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Abstract

We describe a partial order on finite simplicial complexes. This partial order provides a
poset stratification of the product of the Ran space of a metric space and the nonnegative
real numbers, through the Cech simplicial complex. We show that paths in this product
space respecting its stratification induce simplicial maps between the endpoints of the path.
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1 Introduction

The Ran space of a topological space X is, as a set, all finite subsets of X, endowed with
a topology to allow points on X to split and nearby points to merge [6]. The Ran space
decomposes into configuration spaces, where the size of the subset of X does not change.
Configuration spaces have been applied [12] to study the topology of the space X, and the
Ran space has been used [3, 13] to make vast generalizations about co-categories.

Stratifications were originally [20] meant to generalize smooth manifolds, but have since
become [13, 19] a broader tool to decompose topological spaces with respect to a poset.
Often stratifications are required to be conical [4], meaning every point has a neighborhood
that looks like a stratified cone. The Ran space has a natural stratification into its constituent
configuration spaces, and we are interested in refining this by not only considering the
number of points in a subset of X, but also the distance among the points.

This approach takes us directly to persistent homology [11], which combines a topolog-
ical perspective at a range of distances. The topological features that are present for longer
are considered essential to the topology of the underlying space, a perspective that has
proven to be useful in a wide range of applications [2, 16, 17]. The most common product
of persistent homology is the persistence diagram, which provides a clean way to convey
observations [21]. Topological spaces based on persistent homology have been studied [10],
with a notion of distance coming from comparing such persistence diagrams.

This paper is based on the doctoral thesis of Janis Lazovskis, defended May 2019 at the University of
Illinois at Chicago.

P4 Janis Lazovskis
janis.lazovskis@abdn.ac.uk

1 Institute of Mathematics, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11083-021-09568-1&domain=pdf
http://orcid.org/0000-0002-9883-1843
mailto: janis.lazovskis@abdn.ac.uk

144 Order (2022) 39:143-158

1.1 Motivation

Persistent homology uses filtrations of algebraic objects [7], most often simplicial com-
plexes, to produce persistence diagrams. Simplicial complexes have been used [1, 14] to
probe the topology of the underlying space. A key aim of this exposition is to combine the
filtration of a particular simplicial complex with the different choices of simplicial com-
plexes that can be made by sampling a space. With such a combination, we are motivated to
answer the following questions:

— If there is a path in from one finite sample of M to another:

— can the changes in filtrations between these samples be precisely described?
— can the persistent homology computation of a new sample be simplified by
using the results of a different sample?

— Can we construct a space of all possible persistence diagrams by keeping track of homo-
logical changes of the simplicial complex coming from a sample of M and a distance
r, as both change?

These questions, some of which have been already considered [5], would be greatly
helped along if Ran(M) x R3¢ were stratified. The first component in the product is the
choice of a finite sample of M, and the second component is the persistent homology
distance parameter.

A stratification needs a poset, so we define a novel partial order on isomorphism classes
of simplicial complexes in Definition 5. This poset [SC] prompts in own questions:

—  What are the order relations on this poset?

— Is the order complex of this poset shellable?

—  Are there subposets of [SC] that are not shellable?
—  Does there exist an oriented coloring on [SC]?

This is the first introduction, to our knowledge, of this poset.
1.2 Overview

The scope of the present work is to stratify Ran(M) x Rx¢. Fix M to be a metric space, and
to a finite subset P C M, build the Cech complex. This simplicial complex has P’ C P
defining a (| P’| — 1)-simplex whenever the intersection of (closed) r-balls around the points
of P’ is non-empty. We denote by C this assignment of a simplicial complex to a pair
(P,r) € Ran(M) x R3¢ of a sample P of M and a nonnegative distance r.

Our contributions are first in the introduction of a partial order > on isomorphism classes
of simplicial complexes [SC] in Section 3.2. We also introduce the concept of a “frontier
simplicial complex” that refines the notion of a simplicial complex in Section 4.1. The
results on [SC] extend to results on [FSC], the poset of isomorphism clasases of frontier
simplicial complexes.

Using the poset [SC] as a stratifying set, we prove our main results:

— (Theorem 1) Ran(M) x Ry is [SC]-stratified
— (Theorem 2) Ran(M) x Ry is conically stratified if M is semialgebraic

These results are interpreted in the context of out persistent homology motivation to relate
the filtrations of different samples of M. In Section 4.2 we observe that the Cech filtration
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arising of a finite subset of M is always subposet of [SC]. Finally, we show in Construction 1
that every path y in Ran(M) x R that respects its stratification induces a unique simplicial

map C(y(0)) — C(y(1)).

