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Abstract

In Chajda and Linger (Math. Bohem. 143, 89-97, 2018) the concept of relative pseudo-
complementation was extended to posets. We introduce the concept of a congruence in
a relatively pseudocomplemented poset within the framework of Hilbert algebras and we
study under which conditions the quotient structure is a relatively pseudocomplemented
poset again. This problem is solved e.g. for finite or linearly ordered posets. We charac-
terize relative pseudocomplementation by means of so-called L-identities. We investigate
the category of bounded relatively pseudocomplemented posets. Finally, we derive certain
quadruples which characterize bounded Hilbert algebras and bounded relatively pseu-
docomplemented posets up to isomorphism using Glivenko equivalence and implicative
semilattice envelope of Hilbert algebras.

Keywords Relative pseudocomplementation - Poset - Hilbert algebra - Congruence -
Convex poset - Dedekind-MacNeille completion - Glivenko equivalence - Category

Support of the research of all authors by the Austrian Science Fund (FWF), project I 1923-N25, and the
Czech Science Foundation (GACR), project 15-34697L, as well as support of the research of the first
two authors by OAD, project CZ 02/2019, and support of the research of the first author by IGA,
project PfF 2019 015, is gratefully acknowledged.

P4 Jan Paseka
paseka@math.muni.cz

Ivan Chajda
ivan.chajda@upol.cz

Helmut Langer
helmut.laenger @tuwien.ac.at

Faculty of Science, Department of Algebra and Geometry, Palacky University Olomouc,
17. listopadu 12, 771 46, Olomouc, Czech Republic

Faculty of Mathematics and Geoinformation, Institute of Discrete Mathematics and Geometry,
TU Wien, Wiedner Hauptstrae 8-10, 1040, Vienna, Austria

Faculty of Science, Department of Mathematics and Statistics, Masaryk University, Kotlarska 2,
611 37, Brno, Czech Republic

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11083-019-09488-1&domain=pdf
http://orcid.org/0000-0001-6658-6647
mailto: paseka@math.muni.cz
mailto: ivan.chajda@upol.cz
mailto: helmut.laenger@tuwien.ac.at

2 Order (2020) 37:1-29

1 Introduction

The origin of pseudocomplemented and relatively pseudocomplemented lattices and semi-
lattices can be found in papers quoted in the references in the monographs by H.B. Curry
[17, 18] and the history of this topic goes back to Skolem as noted in [18], where rela-
tively pseudocomplemented lattices are investigated under the name “implication lattices”.
Some part of the theory is contained in the paper [1] by R. Balbes. As to pseudocom-
plemented lattices, they have been investigated formerly by V. Glivenko and M.H. Stone,
pseudocomplemented semilattices were introduced and studied by O. Frink [21].

The early work on relative pseudocomplementation in posets was initiated by T. Katrinidk
[23, 24]. We cannot omit the paper [33] by S. Rudeanu where he proves that every relatively
pseudocomplemented poset is a Hilbert algebra w.r.t. relative pseudocomplementation.

The concept of relative pseudocomplementation plays a crucial role in intuitionistic logic
where it models logical implication. Due to this fact, relative pseudocomplementation was
investigated by several authors, e.g. by P. Kohler [25] and W. C. Nemitz [29] in their pio-
neering works. It turns out that relative pseudocomplementation can be extended to posets.
A general approach in this direction was already presented by the first two authors in [7, 10].
An alternative approach was presented by the first author in [6]. The aims of the present
paper are as follows:

— to get conditions on a congruence in a relatively pseudocomplemented poset such that
the quotient structure of the corresponding Hilbert algebra induced by a congruence is a
relatively pseudocomplemented poset again,

— to characterize relative pseudocomplementation by means of so-called L-identities,

— although the class of relatively pseudocomplemented posets does not form a variety, it
forms a category whose properties are investigated,

— to introduce the so-called characterizing quadruple which enables us to reconstruct the
given bounded relatively pseudocomplemented poset.

At first we recall some basic concepts.
Let A = (A, <) be anon-empty poset and a, b, ¢ € A. For every subset B of A we define

UB) :={yeA|x <yforall x € B} and
L(B) :={xeA|x<yforally € B}.

Then (U, L) is the Galois correspondence induced by < and () L(B;) = L(|J B;) for any

iel iel
family B;, i € I, of subsets of A. If B = {a, b}, we will write le)rieﬂy L(a, b) gr U(a, b) for
L({a, b}) or U ({a, b}), respectively, and L(a) instead of L(a, a).

A subset of a poset A is up-directed if it is non-empty and every pair of elements has
an upper bound in the subset. A poset A is an up-directed-complete poset if each of its
up-directed subsets has a supremum.

If A has a least element O then an element b of A is called the pseudocomplement of a if
b is the greatest element x of (A, <) satisfying L(a, x) = {0}. In this case we denote b by
a*. The poset A is called pseudocomplemented (or a Boolean ordered set) if each element
a of A has a pseudocomplement (and a™* = a, respectively). We denote by B(A) the set
{x € A | x = x™} of Boolean elements.

Our study is based on extensively making use of results reached in Hilbert algebras by
several authors. Hence, we repeat the basic definitions and concepts. We will use, instead of
the classical operation — the operation * since our main motivation comes from relatively
pseudocomplemented posets.
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A Hilbert algebra A = (A, %, 1) (see [19, 20, 32-34]) may be treated as a poset (A, <)
with the greatest element 1 equipped with a binary operation * such that

x*y=1ifandonlyifx <y,

x<yxx, x*x(yxz2)<@x*xy)*x(xx*xz) .

A will be called bounded if it has a smallest element 0O; in this case, for x € A we put
x*i=x*0.

The class H (Ho) of all (bounded) Hilbert algebras considered as algebras of the form
(A, *, 1) ((A, %, 1, 0), respectively) is equationally definable.

Note that a homomorphism of Hilbert algebras is exactly a mapping between Hilbert
algebras preserving operations * and 1 (and hence preserving also order).

Since any Boolean algebra is a bounded Hilbert algebra we will further use the notation
(B, %, 1, 0) for Boolean algebras as well.

An element ¢ of a poset A = (A, <) is called the relative pseudocomplement of a with
respect to b, in symbols ¢ = a * b ([10]), if ¢ is the greatest element x of A satisfying
L(a,x) € L(b). If x % y exists for all x,y € A then the poset A is called relatively
pseudocomplemented and x is said to be a relative pseudocomplementation on A. Relatively
pseudocomplemented meet-semilattices are known also as implicative semilattices [18, 29],
or Brouwerian semilattices.

S. Rudeanu has shown in [33] that the class of all relatively pseudocomplemented posets
is a proper subclass of the class of all Hilbert algebras. Hence we may work further in the
context of Hilbert algebras.

Definition 1.1 Let (A, %, 1) be a Hilbert algebra. We say that (A, %, 1) is a relatively pseu-
docomplemented poset if a * b is the greatest element of the set {x € A | L(a,x) € L(b)}
foralla, b € A.

Let R (Ry) denote the class of all (bounded) relatively pseudocomplemented posets. A
homomorphism of (bounded) relatively pseudocomplemented posets is a homomorphism of
(bounded) Hilbert algebras.

Obviously, in the case when A is a meet-semilattice we have that L(a,x) € L(b) is
equivalent to a A x < b and hence the concept of relative pseudocomplement in posets is a
generalization of the corresponding concept for meet-semilattices introduced in [18].

Definition 1.2 An implicative semilattice is an algebra (A, A, *, 1) of type (2, 2, 0) such
that (A, A) is a meet-semilattice and (A, *, 1) is a relatively pseudocomplemented poset.

Let ZS (ZSy) denote the class of all (bounded) implicative semilattices. A homomor-
phism of (bounded) implicative semilattices is a homomorphism of (bounded) Hilbert
algebras that preserves finite meets.

We will write Uy for the forgetful functor from ZS to H. Fix A € H, a pair (G, ¢), where
G is an implicative semilattice and e is an injective homomorphism from A to Ur(G), is said
to be an implicative semilattice envelope of A if for every y € G there exists a finite subset
X C Asuchthaty = A e(X).

