to construct an 
upward representation from a given “non-upward” one.

An important question is if embedded complete lattices have a natural and useful 
interpretation. The work of Shmuely [8] gives interesting hints. Her u − v-connections 
generalize Galois connections and seem to be related to what we construct. One might 
hope that these can be derived from formal contexts with additional, meaningful structure. 
Our results may help to study more substantial examples.
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