2 Background

Let SC be the set of finite, abstract simplicial complexes.! A simplicial complex C is defined
by its vertices and simplices, that is, a pair of sets (V(C), S(C)) with S(C) € P(V(C))
closed under taking subsets.

2.1 Topological Spaces

Let X be a topological space. The Ran space of X isRan(X) :={P € X : 0 < |P| < o0},
with topology defined as the coarsest? for which all maps X/ — Ran(X) are continuous
for every nonempty finite set I [6, Section 3.4.1]. This condition may be equivalently stated
in terms of images of open sets through them map X’ — Ran(X) [13, Definition 5.5.1.2],
and once a metric has been chosen on X, is equivalent to the Hausdorff distance on subsets
of X [13, Remark 5.5.1.5].

Let M be a metric space with metric d. For a positive integer n, write Conf,, (M) and
Rang,, (M) for the subspaces of Ran(M) with elements exactly of size n and at most size n,
respectively. In the former case, Conf, (M) is called the unordered configuration space of n
points.

Recall the Hausdorff distance between P, Q € Ran(M) is defined as

dy (P, Q) := max {maxmind(p,q),maxmind(p,q)} (D)
peP qeQ q€Q peP

= min{r 10 S Upep B(p.1), P S U ep B(q,r)].

We write B for the open ball in M and B for the closed ball in M. The Hausdorff distance
is an upper bound for a coarser metric dy; on M, as

du(X,Y):= inf {d(x,y)} <du(X.,Y), ()
xeX,yeY
for any X, Y € M. On the product space Ran(M) x R3( we use the sup-norm
doo((P, 1), (Q,5)) := max{dy (P, Q), [r —s|}. 3)

Definition 1 Given a pair (P, r) € Ran(M) x R, the Cech complex on P with Ladius ris
the simplicial complex with vertices P, and P’ C P a simplex whenever () pep B(p,r) #

(. This assignment C: Ran(M) x R>¢ — SC is called the Cech map.

Some of the spaces we are interested in are semialgebraic. Recall that a set in RV is
semialgebraic if it can be expressed as a finite union of sets of the form

xeRY : 1) =0,..., fu,(x) =0,81(x) > 0,..., gm,(x) > 0},

I All simplicial complexes will be abstract and finite unless otherwise noted, so we drop the adjectives.
2Used in the sense that all other topologies satisfying the condition contain at least the same open sets as the
given topology.
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for polynomial functions f;, gi: RY — R.
2.2 Stratifications
Let (A, <) be a poset, or simply A when < is clear from context.

Example 1 The set of simplices of a simplicial complex C forms a poset under inclusion.
This is called the face poset of C.

Remark 1 A poset (A, <) may be interpreted as a category, whose objects are A and
Hom(a, b) = x if a < b and ¢ otherwise. A poset may also be interpreted as a topological
space endowed with the Alexandrov topology, whose basis contains open sets of the form
U, ={beA :a<b}foralla e A.

Let X be a topological space. Our definitions follow [13, Appendix A.5] and [4, Section 2].
Definition 2 An A-stratification of X is a continuous map f: X — A.

When A is clear from context, f is simply called a stratification, and X is called A-
stratified by f, or just A-stratified, or even stratified. We write X, :={x € X : f(x) = a}
for the strata of X and A~, := {b € A : b > a} for the subposet based at a particular
elementa € A.

Given two stratifications f: X — A and g: Y — B, a stratified map from f to g is a
pair of continuous maps ¢o: X — Y and ¢;: A — B such that g o 9o = ¢1 o f. Such a
stratified map is a homeomorphism, embedding, etc. whenever ¢ and ¢y|x, have the same
adjective, for every a € A.

Definition 3 Let X be a topological space. The open cone of X is C(X) = (X x[0, 1))U{x},
with U € C(X) open whenever

- UN(X x[0,1))is open, and
- X x(0,8) CUforsomee > 0,if x € U.

If X is compact and Hausdorff, C(X) = X x [0, 1)/(X x {0}).

When X is (A, <)-stratified by f, C(X) is naturally (A’, <)-stratified by an induced
map f’, where A’ := AU {e} and e < a forall a € A. The stratifying map f': C(X) - A’
is given by f/(x,t) = f(x) forallz € (0, 1), and f'(x) = e.

Definition 4 Let f: X — A be an A-stratification of X. Then X is conically stratified at
x € X by f if there exist

— atopological space Z,
— an A. y(y-stratified topological space L, and
— an stratified map Z x C(L) < X that is an open embedding whose image contains x.