It is well known (see [5]) that there is a functor S from # to ZS such that, for any A € H,
we have an injective homomorphism e from A to Ur(S(A)) and (S(A), e) is an implicative
semilattice envelope of A. In what follows we will always assume that A € S(A), i.e., A
will be a Hilbert subalgebra of Ur(S(A)) and e an inclusion.
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The following theorem summarizes some properties from [5], of interest for the present
work:

Theorem 1.3 There exists a functor S: H — IS that maps every Hilbert algebra A to an
implicative semilattice S(A), and every homomorphism h: A — B of Hilbert algebras to
a homomorphism S(h): S(A) — S(B) of implicative semilattices such that S(h)(/\ X) =
A\ h(X) for any finite subset X C A. The functor S is a left adjoint to Ur.

Let A = (A, %, 1) be a Hilbert algebra. The compatibility relation C on Hilbert algebras
was introduced in [27]. We will use an equivalent definition from [14]: Elements a,b € A
are said to be compatible (in symbols, ab) if they have a lower bound ¢ such thata < b x c.
This lower bound c is necessarily a meet of elements a and b; we call also a meet arising in
this way compatible. A subset of A is a relative subsemilattice if it is closed under existing
compatible meets. To emphasize that the meet of a and b is compatible, it will be written
asa A b (see [15]). (A, *, 1) is an implicative semilattice if and only if all binary meets in
A exist and are compatible (see [28, Theorem 11]). If (G, ¢) is an implicative semilattice
envelope of A then e(a A b) = e(a) A e(b) for all a, b € A such that ab.

In what follows we will need several useful properties of Hilbert algebras which can be
found, e.g., in [3, 13, 19, 20, 28, 32].

Lemma 1.4 Let A = (A, x,1) be a Hilbert algebra. Then the following hold for all
xX,y,z €A

(1) (A, <) has a greatest element 1,
(i) x <yifandonlyifxxy =1,
(i) xxx=x*x1=1land1xx =x,
(iv) x*x((x*xy)xy) =1,
v) x <yimpliesy*z7 <xxz
(vi) x <yimplieszxx <zx*Yy,
(vii) ((xxy)xy)*y=xx*y,
(viii) x* (X *y) =x %Y,
(x) y*((x=xy)*xy) =1,
x) yx@xxy) =1
xi) x*x(yxz)=yx*(x*2),
Xil) x*x(y*z) = (x*y)*(x *2),
(xiil)  (x % ) * ((y % x) % x) = (¥ x) % ((x % y) *y).

2 Congruences

Let Con A denote the set of all congruences on a Hilbert algebra A. A congruence 6 on a
relatively pseudocomplemented poset A = (A, %, 1) will be the congruence on the Hilbert
algebra A. In particular, all results on congruences valid for Hilbert algebras will be also
true for relatively pseudocomplemented posets.

Note that an equivalence relation 6 on a poset (A, <) is called convex if a,b,c € A,
a < b < cand (a,c) € 0 together imply (a, b) € 6, i.e. if every class of 6 is a convex
subset of (A, <).

Now we can prove
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Theorem 2.1 Let A = (A, *, 1) be a Hilbert algebra and 6 € Con A. Then 6 is convex and
any congruence class of 0 is up-directed.

Proof Leta,b,c € A, 8 € Con(A) and assume that a < b < ¢ and (a,c) € 6. Since
a < b < ¢ we have from Lemma 1.4 (vi) that (c xa) *xa < (c xa) *xb < (¢ *a) * c. From
Lemma 1.4 (iv) we obtain that ¢ < (c*a)x*a which yields that (cxa)*xc < (cxa)*((cxa)*a).
Applying Lemma 1.4 (viii) we have (c*a) *((c*ka)*a) = (cxa)*a. Altogether (cxa)*a =
(cxa)*b.Hencea = 1xa = (a*xa)*xab(cxa)xa = (cxa)xbO(axa)xb=1xb=0>b
according to Lemma 1.4 (iii).

Finally a, b € A and a 6 b together imply (a * b) * bO(a xa) *xa = 1 xa = a and we
have a, b < (a * b) * b by Lemma 1.4 (iv) and (ix). O

Corollary 2.2 Let A = (A, *, 1) be a Hilbert algebra that is an up-directed-complete poset
and 6 € Con A. Then any congruence class of 0 has a greatest element.

If A is even a finite Hilbert algebra or a Hilbert algebra satisfying the Ascending Chain
Condition then for each 6 € Con A any congruence class of 0 has a greatest element.

For a Hilbert algebra A = (A, *, 1) and an equivalence relation 8 on A we define a
binary relation <’ on A/6 as follows:

[x]6 < [y]6 if and only if there exista € [x]0 and b € [y]6 witha x b0 1
(x,y € A). If 9 € Con A we define a binary operation *" on A /6 as follows:
[x10 %' [y10 = [x * y10

(x,y € A). Moreover,

[x]0 <’ [y]6 if and only if [x]0 *" [y]6 = [1]0

(x,y € A). From now on, we will write X or Xy instead of [x]6.

In general, if 6 is an equivalence relation on A then <’ need not be a partial order relation
on A/, it may be only a quasiorder, i.e., a reflexive and transitive binary relation as will
be shown later.

Recall that A. Diego [20] proved that Hilbert algebras form a variety which is locally
finite. From the fact that the quotient algebra (A/ 6, +', 15) of a Hilbert algebra (A, *, 1) is
again a Hilbert algebra and the induced relation <" on A/ 6 coincides with the natural order
on the quotient Hilbert algebra we have immediately:

(i) ifa <bthena <'b,
(i) (A/0, <) is aposet.

Lemllla 23 LetA = (A, *,1)bea Hilbfrt algebra, a,b € A and 6 € Con A and assume
a <’ b. Then there exists an element c of b with a < c.

Proof Put ¢ := (a * b) x b. Then
cec=@¥b)xb=1¥b=1xb=0>b

according to the definition of <’ and Lemma 1.4 (ii). Moreover, we have a < c also
according to Lemma 1.4 (iv). O
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IfA = (A,* 1) € Rand @ € ConA then (A/6, ¥, 1) is a Hilbert algebra satisfying
all identities of (A, *, 1). This does not mean that %’ is the relative pseudocomplementation
on(A/6, <.

Example 2.4 The poset A = (A, <) with the Hasse diagram

0

is relatively pseudocomplemented and the operation table of * looks as follows:

*0abcdl
oft11111
alb1b111
blaalll]l
cl0abldl
diQabcll
110abcdl

The equivalence relation 6 := {0}2 U {a, ¢}> U {b, d}* U {1}? on A has convex classes, but
0 ¢ ConAsincee.g. (b,d) € 0,but (b, 1) = (a*xb,axd) ¢ 0 and (A/ 0, <) is not a poset
since <’ is not antisymmetric. On the other hand, ® := {0, b}2 U{a,c,d, 1}2 € ConA.
Hence (A/®, +', 1o) is a Hilbert algebra and (A/®, <’) is a poset.

Remark 2.5 Unfortunately, contrary to the class of Hilbert algebras, the class of relatively
pseudocomplemented posets is not closed under substructures. Consider e.g. our relatively
pseudocomplemented poset A = (A, *, 1) from Example 2.4 and its subset S = {0, ¢, d, 1}.
It is immediate that S is closed under . However, this  is not a relative pseudocomplemen-
tation in S = (S, %, 1). Namely, the relative pseudocomplement of ¢ with respect to 0 in S
is d but d differs from 0 = ¢ % 0.

Lemma 2.6 Let A = (A, %, 1) be a Hilbert algebra. Then L(a) N L(a * b) C L(b) for all
a,beA.

Proof Supposenow z € A,z <aandz <a*b.Thenz*a = 1and z* (a *b) = 1. Using
(xii) and (iii) from Lemma 1.4, we have 1 = zx(axb) = (z*a)*(zxb) = 1x(zxb) = zx%b,
ie,z<b. O
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Proposition 2.7 Let A = (A, *,1) € R and (C, <) be a non-empty subchain of (A, <)
closed under x. Then C = (C, %, 1) € R.

Proof Leta,b,x € C.Thena+b e Cand 1 =axa € C. Since C is a Hilbert subalgebra
of A we have from Lemma 2.6 that Lc(a) N Le(axb) € Lc(b). Now, assume that Le(a) N
Lc(x) € Lc(b). We have to consider only the following two cases: If a < x thena < b,
ie,x <1=axb.If x <athenx < b < axb. Hence ax*b is the relative pseudocomplement
of a with respect to b in C. O

Proposition 2.8 Let A = (A,*,1) € R, (A, <) be a chain and 6 € ConA. Then
(A/6, <, +) € Randitis a chain.

Proof Evidently, (A/ 6, %, 1y) is a Hilbert algebra satisfying L /¢ (a * bg) N La;g(ag) <
LA/g(bg) for all a, b e A.