The space X is conically stratified by f if it is conically stratified at every x € X by f, in
which case we call f a conical stratification of X.

The product Z x C(L) is canonically stratified by projection to the cone factor, that is,
by the map (z, ¢) — g(c) for g a stratification of C(L).
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Example 2 In Fig. 1, the spaces C», S», S3 are conically stratified, while Cy, C3, S1 are not.
The spaces C, S fail to be conically stratified at every point on the equator, while C3 fails
to be conically stratified at the complex number 1 (see Example 3).

3 Supporting Results

In this section we develop ideas that support the main statements of Section 4. First we
explore the implications for conical stratifications.

3.1 Conical Stratifications

An A-stratification of X satisfies the frontier condition if (X, \ X,) N X} # # implies
Xp € X, for every a,b € A. See Fig. 1 for examples of spaces satisfying the frontier
condition.

Lemma 1 Ler f be an A-stratification of a topological space X whose strata are path-
connected. If f is a conical stratification, then f satisfies the frontier condition.

Proof Let a,b € A. Since X is conically stratified at x € Xy, there is a stratified open
embedding ¢: Z x C(L) — X, as in Definition 4, for some A- j-stratified space L.

First note that L does not depend on x, as the image of ¢ contains an open neighborhood
U, C X of x, hence every element in U, N X}, = ¢(Z X %) has the same associated L (up to
a stratified homeomorphism). Indeed, suppose that x” € X}, exists with an open embedding
@xt Zy x C(Ly) and L # L. Given a path y: I — X, from x to x’, letting L, () be
the A. y(y () -stratified space guaranteed to exist by Definition 4, at ¢’ = sup,¢;{L«) =
LV s <t} we will arrive at a contradiction to the previous observation.

Next, suppose that (X, \ Xa) N Xp # @, and let x € (X, \ Xo) N Xp.

Given the stratified cone g: C(L) — Ay} from the embedding g, it follows that b < a,
since every open neighborhood of x in X intersects X,. Hence C(L), < C(L),, as the
stratum C (L), of the cone point b is adjacent to all other strata of the cone, and a is in the

: | /\ ’ N i

Fig. 1 Three stratifications of the circle and the sphere, with higher vertical position indicating higher order
in the poset. The spaces C; and C; are great circles through the poles of S| and S5, respectively. See Examples
2, 3, 4 for observations about these stratifications
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image of g by assumption. Hence Z x C(L), € Z x C(L),, both viewed as subsets of
Z x C(L). By continuity of the embedding ¢, it follows that

0(Z x C(Ly) € ¢ (Z % CL) € ¢(Z x CD)a). )

Since ¢(Z x C(L)p) S Xp, Eq. 4 means that x has an open neighborhood U, C X}, such
that U, € X,,.

Finally, since L is the same for all elements of X}, a must be in the image of the associ-
ated cone map, and this is enough to conclude that every element of X}, has a neighborhood
within the closure of X,. Hence X;, C X,,. O

The converse of Lemma 1 is false, as Example 3 shows.

Example 3 Consider the circle C3 from Fig. 1, embedded as the unit circle in the com-
plex numbers C. This circle is stratified by the poset (A, <), where A = {x,x2,...} U
{¥1, y2, ...}, withrelations x; < y; and x| < y; forall j € Z.(. To ensure continuity of
the stratifying map at the complex number 1, we add the relations x| < x; forall j € Z>>.
The stratifying map f: C3 — A is given by

x; if0 =2n/j,
yj if0 e Qn/(j+1),27/j).

That is, the black dot in C3 in Fig. 1 corresponds to x1, each red dot corresponds to an x;>2,
and each blue interval corresponds to a y;.

The frontier condition is satisfied trivially for strata (C3), ;> as they are already closed in
C3. For (C3)y;, note the closure of the open arc (C3)y; = (€9 1 0en/(j+1),21/)))
contains exactly (C3) x; = {eiz” 2 }and (C3), = {e! 2n/(j+D }, hence the frontier condition
is also satisfied here.