Suppose first that x,y € A. Then x < yory < x,ie., Xy < ¥y oryy < Xg. We
conclude that (A/ 6, <’) is a chain. Assume now that there are elements a, x, b € A such
that La,9(x9) N Lasg(ag) < LA/Q(EQ) in the chain (A/6, <’) and Xy >’ a * bg. Then
ay > by (otherwise we would have a * bg = 1p, a contradiction). If Xy >’ ap then xp >’
@y >' by, a contradiction with @y € L;9(Xg) N Lajo(@g) S Lajo(bp). Hence Xg <’ ap.
But then we have by <’ a % by <’ Xg, a contradiction with Xy € Lajo(xg) N Lajo(ag) <
La;g(bg). We conclude that (A/ 6, %, 19) € R. O

Note that an implicative filter F of a Hilbert algebra A is a non-empty subset of A
satisfying y, y % z € F implies z € F. Denote by Fil A the set of all implicative filters of A
and, for any subset B of A, put0p := {(x,y) € A> | x xy,y*x € B}.

Evidently, if ® € ConA then 6[1}¢ is an equivalence relation on A. It is easy to see
that Con A and Fil A form complete lattices with respect to set-inclusion and Fil A is a
Heyting algebra [19]. Then, by the results of Diego [19, 20] which are quoted in Rasiowa
[32, Theorem 3.1,Theorem 3.2], one has the following well-known theorem:

Theorem 2.9 Let A = (A, %, 1) be a Hilbert algebra. Then the mappings ® — 1¢ and
F + 0 are mutually inverse isomorphisms between the lattices (Con A, C) and (Fil A, C).

Now we will work with the useful concept of a nucleus. The definition is as follows:

Definition 2.10 Let A = (A, *, 1) be a Hilbert algebra. A nucleuson Aisamap j: A — A
such that for any a, b € A:

i) a < bimplies j(a) < j(b);
i) a=<ja);
i) (j o j)(a) = j(a);
) j(j(a) s j(b)) = j(ax*b).
Weput A; = {a € A | j(a) = a} and define a binary operation *; on A; by a *; b =
Jj(a*b).Clearly, A; is a subposet of A.

Notice that any closure operator on A which is an endomorphism of A is a nucleus on A.
The identity mapping id4 and the unit mapping 1: x > 1 are examples of nuclei.
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In what follows we will show the converse, i.e., that any nucleus is a closure endomor-
phism in the sense of [13, Theorem 4.1].

Proposition 2.11 Let A = (A, x, 1) be a Hilbert algebra and let j be a nucleus on A.
Then j: A — A is an endomorphism of A and x; is the restriction of * to Aj. Moreover,
the algebra Aj = (Aj, *;, 1) is a Hilbert algebra which is a subalgebra isomorphic to a
quotient algebra of A, and the quotient homomorphism j: A — A is a retract with respect
to the inclusion homomorphismi: A; — A.

Proof Leta,b € A. Clearly, j(a) * j(b) < j(j(a)* j(b)) = j(a *b). Let us show that
Jjlaxb) < j(a)* jb).

Note first that j(j(a*b) * (j(a)xD)) = j(j(j(a)*j(b)) *j(j(@)*jb))) = j() =1
We see that j((j(axb)*(j(a)*D))xb) = j(j(jlaxb)x(j(a)*b))*j(b)) = j(1xj(b)) =
J(j (D)) = j(b). Hence (j(a * b) * (j(a) * b)) x b < j(b).

Further, from Lemma 1.4 (iv), (xi) and (vi) and the above considerations we have:

Jlaxb) = (j(a *b) * (j(a) * b))x(j(a)xb) = j(a)x((j(a * b) * (j(a) * b)) * b) < j(@)*j(b).

Assume now a,b € Aj. Thena = j(a) and b = j(b). Hence a x b = j(a) * j(b) =
jla*xb)=j(a)*; j(b) =ax*;be Aj. Moreover, (j oi)(a) = j(a) = a. O

Theorem 2.12 Let A = (A, *, 1) be a Hilbert algebra.
(i) Let j be a nucleus on A. Then the relation 6; on A defined by
a®;b ifandonlyif j(a)= jb),

a,b € A, is a congruence on A. Moreover, any congruence class ag; has the greatest
element j(a).

(ii) Let 6 be a congruence on A such that any congruence class ag has a greatest element
ag. Then the mapping jo: A — A defined by

Jjo(a) =ap

foralla € A is anucleus on A.

Proof (i) Clearly, the relation 6; is an equivalence relation on A. We have to check that
a6jb,cOjdimpliesa*c6;bx*dandb < j(a). Letus compute:

jlaxe)=j@xj(©) = jb) jd) = jb*d).

Hence 6; is a congruence on A. Since j(a) = j(j(a)) we obtain that af; j(a). We
have that b < j(b) = j(a), i.e., j(a) is the greatest element of the congruence class
agp..

(i1) Cljearly, the mapping jy is idempotent. Let us show that jy is monotone and extensive.
Namely, suppose that a, b € A and a < b. We want to show that a < jg(a) < jg(b).
Since a 6 ay we have a < ay = jg(a). From a < b we have a * b = 1 which yields
that jg(a)y <’ jo(b)g. According to Lemma 2.3 there is an element ¢ of jy(b), with
jo(@) < c < jo(b). R R

Leta,b € A. Thena 6 ay,b 8 by anda*b 0 dg xbg. Hence a xb 0 jy(a) * jo (D).
We conclude that jg (jo(a) * jo(b)) = jo(a x b), i.e., jp is a nucleus.

O
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Let A = (A, *, 1) be a Hilbert algebra. We will denote by Conn A the set of congruences
6 on A such that any congruence class of 6 has a greatest element. Similarly, we will denote
by Nuc A the set of nuclei j on A. Both sets can be ordered, Conn A via inclusion of relations
and Nuc A as a subposet of A”.

From [13, 16] we know that the set Nuc A is closed under composition o and point-
wise defined meets. The algebra (Nuc A, o, A,id4, 1) is a bounded distributive lattice
[13, Corollary 3.5.], in which o acts as join and the natural ordering may be defined
pointwise.

Theorem 2.13 Let A = (A, %, 1) be a Hilbert algebra. Then the mappings 0 +— jg and
J > 0 are mutually inverse isomorphisms between the posets (Conn A, C) and (Nuc A,
).

Proof Leta,b e A, ®,V € ConnA and k, ! € Nuc A. The following are equivalent:

(a,b) € 04, jola) = job), do = be, (a,b) € ®

proving 0 ;,, = ®. Moreover, the following are equivalent:

Jo(@) = b; b=p,; k(@) = b

proving jg, = k. Finally, ® C W implies jo(a) < jy(a) foralla € A, and k < [ implies
0 C 60; completing the proof of the theorem. O

From the above theorem and Corollary 2.2 we obtain the following.
Corollary 2.14 Let A = (A, %, 1) be a Hilbert algebra that is an up-directed-complete
poset. Then the poset (Nuc A, <) is a complete Heyting algebra, ConnA = ConA, and
(Con A, Q) and (Nuc A, <) are isomorphic as posets.

Note that Theorem 2.12 and Theorem 2.13 can be derived also by rewording of [13,
Theorem 4.1]. Also, Corollary 2.14 implies that for finite Hilbert algebras there is a one-to-

one correspondence between congruences (filters) and nuclei.

Example 2.15 The algebra S = (S, *, 1) from Remark 2.5 with the Hasse diagram
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10 Order (2020) 37:1-29

and the operation table of :

is a Hilbert algebra (since it is a subalgebra of a relatively pseudocomplemented poset, i.e.,
a Hilbert algebra as well) and it does not belong to R.

Theorem 2.16 Let A = (A, *,1) € Rand j € NucA. Then A; = (A, xj,1) e R.

Proof Since (Aj, *j, 1) is a Hilbert algebra, we obtain from Lemma 2.6 the inclusion
L(a,a*j b)ﬂAj C L(b) NA; foralla,b € Aj.

Leta,b,x € Aj be such that L(a,x) N A; € L(b) N A;. Assume that z € L(a, x).
Then z < a and z < x. Hence also j(z) < j(a) = aand j(z) < j(x) = x,ie., j(z) €
L(a,x)NA; € L(b)N A;. Therefore z < j(z) € L(b). We see that L(a, x) € L(b), i.e.
x<axb=<jlaxb)=ax;b. O

Using the preceding theorem and also Corollary 2.2, we obtain some important sufficient
conditions under which the quotient of a relatively pseudocomplemented poset remains
relatively pseudocomplemented.

If A is an up-directed-complete poset or even a finite relatively pseudocomplemented
poset then for each 6 € Con A the quotient structure is relatively pseudocomplemented and
the congruence is generated by some nucleus.

Corollary 2.17 Let A = (A, %, 1) € R and 6 € Con A. Then

(i) If all congruence classes of 6 are up-directed-complete posets or finite then 0 €
ConnA and (A/6,%,1) € R.

(il) If A is an up-directed-complete poset or finite then 6 € Conn A and (A/0,%',1") €
R.

Lemma 2.18 Let A = (A, A, %, 1) be an implicative semilattice and j a nucleus on
(A, *, 1). Then j preserves finite meets.

Proof This follows from [5, Theorem 5.1.] and the fact that j is an endomorphism on
(A, *,1). O
Proposition 2.19 Let A = (A, %, 1) be a Hilbert algebra and j a nucleus on (A, *, 1).

Then S(j): S(A) — S(A) is a nucleus on S(A) and j is a restriction of S(j) to A.

Proof Clearly, S(j) is a homomorphism of implicative semilattices. Since S(j) o S(j) =
S(joj) = S(j) we have that S(j) is idempotent. Let x € S(A). Thenx = A7_, a;, a; € A.
We conclude that x < A7 j(ai) = j(A\}_; ai) = j(x). O

Let A = (A, %, 1) be a Hilbert algebra, F € A an implicative filter of A and a € A.
Note that F = (F, *, 1) is a Hilbert subalgebra of A. We define a mapping uf : F — F as
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follows:

ug x)=ax*xx
for all x € F. Since F is an upper set in A our definition is correct. It is well by known (see
e.g. [13]), that applying Lemma 1.4 (xii) we obtain that u¥ is an endomorphism of F. We
then define the following relation 05 on F:

by 95 y if and only if ug(x) = ug(y)
forallx,y € F.If A = F we put 6, = 6.

Lemma 2.20 Let A = (A, %, 1) be a Hilbert algebra, F C A an implicative filter of A and
a € A Then6f e ComFand[116F = U@ NF={xeF|x>a).

Proof From Lemma 1.4 (x), (vi) and (viii) we obtain that uaF is extensive, monotone and

idempotent. Since u¥ is an endomorphism of F we have that u¥ is a nucleus on F and hence
6F € ConnF.

For x € F we have x € TQF if and only if a * x = ax1 = 1 if and only if x €
Ua)NF. ’ O

Corollary 2.21 LetA = (A, *,1) € R, a € A. Then (A/0,, %, 1) € R.

In what follows we show that 6, is in fact a principal congruence and that every principal
congruence on a Hilbert algebra is of this form.

Lemma 2.22 Let A = (A, %, 1) be a Hilbert algebra, a € A. Then 6, = 0(a, 1), i.e., it is
the congruence generated by the pair (a, 1).

Proof Since a8, 1 we have that 6(a, 1) € 6,.

Let us check that 8(a, 1) D 6,. Assume that x 6, y. Since 1 0(a, 1) a we have that
x = lxx 0(a, 1) axx. Similarly, y 6(a, 1) axy. Buta*xx = a*xy which yields x 6(a, 1) y.
Therefore 0(a, 1) 2 9,. O

Lemma 2.23 Let A = (A, *, 1) be a Hilbert algebra, a,b € A, a < b. Then(b xa, 1) =
O(a, b).

Proof Clearly, b xa 6(a,b) 1,i.e.,0(b*a,1) C 6(a, b). Conversely,bxa 6(b*a,l) 1.
We see that (bxa) xa 8(bxa,l) 1 xa=aanda <b < (b*a)*a.SinceB(bxa,l)is
convex we have thata 6(b * a, 1) b,i.e.,0(a,b) CO(b*a,l). O

3 The Dedekind-MacNeille Completion and Generalized Glivenko
Equivalences

It is well-known that every poset (A, <) can be embedded into a complete lattice L.
We frequently take the so-called Dedekind-MacNeille completion DM(A, <) for this L.
The question arises if also every relatively pseudocomplemented poset can be embedded
into a complete relatively pseudocomplemented lattice, i.e., a complete Heyting algebra.
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In the sequel we show that in fact the Dedekind-MacNeille completion of a relatively
pseudocomplemented poset is again relatively pseudocomplemented.

Hence, let A = (A, <) be a poset. Put DM(A) := {B € A | LU(B) = B}. (We simply
write LU (B) instead of L(U(B)). Analogous simplifications are used in the sequel.) Then
DM(A) = {L(B) | B € A}, DM(A) := (DM(A), Q) is a complete lattice and x +— L(x)
is an embedding from A to DM(A) preserving all existing joins and meets, and an order
isomorphism between A and ({L(x) | x € A}, Q).

Let A be equipped with a binary operation *. We introduce a new operation * on DM(A)
as follows:

X*xY = ﬂ L(a*xb)
aeX,belU(Y)
forall X,Y € DM(A).

Theorem 3.1 Let A = (A, <) be a poset and * a binary operation on A. Then the following
are equivalent:

(i) A has the top element 1 and (A, *, 1) is a relatively pseudocomplemented poset,
i) (DM(A), *, A) is a relatively pseudocomplemented poset and

L(x)* L(y) = L(x %)
foreveryx,y € A.

Proof (i) = (ii): The implication (i) = (ii) is already known, see Y. S. Pawar [31].
(i) = (i): Clearly, A has the top element 1, i.e., A = L(1). For a, b, ¢ € A the following
are equivalent: L(a,c) € L(b), L(a) N L(c) € L(b), L(c) € L(a) * L(b),
L(c) € L(axb),c <axb.Hence (A, %, 1) is relatively pseudocomplemented.
O

In the theory of pseudocomplemented lattices, a prominent role is played by so-called
Glivenko equivalences, see e.g. [1]. Of course, if a relative pseudocomplemented lattice has
a least element O then for each element x the relative pseudocomplement with respect to 0
is the pseudocomplement of x.

It is worth noticing that Glivenko-Frink theorems for Hilbert algebras were discussed by
D. Busneag [4] and S. Rudeanu [34].

Let A = (A, %, 1) be a Hilbert algebra and a € A. We define a mapping yf: A— Aas
follows:

yf(x) =((xx*xa)*xa
for all x € A. We then define the so-called generalized Glivenko equivalence F:? on A by

(x,y) € TAif and only if x s a = y * a if and only if y* (x) = yA(y)

(x, y € A). Note that we used here Lemma 1.4 (vii).
If A is a bounded Hilbert algebra we call Fg the Glivenko equivalence. Similarly as for

lattices, the Glivenko equivalence Fg on a bounded Hilbert algebra A can be defined by
(x,y) € T4y if and only if x* = y*

(x,y € A). The question arises when F;‘ € Con A. The following example shows such a case:

Example 3.2 Consider the relatively pseudocomplemented poset A = (A, *, 1) from Exam-
ple 2.4. Then ¥ := {0}2 U {a}2 U {b}?> U {c, d, 1}? is the Glivenko equivalence on A. It is
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evident that ¥ € ConA and (A/ W, %/, 1/, /) is even a four-element Boolean algebra with
complementation *.

This example is not exceptional, as S. Rudeanu was able to show in [34, Theorem 2.2].
On the contrary, it turns out that the quotient is always a Boolean algebra.

Theorem 3.3 Let A = (A, *, 1) be a Hilbert algebra, a € A and F? be its general-
ized Glivenko equivalence. Then (A/TA, ', 1',0') is a Boolean algebra and y/* (x * y) =
yf(x) * yf(y)for allx,ye A, y>a.

We denote by B, (A) the set {x € A | yaA (x) = x}. Clearly, (B,(A), %, 1) is a bounded
Hilbert algebra with smallest element a which is a subalgebra of A.

Corollary 3.4 Let A = (A, %, 1) be a Hilbert algebra, a € A. Then (B4(A), *,1) € R.

Though in general Ff} ¢ ConA (see [26] for Heyting algebras) we have from
[34, Theorem 2.2] and [13, Theorem 4.1] the following:

Corollary 3.5 Let A = (A, *,1) be a bounded Hilbert algebra with smallest element
0. Then )/6‘: A — A is an endomorphism of A such that the identity x * )/OA(y) =
y(;* (x) * yé* (y) is satisfied, yé‘ € NucA, I‘g € Conn A and (A/ Fg, *',1/,0) is a Boolean
algebra.