However, C3 is not conically stratified at 1 = €2™ Indeed, following Definition 4, we
note that Z must be {x}, as {1} = (C3)y, is 0-dimensional. So if C3 were conically stratified
at 1, there must be some open neighborhood of 1 that is the homeomorphic image of a cone
C(L) = Z x C(L). To have an open embedding C(L) < Csz, the cone C(L) must have
strata that correspond to strata in the open neighborhood of 1. Since every neighborhood of
1 contains elements of the form e'? where 6 € (0, ¢), for every ¢ > 0, such a construction
would imply that there are distinct O-dimensional strata in C (L) corresponding to (C3)y, =
{€/?7/%}, for every integer £ > 2m/e. This is a contradiction, as the only 0O-dimensional
stratum in C (L) is the cone point.

ey = {

An A-stratification of X is compatible with, or refines a B-stratification of X if for every
a € Aand b € B, either X, € X, or X, N X, = . Equivalently, if for every b € B there
is a subset A’ € A such that X, = (J,c 4 Xa-

Example 4 In Fig. 1, C3 is compatible with C,, and C; is compatible with C. Similarly, S3
is compatible with S,, and S, is compatible with Sj.

A stratification is semialgebraic if all its strata are semialgebraic sets.

Lemma 2 Let f be a semialgebraic stratification of a closed semialgebraic set X. Then
there exists a conical semialgebraic stratification of X compatible with f.
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Proof Let f: X — A be as in the statement. By [15, Theorem I1.4.2], there exists a
simplicial complex K whose geometric realization |K | is homeomorphic to X, and a strati-
fication g: |K| — (S(K), €) that refines f. We recall briefly that the geometric realization
|K| is a topological space embedded in Euclidean space, with n-simplices represented by
n-dimensional subspaces.

This stratification of the geometric realization of a simplicial complex [13, Definition
A.6.7] is the canonical one, identifying interiors of simplices with their corresponding
simplices in the face poset (S(K), €). This map is conical by [13, Proposition A.6.8]. [

The simplicial complex K is unique (up to simplicial complex isomorphism) only if X
is bounded [15, Remark I1.4.3]. Next we develop a new structure on simplicial complexes.

3.2 Simplicial Complexes

For C,C’ € SC, a simplicial map is a function V(C) — V(C’) such that the induced
map on S(C) has image in S(C’). In other words, a simplicial map sends simplices of C to
simplices of C’.

For C € SC, we denote by [C] the set of simplicial complexes isomorphic to C. In a
similar fashion, we write [SC] for the set of isomorphism classes of simplicial complexes.

Definition 5 Let 3= be the relation on [SC] given by [C] = [C’] whenever there is a
simplicial map C — C’ that is surjective on vertices.

Figure 2 gives an example of =, with order decreasing from left to right. This relation is
well-defined, irrespective of the choice of class representatives.

Lemma 3 The relation = defines a partial order on [SC].

Proof Let [C], [C'], [C"] € [SC]. For reflexivity, take any two representatives C, C3 of
[C]. Since C1 = C, there is a bijection C; — C, in SC, which is surjective on vertices.

For anti-symmetry, suppose that [C] = [C'] and [C’] = [C]. If |V (C)| > |V (C’)|, then
we cannot have [C'] 3= [C], and if |V (C")| > |V (C)|, we cannot have [C] 3= [C’]. Hence
we must have |V (C)| = |V(C")|, and so any map C — C’ inducing [C] 3= [C’] must be
injective on vertices, and so injective on simplices. Similarly, the same properties hold any
map C’ — C inducing [C’] = [C]. Hence we have a map C — C’ that is bijective on
simplices, so C = C’, and [C] = [C'].

For transitivity, suppose that [C] = [C’] and [C’] %= [C”]. Then there exists a simplicial
map C — C' thatis surjective on V (C”), as well a simplicial map C’ — C” that is surjective
on V(C”). The composition of these two simplicial maps is a simplicial map C — C”, and

c Yy Yy
a—x
b x identity
b d _— > z —_— T z
a e—w on vertices
f=w
e f w w
C D E

Fig.2 An example of the relations C > D and D = E
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as both were individually surjective on vertices, the composition must also be surjective on
vertices. O

The same arguments show that >= defines a preorder on SC. Figure 3 shows the Hasse
diagram of ([SC], =) for all simplicial complexes up to 3 vertices.

Remark 2 The assumption that all simplicial complexes in SC are finite is key to proving
Lemma 3, as anti-symmetry needs to compare sizes of sets. Figure 4 gives one such example
where anti-symmetry is violated in the non-finite case.

4 Main Results

There is a natural point-counting map Ran(M) — Z.o, which is a stratification by
[13, Remark 5.5.1.10], and is conical on Rang, (M) by [4, Proposition 3.7.5]. The goal of
this section is to generalize the Z- o-stratification of Ran(M) to an [SC]-stratification of
Ran(M) x Rxo.

4.1 Stratifying Ran(M) x R>¢

We consider the partially ordered set ([SC], =) as a topological space with the Alexandrov
topology. Let [C]: Ran(M) x R>o — [SC] be the composition of C and the projection to
[SC].