In what follows, we shall denote, for a bounded Hilbert algebra A with smallest element
0, by B(A) the Boolean algebra (Bp(A), *, 1, 0).

Corollary 3.6 Let A = (A, *,1,0) be a bounded Hilbert algebra. Then the mapping
**:' A — B(A) and the embedding igay: B(A) — A are homomorphisms of bounded
Hilbert algebras such that ** o ipay = idp(a).

Note that Corollary 3.6 is essentially Theorem 5.2.24 of [4]. We will now state the
following useful lemmas and their corollaries:

Lemma 3.7 Let A = (A, %, 1, 0) be a bounded Hilbert algebra, x € A. Then x** A (x*™* xx)
exists, x = x™ A (X % x), x*F < x™xx, Xk 1 x) = X xx and (X xx)* = 0.
Moreover, if d € A such that x™* A d exists, x = x*™ ANd and x™ xd = d thend = x™* x x.

Proof Clearly, x < x™ and x < x™ % x. Hence x is a lower bound of x** and x*™* * x. Let
y € A be some lower bound of x** and x*™* % x. From Lemma 1.4 (xii) and (iii) we have
I=yx @™ *xx)=(y*xx™)*x (y*xx) = 1% (y*x) = y*x, whence y < x. We conclude
that x = x™* A (x™* * x).

Also, we have x* A x™ = 0 < x, i.e., x* < x™ % x. Therefore (x™* * x)* < x™ and
(™ % x)* < x* ie, (@™ xx)* =0 =x* Ax*™.

From Lemma 1.4 (viii) we obtain that x** % (x™* % x) = x™* % x.

Letd € A satisfy the assumptions of our lemma. Then x < d and x™ *xx < x™ xd = d.
As the meet in x = x™* Ad is compatible, the reverse inequality, d < x**xx, also holds. [
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The following corollary follows directly from the definition of C.

Corollary 3.8 Let A = (A, %, 1,0) be a bounded Hilbert algebra, x € A. Then x** C
x™ % x and x = x** A (X *x x).

Lemma 3.9 Let A = (A, %, 1, 0) be a bounded Hilbert algebra, x,y € A. Then

(@) xR [ x) ok (Y y)] = (0 ) (xok y) = (x0k y) o (xok y),
(1) xxy = (kYY) A [ 1) x (Y % )])
(i) x < yifandonly if x** < y* and x** < (x™ x x) * (y™ * y).

Proof (i): Letus compute:

X [ )+ (P )] = [0 (O x0) ]k O % (3 % )]
= (™ xx) * [0 % (0 % y)]
= x® Xk (Y xy)] = [y ok (x x y)]
= (Y [ x (0 )] = (% yT) % (x x y).

The first, third and fifth equality follow from Lemma 1.4 (xii), the second one from
Lemma 1.4 (viii), the fourth one from Lemma 1.4 (xi). The last equality follows from
the fact that x * y < x™ % (x *x y) < x * (x *x y) = x % y; the first inequality follows
from Lemma 1.4 (x), the second one from Lemma 1.4 (v) and the equality follows
from Lemma 1.4 (viii). Since x** % y** = (x * y)** we obtain the remaining part of
the statement.

(ii):  We have from Lemma 3.7 and (i):

Xk y = (0% Y)FAox )™k (rxy)) = (™ % yF)VAE [ % )% (Y Y)])
(iii):  Evidently, from (ii) we obtain

Xx<y<=xxy=1 < x™xy"™ =land x™ x [(x™ xx) x "™ xy)] =1
< ™ < y®™and x™ < (x™ xx) x (Y xy).

O

Corollary 3.10 Let A = (A, *, 1, 0) be a bounded Hilbert algebra, x € A,y € B(A) such
that x** = 1. Then x x y = y.

Proof Using Lemma 3.9 part (ii) and the fact that x** = 1 and y** = y we have

xxy=Nx)Adxxx(yxy))=yA(lxxx1)=yA(dx1)=y.

_ A _ A
Lemma 3.11 Let A = (A, x,1) € R, a,b € A. Then yy;&(yl;,‘(a)) = yybA(yé*(b))'

Proof Let us consider the mappings yz)(ll\l/[)(A), yz)(lzg(A): DM(A) — DM(A). Then they

are modal operators on the Heyting algebra (DM(A), %, A) in the sense of the paper

@ Springer



Order (2020) 37:1-29 15

[26, Theorem 1.3 and Lemma 1.4]. Moreover, from [26, Lemma 3.5 and Lemma 3.6]
we obtain that the join of these modal operators in the lattice (M (DM(A)), <) of all

. DM(A) DM(A) _ . DM(A) . DM(A)
modal operators exists and Yew N Viwy = yyf(g(A)(yZ’(%(A)(L(a)))' Similarly, Yoy VY
DM(A) DM(A) Wi DM(A) DM(A)
= . We conclude = .
Vit TV DM DAY () BN DM (1 @y PN (P (1 1y
If we identify a with L e obtain that y4 =4 . O
W ify a with L(a) we obtain that y y  x (), = Vya a0

Corollary 3.12 Let A = (A, *,1) € Rand a,b € A. Then y2 (v (@) = v (yA(b)).
The following proposition is well known:

Proposition 3.13 [14, Proposition 2.2.] An algebra A = (A, %, 1) is a Hilbert algebra if
and only if it is a subreduct of an implicative semilattice.

Using the above proposition we obtain the following corollary:

Corollary 3.14 Let A = (A, *, 1) be a Hilbert algebra and a, b € A. Then

(((@xb)*xb)*xa)xa = (((bxa)xa)*b)*b.

Proof Since a Hilbert algebra A is a subreduct of an implicative semilattice C and C € R
the result follows from Corollary 3.12. O

Our next task is to characterize relative pseudocomplementation by some kind of iden-
tities. It is well-known (see e.g. [1]) that for lattices or meet-semilattices this is possible.
Because the class of relatively pseudocomplemented posets is not closed under substruc-
tures, one cannot expect that it could be characterized by means of identities only. The
identities having sets of the form L(B), U (B) for subsets B of the poset A on both sides are
called LU -identities, see e.g. [11]. In the case when we work only with subsets of the form
L(B) we speak about L-identities. Using this machinery, we can prove the following:

Theorem 3.15 Let A = (A, <) be a poset with a greatest element 1 and * a binary oper-
ation on A. Then % is a relative pseudocomplementation on A if and only if it satisfies the
following L-identities:

(@) L(x,x*xy)~ L(x,y),
(b) Lxx*y,y)~ L(y),
(€) L(x)*L(x,y)~ L(x*y),

Proof Let a,b,c € A. Assume A to be a relatively pseudocomplemented poset. From
Theorem 3.1 we obtain that (DM(A), *, A) is a complete relatively pseudocomplemented
lattice such that L(a) * L(b) = L(a % b). In particular, (a), (b) and (c) follow from [9,
Theorem 4.2.1].
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Conversely, assume A to satisfy (a)-(c). Assume ¢ < a * b. Then L(a,c) € L(a,a xb) =
L(a,b) € L(b) according to (a). Conversely, assume that L(a,c) € L(b). From (c) we
conclude L(a) * L(a,b) = L(a *b) and L(a) * L(a,c) = L(a * c). Now we have

L(axc) = L(a)*L(a,c) = L(a)* L(a,c,b) = ﬂ L(dxe) C
deL(a),ecU(L(a,c,b))
c N L(d xe) = L(a) x L(a, b) = L(a * b).

deL(a),ecU(L(a,b))

Hence a * ¢ < a % b. Since ¢ < a * ¢ by (b), we conclude that ¢ < a * b. Together, a *x b is
the relative pseudocomplement of a with respect to b. O

Theorem 3.16 Let A = (A, %, 1) be a Hilbert algebra. Then A is a relatively pseudo-
complemented poset if and only if it satisfies the L-identity L(x) % L(x,y) ~ L(x %
)

Proof By Theorem 3.15, every relatively pseudocomplemented poset is a Hilbert algebra
which satisfies L-identity (c) of Theorem 3.15.