Theorem 1 The Cech map [é ] is continuous.

Proof A basis for the Alexandrov topology on [SC] consists of the sets Ujc; = {[C'] €
[SC] : [C] 5= [C])} based at [C] € [SC], so we show the preimage of any such set is open

in Ran(M) x Rx¢. Take any (P, r) € [Cv']_l (Uicy), with P = {Py, ..., P}, which we will
show has an open neighborhood contained in [é 17! (Uicy). Forevery P/ C P, let

¢s(P') == M pep B(p, inf{r (N ycp B/, 1) #0) S M, 3)
ér(P',ry :=r—dy(P',és(P))eR (6)

VA WARRY\
C J

!

Fig.3 Relations in the poset ([SC], =), with arrows indicating simplicial maps and decreasing partial order.
Horizontal simplicial maps are injective, vertical maps are not. Compare with Fig. 7
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ki

Fig.4 Two infinite simplicial complexes C, C’ with maps C' — C (solid lines) and C — C’ (dashed lines)
described on vertices. Both maps are surjective on vertices, but the simplicial complexes are not isomorphic

C

be the Cech ser® of P’ and Cech radius of P’ at r, respectively.* The Cech set is the smallest
non-empty intersection of the closed balls on M of increasing radius around P’. The inf is
necessary when | P’| = 1, otherwise the minimum always exists, as the balls are closed and
M is connected. The Cech radius is positive if and only if the intersection () pep’ B(p,r)
contains an open set of M, negative when the intersection is empty, and 0 otherwise.

Case 1: For every P’ C P with |P'| > 1, ¢r(P’,r) # 0. Let Boo((P, 1), F/4) be the
open ball in the sup-norm on the product Ran(M) x R>¢ around (P, r) of radius 7 /4, where
7 is the smallest of the two values

= min_d(P;, P)), 7
ri <<k (P; j) @)
r = min 2|1¢r (P, r)l. (8)

P'CP, |P'|>1

Briefly, having 7 < r guarantees that points will not merge in the open ball, and having
7 < rp guarantees that simplices among the P; are neither lost nor gained in the open ball.
Figure 5 illustrates these roles of r| and r».

Let (Q,s) € Boo((P,r),7/4). Since 7 < ry, we have that dg (P, Q) < F/4, which
implies that Q C Uf‘: | B(P;,7/4). Similarly, the B(P;, 7 /4) are disjoint. Also, for every
1 <i < k,note that Q N B(P;,7/4) # 0, as

dy({Pi}, Q) = ‘rlréigd(Pi, q) <du(P, Q) <dw((P,r),(Q,5)) <r/4 €))

In other words, there is a well-defined and surjective map ¢: Q — P for which ¢(¢) = P,
whenever g € B(P;, 7 /4).

Next, we claim ¢ is a simplicial map. Take 9’ € Q and suppose that é(Q’, s) is a
(1Q'| = 1)-simplex. Let P’ = {P{, ..., P;} € P be such that Q" C Ule B(P/,7/4) and
Q N B(P/,F/4) # @, for 1 < i < L. Suppose, for contradiction, that C’(P/, r) is not a
(IP’| — 1)-simplex, or equivalently, that ¢r(P’, r) < 0. Then

0= cr(P,r)+7/2 (by Eq. 8 and that 7 < 77)
=r—dy(P, (P +7/2 (by definition of Cech radius)
> r—dy(Q',¢s(Q)) —F/4+7/2 (since dy (P, Q) < 7/4)
>s—|s—rl—du(Q' és(Q)) +7/4
> cr(Q',s) —F/A+7/4 (since |s — 7| < 7/4)
= cr(Q',s),

3This can be thought of as the circumcenter of some subset of P, whose size is restricted by dim(M) and
whose choice is restricted by its convex hull.

4These two constructions are related by the equation ¢r(P’, dy (P, &s(P))) = 0.
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Fig.5 A finite subset of M and open balls in M around its elements

contradicting the assumptlon that ér(Q’, s) > 0, as C(Q s) was assumed tobea (|Q'|—1)-
simplex. Hence C(P’ r) is a (|P’| — 1)-simplex, and so the image of C(Q s) under ¢ is
the simplex cp, r). Since simplices get taken to simplices, the map ¢: Q — P extends
toa simplicial map c (Q,s) —> C (P, r) that is SUI‘_]CCUVG on vertices. That is, [C (Q,5)] =
[C (P r)] = [C], and so Bs((P,r),7/4) C [C] l(U[c]) meaning that [C] 1(U D is
open.

Case 2: There is some P’ € P with |P'| > 1 and ¢r(P’,r) = 0. Then r, = 0 from
Eq. 8, so let

ry = min 2|1¢r (P, 1), (10)
P'CP, ¢r(P,r)#0

and let 7 be the smallest of the two values r; and ré. As in Case 1, we claim the open
neighborhood B ((P, 1), 7 /4) of (P, r) is contained within [C]_1 (Ucy)- The proof of this
claim proceeds as in the first case: the only place that r, was used was to state that 0 >
¢r(P’, r) + 7 /2, in showing that C(P',r)is indeed a (|P'| — 1)-simplex. If ¢r(P’,r) =0,
then we already have this conclusion, and it is unnecessary to get to the contradiction. That
is, ¢ still extends to a simplicial map, and [C]_] (Uycy) is open in this case as well. O

It follows that [C] is a [SC]-stratification of Ran(M) x R>(. Moreover, [C] is a refine-
ment of the point-counting stratification Ran(M) x Z-.q, by viewing Z-q as a subposet of
discrete simplicial complexes of [SC] by the map n — ({1, ..., n}, {{1}, ..., {n}}).

However, Lemma 1 implies that [C ] is not a conical stratification.

Example 5 Consider the space of at most 2 points Rang,(/) on the unit interval I, and
the space X = Rangy(I) x Ry, as shown in Fig. 6. Take x = ({p1, p2},r) € X, with

p1=0,p= % and r = % For y = ({p1, p2}, r’ < r), note that
a= ++ =[Cl) = [Clx) = o= =b. (11

Moreover, y is in the closure of of both X; and X, that is, (Xi,I\ X )NXy # @owever, for
z=({p1, p2}, " > r) we see that z € X, and z ¢ X,, meaning that X, € X,. Hence [C]
does not satisfy the frontier condition, and so by Lemma 1 cannot be a conical stratification.

One solution is to make a new stratum for points similar to x in Example 5. That is, for

every [C] € [SC], declare a new stratum Sic] = {(P,r) € Ran(M) x Ry : [C](P, r) =
[C],¢r(P,r) =0}
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|

Fig.6 The stratified space Rangs (/) x R0 decomposed into its strata (right)

Definition 6 A frontier simplicial complex C is defined by its vertices, simplices, and fron-
tier simplices, that is, a triple of sets (V(C), S(C), F(C)) with (V(C), S(C)) a simplicial
complex and F(C) € S(C) closed under taking supersets.

By “closed under taking supersets” we mean o € F(C) implies v € F(C) whenever
o C tand T € S(C). A map of frontier simplicial complexes (V, S, F) — (V', 8", F')
is defined analogously to a map of simplicial complexes. That is, we require it to be a
map on the vertices V. — V’ which must induce a map on simplices S — S’ and on
frontier simplices F — F’. Figure 7 shows maps among all non-empty frontier simplicial
complexes with at most 3 vertices.

Given a pair (P,r) € Ran(M) x R, augmenting C’(P, r) with the set F such that
P’ € F whenever P’ € S(C(P, r)) and &r(P’, r) = 0 defines a frontier simplicial complex.
This follows as the Cech radius is 0 when the intersection of closed r-balls around the
elements of P is non-empty but does not contain an open set.

Remark 3 Let FSC be the set of frontier simplicial complexes, for which we say
(V,S,F)=C=C' = (V', S, F) whenever (V, §) = (V’, §’), and the isomorphism on
vertices induces an isomorphism F = F’. It follows that:

ooce il NN A AN A
N

.'.; .'.-‘
‘: ‘e — ‘ o
1

i.
.".'....":-. — [."s. — A

0O + o
Fig. 7 Enrichment of Fig. 3 by frontier simplices, with arrows indicating simplicial maps and decreasing

partial order in [FSC]. Frontier simplices are drawn as circles, dotted edges, hatched faces. Frontier simplicial
complexes not in the image of the Cech map to [FSC] from Observation 3 are not shown
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#(0,0,1)
(0,1) (0,0,1)

(1,0,0)
(1,0) (0,1,0) o(0,1,0)¢

Fig.8 Geometric realizations |A'| (left), | A?| (center), and their images as entrance paths y, o, respectively,
in a stratified square (right)

—  The Cech map factors as Ran(M) x R>¢ — FSC — SC, first following the construc-
tion above, then forgetting frontier simplices.

— The set [FSC] := FSC/x has a partial order by letting [C] = [C "] whenever there is a
simplicial map C — C’ that is surjective on vertices and injective on frontier simplices.