Conversely, assume that a Hilbert algebra (A, *, 1) satisfies the mentioned L-identity.
By Proposition 2.6 we have L(a) N L(a % b) € L(b) foralla,b € A. Assume now L(a) N
L(x) € L(b) for some x € A. Then, by the L-identity, L(a * x) = L(a) * L(a,x) =
L(a)xL(a, x,b) C L(a)xL(a,b) = L(axb);thus L(axx) C L(axb),i.e.,x < axx < ax*b.
Hence a * b is the relative pseudocomplement of @ with respect to b in A. O

4 The Category of Bounded Relatively Pseudocomplemented Posets

In what follows, we will study the category /Ry whose objects are bounded relatively pseu-
docomplemented posets and morphisms are mappings preserving the bottom element, the
top element and the binary operation . Note that the category of Heyting algebras is a sub-
category of R but it is not full since there are mappings between Heyting algebras which
are morphisms of bounded relatively pseudocomplemented posets but they do not preserve
the lattice operations.

Since R is a full subcategory of the category of Hilbert algebras and similarly Ry is a full
subcategory of the category of bounded Hilbert algebras one can use the already obtained
results in this broader context [4, 22].

It is well known that the category of Boolean algebras forms a reflective subcategory of
the category of bounded relatively pseudocomplemented lattices, i.e., Heyting algebras and
that complete Boolean algebras are injective objects in Heyting algebras. Our goal is to show
that similar results can be proved also for the category of bounded relative pseudocomple-
mented posets. A related result was obtained in [4, Theorem 5.5.1,Theorem 5.5.2] where
the author proved that in the category of bounded Hilbert algebras any injective object is a
complete Boolean algebra, and the complete Boolean algebras are injective objects.

Recall that a monomorphism is a morphism m such thatm o f = m o g implies f = g.
A morphism f: A — B is an isomorphism if there is a morphism g: B — A such that
fog=1idp and g o f = id4. The morphism g is uniquely determined, usually denoted by
£, and called the inverse of f.
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Proposition 4.1 Let m: A — B be a morphism in R. The following are equivalent:

(i) m is injective.
(ii) m is a monomorphism.
(iii) m satisfies m(x) = 1 implies x = 1.

Proof (i) == (ii): An injective morphism m is obviously a monomorphism: if
m(f(x)) = m(g(x)) then we have f(x) = g(x).
(i) = (iii): Now let m: A — B be a monomorphism in R such that m(x) = 1 = m(1)
for some x € A. Consider the morphisms u?, idg: A — A in R. Then clearly
mo u? =moidy,ie., u? =1id4. We conclude that x =idg(x) = x *x = 1.
(iii)) = (i): Letm(x) = m(y) forsome x, y € A. Then 1 = m(x)*xm(y) = m(x*y),i.e.,
x *y = 1. We have that x < y and similarly y < x. Hence x = y, i.e., m is injective.
O

Recall also that in any bounded relatively pseudocomplemented poset A each element x
of A has its pseudocomplement x* = x x 0.

Note that we have from Corollary 3.6 that the mapping **: A — B(A) is a morphism of
bounded relatively pseudocomplemented posets. We will call it the canonical mapping.

Lemma 4.2 Let A = (A, %,1,0) € Ry and let B = (B, *,1,0) € Rgy be a Boolean
algebra. Let h: A — B be a morphism of bounded relatively pseudocomplemented posets.
Then there exists a uniquely determined Boolean homomorphism h: B(A) — B such that
the following diagrams commute:

B(A) B(A)

o NN iB(A) N
AN
A N

A P B A P B.

/=i

Proof Since h(x*) = h(x)* we obtain that h(x**) = h(x) for all x € A. Let & be the
restriction of 4 to B(A). Since join, meet and negation in B(A) can be expressed using
and O only, we have that h is a Boolean homomorphism and h(x*) = h(x) forall x € A
(which ensures the uniqueness of 7). O

Lemmad4.3 LetA = (A, *,1,0) € RogandletC = (C,*,1,0) € Rg. Leth: A — Cbea
morphism of bounded relatively pseudocomplemented posets. Then there exists a uniquely
determined Boolean homomorphism h: B(A) — B(C) such that the following diagrams
commute:

A———C A——C
**i l** [B(A)T T;B(A)
BA) - - - - - B(C) BA) - - "~ - - B(C)

If h is one-to-one, so is h.
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Proof The existence and the uniqueness of h follow from Lemma 4.2. Let us assume that &
is one-to-one and that 4(x) = h(y). Then h(x) = h(y) since x, y € B(A) and h(x), h(y) €
B(C). We conclude x = y. O

Proposition 4.4 Let m: A — B be a morphism in Rg. The following are equivalent:

(i) m is injective.
(i) m is a monomorphism in Ry.
(iii) m satisfies m(x) = 1 implies x = 1.

Proof (i) = (ii) and (iii) = (i) follow by the same considerations as in
Proposition 4.1.

(il) = (iii): Let m: A — B be a monomorphism in R¢ such that m(x) = 1 = m(1)
for some x € A. From Lemma 3.7 we know that x = x** A d for some d € A with
d* = 0. Therefore m(x**) = m(d) = 1. Let us show that x** = d = 1. From
Corollary 3.4 we know that (B(A), %, 1,0) € Ro. Let us put T = {0, x*, x™*, 1}.
Then also (7, *, 1,0) € Rg and the inclusion map i7: T — A is a morphism in Ry.
Let us define a mapping g: T — A by g(0) = g(x*) = 0and g(1) = g(x™) = 1.
One can easily verify that g is a morphism in Ry and that m o g = m o iT. Hence
g=ir, e, x™ =ip(x™) =g(x*™) = 1.

Now, let us put C = {0, d, 1}. Then C is closed under *, (C, *,1,0) € Rq due to
Lemma 2.7 and the inclusion map ic: C — A is a morphism in RRo. Let us define a
mapping h: C — A by h(0) = 0 and A(1) = h(d) = 1. Again, h is a morphism in Rg
and m oh = moic. We conclude h = ic, i.e.,d = ic(d) = h(d) = 1. This yields
x=1A1=1 O

Recall that a full subcategory I3 of a category A is said to be reflective in A if for each A-
object A there exists an B-object B4 and an A-morphism r4: A — By such that for each
A-morphism #: A — B to a B-object B there exists a unique B-morphism i: By — B
with

The pair (B4, ra) is called the B-reflection of A. The morphism r4 is called B-reflection
arrow. The corresponding functor R: A — B3, which is a left adjoint to the inclusion
functor I: B — A, is called reflector. The map r, is the unit of this adjunction.

We conclude from Lemmata 4.2 and 4.3.

Theorem 4.5 The category of Boolean algebras is a reflective subcategory of the category

of bounded relatively pseudocomplemented posets and the reflector preserves monomor-
phisms.
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Let A be a category. An object J of A is called injective if for every monomorphism
i: A — B andevery morphism f: A — J there exists a morphism g: B — J making the
following diagram commute:

Theorem 4.6 A is injective in Ry if and only if A is a complete Boolean algebra.

Proof Assume first that A is injective in /%. From Theorem 3.1 we have an embedding
ea: A — DM(A) of bounded relatively pseudocomplemented posets. From the injectivity
of A we obtain the following commutative diagram:

A
X A
idg N8
AN
N
A>—6A> DM(A).

Since g o e = id4 we have by [2, Lemma 2.1] that A is a complete lattice. To prove that
A is a Boolean algebra we follow the lines of the proof of [2, Theorem 2.2]. It is enough to
check that x* = 0 if and only x = 1. Suppose that there is ¢ € A such that a* = 0 and
a < 1. Then {0, a, 1} is a bounded relatively pseudocomplemented subposet of A which is a
chain. Let C be a maximal bounded relatively pseudocomplemented subposet of A which is
a chain including {0, a, 1} (which exists due to Proposition 2.7). Let D be the chain obtained
by adding to C a new element m such that 0 < m < x forall x € C, x # 0. Clearly, D is
a bounded relatively pseudocomplemented poset equipped with a binary operation xp that
coincides on C with x and m xpx = 1 =0%pm,m = x xpm forallx € D, x # 0,
m *p 0 = 0. We conclude that we have monomorphisms ip: C — Dandip: C — A
of bounded relatively pseudocomplemented posets such that ip(x) = ia(x) forallx € C.
From the injectivity of A we obtain the following commutative diagram:

We see that (h(D), *, 1,0) is a bounded relatively pseudocomplemented subposet of A

which is a chain including C. Since C was maximal we have that h(m) € C. Let x € C,

x #0.Sincem < x € C € D we have that h(m) < h(x) = x. Let us compute:
xxh(m)=h(x)*h(m) =h(xxpm)=h(m) <h(a) =a < 1.

We obtain that h(m) < x forallx € C,x # 0,i.e.,h(m) = 0.But0 = h(0) = h(m*p0) =
0% 0 = 1, a contradiction, i.e., there is no a € A such that a* =0 anda < 1. Hence A is a
complete Boolean algebra.

@ Springer



20 Order (2020) 37:1-29

Now, let us verify that whenever A is a complete Boolean algebra then it is injective in
Ro. But this is evident since R is a full subcategory of the category of bounded Hilbert
algebras and from [4, Theorem 5.5.2.] we know that complete Boolean algebras are injective
objects in the category of bounded Hilbert algebras. O

5 Characterizing Quadruples

In this section we introduce quadruples consisting of a Boolean algebra B, a Hilbert alge-
bra D, a certain compatibility relation C between B and D and a join-preserving mapping
¢: B — Nuc D that preserves both the least and the greatest element. Our goal is to charac-
terize every bounded Hilbert algebra and relatively pseudocomplemented poset by means of
a quadruple. It is worth noticing that characterizing triples were introduced by C. C. Chen
and G.Griitzer in [12] and intensively studied by T. Katrindk [23, 24] and his collaborators.
For modular pseudocomplemented posets similar triples were introduced and investigated
by the first author and R. Hala$ in [8]. In our general case, triples do not produce a repre-
sentation and hence we must use the so-called characterizing quadruples. Also, our results
on characterizing Hilbert quadruples should be compared with the results by J. Cirulis [13]
on quasi-decompositions.
Let A = (A, %, 1, 0) be a bounded Hilbert algebra. For a € B(A), put

Fyo:i={xecA|x™ =a).

The sets F, are equivalence classes of the Glivenko equivalence on A. We say that an ele-
ment x € A is dense if x* = 0, i.e., if and only if x € F;. We denote by D(A) the set of all
dense elements of A. Note that B(A) N D(A) = {1}, D(A) is an implicative filter on A and
(D(A), %, 1) is a Hilbert subalgebra of A.

Let us consider the mapping h,: F, — D(A) given by x — a % x, x € F, (note that
a xx € D(A) due to Lemma 3.7). Every x € F, is by Corollary 3.8 uniquely determined
by a * x, namely x = a A (a * x). Hence A, is an injective isotone mapping. Denote by D,
the set h,(F,). Then h, is by Lemma 1.4 (vi) an order isomorphism between F, and D,
and a * h,(x) = hy(x).

Note that

Do={axx e DA) | x=an(a*xx),x™ =a,x € A}
={d e D(A) |andexistsinAanda™ <d =a* (a Ad)}
={d € D(A) |a C d and a*xd = d}

Namely, the first and the last equality are evident. Moreover, clearly {a x x € D(A) | x =
an(axx),x™*=a,xe A} C{de DA) |andexistsinAanda* <d =a = (a And)}.
Now, letd € D(A) suchthata A dexistsin Aanda* <d=a*(@a Ad).Putx =a nd.
We have d = a * x. Let us check that a = x**. We know that x = a A d in the implicative
envelope S(A) of A. Hence (computing in S(A)) x™ = a™ Ag@a) d™ = a rsuay 1 =a
since on implicative semilattices the operation ** preserves finite meets.

By Lemma 3.7, any x € A is completely determined by a pair (a, d), where a = x™* €
B(A)andd =a*xx =axd € D,,namely x = d A a, and every pair (a, d) witha € B(A)
and d € D, determines in this way an element x in F,.

We have a compatibility relation C(A) € C N (B(A) x D(A)) between B(A) and D(A).
Moreover, C(A) = U,cp)lal x Do = {(a.d) € C N(B(A) x DA)) | ug M (d) = d).
We also have ({1} x D(A)) U (B(A) x {1}) € C(A).

@ Springer



Order (2020) 37:1-29 21

Also, for any a € B(A) we have from Lemma 2.20 that uf,) @) is a nucleus on D(A) and

we obtain a mapping : B(A) — Nuc D(A) defined by @(a) = u>™. Since ul™® (d) =
PV = idpe), 9(1) = ug ™
b* < a* which entails p(a) = uf*(A) < uf*(A) = @(b). Moreover, the compatibility relation
C(A) has by Lemma 3.9 the following property:

(a,d), (b,e) € C(A) = (a*b,9(a")(dx*e)) € C(A).

a * d one readily sees that 9(0) = u = 1land a < b implies

To verify that ¢ is join-preserving note only that in implicative semilattices we have from
[29, Lemma 2.1 (v)] that ax (b*d) = (a Ab)*d. We may now safely work in S(A). Then we
have a* (bxd) = (aAs@)b)*d. Butifa, b € B(A) we obtain thata Aga)b = anab € A.
Hence we have thata x (b *d) = (a Ab) *d, where a, b € B(A) andd € A is valid in any
bounded Hilbert algebra. This in turn yields:

PlaVparb) (d)=(a* Ab")rd =a* (b xd) = (u, ™ 0wy M) (d) = @(@) Viue D) PB) (@)
Note that if A is a bounded implicative semilattice then our definition of a quadruple may be
identified with that of a triple from [9] since the congruences ¥, introduced in [9, Section
3.6] correspond uniquely to the nuclei uﬁ(A) (both W, and uf*(A) are determined by the
implicative filter U(a*) N D(A)) and the relation C(A) = {(a,d) € B(A) x D(A) |
uf @) (d) = d} is uniquely determined (hence there is no need for a quadruple).

In what follows we describe what properties C(A) has to have in bounded pseudocom-
plemented Hilbert algebras.

Lemma 5.1 Let A = (A, *,1,0) be a bounded pseudocomplemented Hilbert algebra,
(a,d), (b, e) € C(A). Then the following holds:

[(V(c, f) € CAA) (cx(anpmayb)=1=cx(fxd)=cx(f*e) = c*=1= f)] => a < b*.

Proof The proof is a straightforward translation (using Lemma 3.9) of the fact that L(a A
d)NL(b Ae) € L) impliesa = (a Ad)*™ < (b A e)* = b*, ie., the fact that A is
pseudocomplemented. Namely, ¢ * (a Apa) b) = 1 meansthatc < a,b,cx (f *xd) =1
means ¢ < f xdand c * (f xe) = 1 means ¢ < f * e. By Lemma 3.9 this is equivalent to
the fact that c A f < a A d, b A e. Hence the only element from L(a A d) N L(b A e) is
0=0An1. O

Theorem 5.2 Let A = (A, *, 1, 0) be a bounded Hilbert algebra. Then A is a pseudocom-
plemented poset if and only if the following condition is satisfied:

(RPP1) (¥(a,d), (b,e) € C(A)) ([(V(c, feCANI=cx(arpayb)=cx(f*d) =
cx(fxe)=c*=1= f)] = a < b¥).

Proof = This follows from Lemma 5.1.

<—=: Assume that A = (A, %, 1,0) is a bounded Hilbert algebra such that (RPP1)
(defined in Theorem 5.5) holds. Let us check that A is pseudocomplemented. Let x, y € A
such that L(x) N L(y) = {0} = L(0). We can write x = a A d and y = b A e where
(a,d), (b,e) € C(A). Clearly, for any z = ¢ A f < x,y, (¢, f) € C(A) we have
z=0,ie,c=27" =0and f = z** xz = 0% z = 1. Hence by (RPP1) we obtain
x <a < b* = ®*FAD* = B A e = (b e)* = y*. Since A is a Hilbert
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algebra we have always from Lemma 2.6 that L(y) N L(y*) € L(0) = {0}. Hence y* is a
pseudocomplement of y and A is pseudocomplemented. O

Now we describe what properties C(A) has to have in bounded relatively pseudocom-
plemented posets.

Lemma 5.3 Let A = (A, %,1,0) € Ry, ¢, d, e € D(A). Then the following holds:
[V(a, ) e CAA))(ax(f*xc)=1=ax(f*xd) = a*x(fxe) =1)] = cx(dxe) = 1.

Proof The proof is a straightforward translation (using Lemma 3.9) of the fact that L(c) N
L(d) € L(e) impliesc <d xe,ie,(x =a R f <c,d = x <e)impliesc <d xe. [

Lemma 54 Let A = (A,*,1,0) € Ro, b € B(A),d,e, f € D(A). Then the following
holds:
[(V(a,g) e CAA)axb=ax(g*xd)=1=ax(g*xe)=—=ax(gx f)=1)] <
[(V(a,8) e CAA))(ax(gxd)=1=ax(gxe) = ax(gxbx* [))=1D].