—  The induced map Ran(M) x R>o — [FSC] is continuous.

The last statement follows as the proof of Theorem 1 was split up into two cases where the
Cech radius is and is not zero, so all that remains is to keep track of the frontier simplices
throughout the proof.

Conjecture I The induced map Ran(M) x R>o — [FSC] is a conical stratification.

Remark 4 We mention two observations to support Conjecture 1.

— This stratification does not immediately violate the frontier condition on path-
connected components of strata like [é] does.

—  Each 1-dimensional frontier simplex of C € [FSC] decreases the dimension of an open
neighborhood in the stratum of C, relative to C € [SC].

The second statement implies Example 5 cannot be immediately used with this stratifica-
tion. However, the statement only seems to hold up to some relationship between |V (C)|
and the dimension of an open neighborhood of V(C) C M.

For a clearer result, we restrict to semialgebraic sets and fix an upper bound n € Z.o. We
also employ some results about the algebra of semialgebraic sets, specifically that products
[15, 1.2.9.1], quotients [9, Corollary 1.5], sub-semialgebraic sets [8, Theorem 9.1.6], and
images via semlalgebralc maps [15,1.2.9.11] are all sermalgebralc

The function [C ] now refers to the restriction of [C] to Rang, (M) x Rx.

Theorem 2 If M is semialgebraic, there exists a conical semialgebraic stratification of
Rang, (M) x Ry compatible with [C].

Proof Since M is semialgebraic, [15, 1.2.9.1] gives that M" is semialgebraic. By describing
Rang, (M) as a quotient of M" by semialgebraic equivalence relations, [9, Corollary 1.5]
gives that Rang, (M) is semialgebraic. Again by [15,1.2.9.1] we get that Rang, (M) x R>q
is semialgebraic.

Now we show the strata are semialgebraic sets. Consider the set [CV‘]‘1 (ICD) <
Rang,, (M) x R0, which is defined by functions which use the distance from a point (P, r)
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to its Cech set &s(P). The Cech set, from Eq. 5, is a semialgebraic set, as it is the intersection
of balls, and the function that measures distance to a semialgebraic set is also semialgebraic,
by [15, 1.2.9.11]. Finally, a subset of a semialgebraic set defined by semialgebraic functions
on the first set is itself semialgebraic in RV, by [8, Theorem 9.1.6]. Hence [Cv']’l ([C) is
semialgebraic, so [Clisa semialgebraic stratification of Rang, (M) xR>. Apply Lemma 2
to get a conical semialgebraic stratification of Rang, (M) x R compatible with [C’]. O

4.2 Stratifying Paths

For X, a topological space, recall Sing(X) is the simplicial set of continuous maps |A¥| —
X, where AF is the standard k-simplex. Let A be a poset and f: X — A a stratification.

Definition 7 An entrance path in X is a continuous map o : |A¥| — X for which there
exists a chainag < --- < ag in A such that f(o(0,...,0,¢4,...,%)) = ax—; and t; # O,
for all i.

Contrast this with the more common definition of an exit path, as in [18], which is
the same, but with f (o (t9,...,%,0,...,0)) = a; and t; # O, for all i. The choice of
“entrance” instead of “entry” comes from interpreting “exit” as a noun rather than a verb.
Some examples of entrance paths are given in Fig. 8.

The subsimplicial set of Sing(X) of all entrance paths is denoted Sing 4 (X). In this con-
text, a very roundabout way of defining the Cech map C from Definition 1 would be as an
assignment

Cechy: Sing(sc)(Ran(M) x Rx>0)o — N(SCcat)o 12)
of 0-simplices, where N (—) is the nerve. This description is useful, however, when general-
izing from points (0-simplices) to paths (1-simplices), in which case we only have to change
the subscripts from O to 1.

Construction 1 For an entrance path y : |A'| — Ran(M) x R, we have
[CIy (0, 1) =C, [Clyt, 1=0))=C'Vie 1]

and C’ = C. Since [C‘](y(t, 1 — 1)) is constant for all + € (0, 1], the image of y is in
Confi (M) x Rx¢ forall ¢ € (0, 1] and k = |V(C’)|. That is, there are paths y; : Al > M
fori =1, ..., k, unique up to reindexing, such that the diagram

Ran(M) x Rxg

— T

Vi Vk (13)

commutes. The y; define a map from the Verticgs of C (y(1,0)) to C (v (0, 1)), which in turn
defines a simplicial map from C(y (1, 0)) to C(y (0, 1)) that is surjective on vertices. Call
this simplicial map

Cechi(y) € Homscear (C(y (1, 0)), C(y (0, 1)). (14)
Note that two different y, ’ maps with the same endpoints may not induce the same sim-
plicial map Cech (), Cech;(y’). That is, monodromy information is lost in the associated

simplicial map, as demonstrated in Fig. 9.

Remark 5 Recall from Section 3.2 that a simplicial map C — C’ is a map V(C) —
V(C") which, when applied to elements of S(C), gives elements of S(C’). The claim in
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T T 175

71 72 73 73

Fig. 9 The class [é](yi (t,1 —1t)) fori = 1,2 is constant for all ¢, and for i = 3,4 is constant only for
t € (0, 1]. The simplicial maps associated to y; and y» are both the identity, while the map associated to y3
is different from the one associated to y4 (and neither are the identity)

Construction 1 that the y; satisfy the conditions of a simplicial map follows by several
observations:

— Any y;(t, 1 — t) may coincide only for t = 0, that is, at the end of the path.

— An intersection ) B(yi(t,1 —1), 1) that is non-empty for = 1 must be non-empty
for all t € (0, 1], else y would not be an entrance path.

—  The only possibility of (; B(y;(t,1 —t), r;) being non-empty for all ¢ € (0, 1] and
empty for r = 0 is if rp = 0, in which case all the y; (0, 1) coincide, which describes a
surjective map from a simplex to a single vertex.

—  Since the balls B are closed, it is impossible to preserve simplicial complex isomor-
phism class by making one intersection empty at the same instant ¢ € (0, 1) as another
is made non-empty.

Here we have used r; for the R>( component of y (¢, 1 —1).

Considering C as Cechy and with the construction above of Cech;, we are tempted to
generalize the result further.

Conjecture 2 Cechy and Cech; extend to a map Cech: Singjscj(Ran(M) x Rxg) —
N (SCcat) of simplicial sets.

Examples abound of C, C’ € SC with different simplicial maps C — C’ that are sur-
jective on vertices, but it is not immediate that it is possible to construct an entrance path
into some [SC]-stratified Ran(M) x R joining such simplicial maps. That is, we do not
immediately find counterexamples to Conjecture 2, so we hope it is true.

We conclude this section with some observations about paths.

Remark 6 Lety : |Al] - Ran(M) x Ry beapathand y = [é] oy.

1. The subposet im(y) C [SC] corresponds to a zigzag of simplicial complexes and
simplicial maps.

2. If y is contained in Conf,(M) and im(y) is totally ordered by =, then im(y) is a
filtration of a simplicial complex on n points.

3. Ify(l1—t,t)=(P,t/(1 —1)),then y corresponds to the Cech filtration of P C M.

These observations describe Ran(M) x R as a topological space of simplicial complex
filtrations, as illustrated in Fig. 10.
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Cy(t1)) —> C(t2)) —> C(ts)) —> Cly(ta)) —> C(v(ts))

Fig. 10 A path in Ran(M) x Ry and its corresponding zigzag in SC. Restricting to [#>, #4] we have part of
the Cech filtration on the Ran(M) component of y (t2)

5 Discussion

We have presented a thorough description of the space Ran(M) x R, motivated by its
interpretation as the space of all simplicial complexes on a metric space M. Our description
gives a stratification [C] based on the Cech construction of a simplicial complex on M. This
stratification may be refined into a structurally cleaner but more opaque conical stratifica-
tion (Theorem 2), as well as a combinatorially motivated stratification, though it is unclear
if the latter is conical (Remark 3). We use [é] to associate paths with simplicial maps
in Section 4.2, relating them to existing constructions in persistent homology (Remark 6)
and conjecturing that the association extends to continuous maps of higher-dimensional
simplices (Conjecture 2).
This approach prompts questions about the new concepts we introduced:

—  What does the poset of frontier simplicial complexes look like?
— Is the [FSC]-stratification of Ran(M) x R conical?

We are also motivated to push further the inquiry into interpreting paths:

—  Does the Cech map and its generalization Cech; to paths extend to higher-dimensional
simplices?

The choice of working with isomorphism classes of simplicial complexes, in which the
vertices have no order, and simplicial sets (for the entrance paths and the nerve), in which
the O-simplices are ordered, does not make our work easier. An alternative approach would
have been to take the nerve of the face poset of a simplicial complex, which is a simplicial
set, instead of the simplicial complex itself. Part of the appeal of using isomorphism classes
is that less information is remembered, hence it is not immediate that using simplicial sets
would help.
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