Proof The proof is a straightforward translation of the fact that L(b) NL(d)NL(e) C L(f)
if and only if L(d) N L(e) € L(b *x f). The implication from left to right is obtained by
Theorem 3.1. O

The preceding results yield the following characterization of bounded relatively pseudo-
complemented posets:

Theorem 5.5 Let A = (A, x,1,0) be a bounded Hilbert algebra. Then A is a bounded
relatively pseudocomplemented poset if and only if the following conditions are satisfied:

(RPP1) (¥(a,d), (b,e) € C(A)) ([(V(c, HeCA))A=cx*(anrpab) =cx(f*d)=
cx(frxe)=c"=1= f)l = a <b"),
(RPP2) (Vc,d,e € D(A)) ([((V(a,f)eCA))(ax* (f*xc)=1=a*x(f xd)y=a * (f xe)
=D]=cx(dx*xe)=1),
(Vb € B(A),d,e, f € D(A))
(RPP3) [(V(a,g)eCA))(axb=ax*(gxd)=1=a*(gxe)=ax(gx f) =1)] <<
[(V(a,g) e CA)(ax*(gxd)=1=ax(gxe)=ax*(g*(Dx* [f))=1].

Proof = This follows from Lemmata 5.1, 5.3 and 5.4.

<=: Assume that A = (A, *, 1,0) is a bounded Hilbert algebra such that (RPP1),
(RPP2) and (RPP3) hold. From Theorem 5.2 we know that A is pseudocomplemented.
Moreover, from Theorem 22 in [30] we obtain that DM(A) with the operation * defined by
*(X) = X*{0} is pseudocomplemented as well.

Now, we have to verify that A is relatively pseudocomplemented. Let x, y, z € A such
that L(x) N L(y) € L(z). Since DM(A) is pseudocomplemented we obtain from [35,
Theorem 5] that L(x™* Apa) ¥y**) = LxX™*) N L(™) = Lx)™ N L(y)*™ € L@@* =
L(z**). Hence x™* Ay y** < z** and from Corollary 3.4 we see that x™* < y** s z**,

We need to show that x < y % z. Since z = ¢ A f, (¢, f) € C(A) we have that
L(x)NL(y) € L(c)and L(x)NL(y) € L(f). Also yxz =y (cA f) = (y*c) A(y* f).
Hence it is enough to show that x < yxcand x < y * f. We have x = x™ A d and
y=y* ne,d,e € D(A).
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Let us compute:

sk

yic= " ANe)xc=y"x(exc) =y xc=y" x> > x.

The second equality follows from [29, Lemma 2.1 (v)], the third one from Corollary 3.10.
Now, we have

L™ Apay Y™ NLA) NLe) =Lx™ and)NLY™ Ane)=Lx)NL(y) S L.
But this is from (RPP3) equivalent to
L(d) N L(e) S L((x™ Apay y™) * ).
We can now use (RPP2) to obtain that
d <ex (™ Ay y™) x ) = (™ Ax ™) x (e * f) = X % (" % (e x f)).
This yields
x=x""Nd <y xexf)=0"nrne)x f=yxf.

Hence A is relatively pseudocomplemented. O

Definition 5.6 A characterizing quadruple is a quadruple (B, D, C, ¢), where

(i) B = (B, *s,1,0)isaBoolean algebra;
(i) D = (D, xp, 1) is a Hilbert algebra;
(iii)) ¢: B — NucD is a join-preserving mapping that preserves both the least and the
greatest element.
(iv) C C B x D such that

(a,d), (b,e) € C = (a*pb,pa™)(d+*pe)) € C,pa*)d) =d

and
{1} xD)UuB x {1}) € C.

A pcp-characterizing quadruple is a characterizing quadruple (B, D, C, ¢) such that, for all
(a,d), (b, e) € C(A), the following holds:

[(V(c, /) €e O (A =c=*p (arpb)and 1 = p(c)(f *p d) = ¢(c)(f *p €))
== (¢c=0and 1 = f))] = a < b*.

An rep-characterizing quadruple is a pcp-characterizing quadruple (B, D, C, ¢) such that,
forallb € B,d, e, f € D, the following holds:

[(V(a, g) €C)(p(a)(gxpd)=1=¢p(a)(g*pe) == ¢(a)(g*p f)=1)]=d*p(e*p f)) = 1
and

[(V(a,g)€ O)((a g b=1and ¢(a)(g *p d)=1=¢(a)(g *p €)) = ¢(a)(g *p f) = 1)]
> [(V(a,8) € O)(p(a)(g*p d) = 1 = ¢(a)(g *p ) = ¢(a)(g *» (@(b)(/))) = D].

We conclude

Theorem 5.7 Let A = (A, %, 1,0) be a bounded Hilbert algebra. Then

(a) the quadruple Q = (B(A), D(A), C(A), ) is a characterizing quadruple;
(b) Qs a pcp-characterizing quadruple if A is pseudocomplemented;
(¢) Qs an rcp-characterizing quadruple if A is relatively pseudocomplemented.
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We say that two characterizing quadruples (B, Dy, Ci, ¢1) and (B2, D3, Cy, ¢2) are
isomorphic if there is an isomorphism f of Boolean algebras from the Boolean algebra
B; to the Boolean algebra B; and an isomorphism g of Hilbert algebras from the Hilbert
algebra D to the Hilbert algebra D5 such that ( f x g)(C;) = C; and the following diagram

By ———— = NucDy

1
fl l
B> — NucD».

commutes, where g is the isomorphism of Nuc D to Nuc D; assigning to each j € Nuc Dy
the nucleus g o j o g_1 on D». Note that, for alla € By and all d € Dj, p2(f(a))(d) =
gle1@ (g~ @)).

We are going to show that bounded Hilbert algebras are determined by their charac-
terizing quadruples up to isomorphism.

Theorem 5.8 Two bounded Hilbert algebras are isomorphic if and only if their associated
characterizing quadruples are isomorphic.

Proof 1t can be easily seen that if / is an isomorphism of bounded Hilbert algebras from the
bounded Hilbert algebra A to the bounded Hilbert A, then its restrictions f = h | B(A)
and g = h | D(A) are the isomorphisms in question.

Conversely, let us suppose that the characterizing quadruples (B(Ap), D(Ap),
C(A1),9;) and (B(A3), D(A2), C(A2), 9,) are isomorphic, with corresponding isomor-
phisms f and g. Hence, for all a € B(Aj) and all d € D(A), f(a) xd = g(a *
g @)

Let S(A;) be the implicative envelope of A;. Then S(B(A;)) = B(A;) and S(D(A;)) =
D(S(A))), i = 1, 2. Hence we obtain characterizing quadruples Q; = (B(A}), S(D(A})),
B(A1) Xy, S(D(A1)), ¥1) and Q2 = (B(A2), S(D(A2)), B(A2) Xy, S(D(A2)), ¥5)
where Vi(a;) = SuPA) %(S(Ai)), a; € A; by Proposition 2.19 and B(A;) xy,

af a
S(D(A))) = {(a;, d;) € B(A;) x S(D(A)) | uSPA) 4,y = d;}, i = 1, 2. These charac-

i

) = u

terizing quadruples are isomorphic since ui((aD)(f”) = S(u?((‘ﬁ}))) =S(go uf*(Al) ogh=
S(g) o S(uf*(A‘)) 0S(g)"' =S(g) o uiiD(A‘)) 0 S(g)~! with corresponding isomorphisms
f and S(g).
Define a mapping #: S(A1) — S(A») via
h(x) := f(x™) A S(Q)(x™ % x)

forall x € S(Ay).

Since S(A) and S(A,) are pseudocomplemented semilattices satisfying assumptions of
[9, Theorem 3.6.1 and Theorem 4.4.1] we obtain that / is an order isomorphism preserving
*,f=h|B(A1) and S(g) = h | D(Ay).

In what follows we put § = S(g). Then the fact that the characterizing quadruples Q
and Q; are isomorphic is equivalent to the following condition:

glaxd) = f(a)*g(d)
foralla € B(A1) and d € S(D(A1)).
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Note first that, for all x € S(A1), h(x)*™ * h(x) = h(x** % x). Since x = x* A (x™ *x x)
and h preserves arbitrary meets and * we have:

h(xX)*™ % h(x)= h)™ x h(x*™ A (x™ % x)) = h(x)™ x (h(x™) A h(x™ % X))
= hE)* xh(xX**NA (hx)™* «h(x* xx)) =1 A (B(x)™ % h(x* x x))
= h(x™) % h(x™* * x).

Let us verify that & preserves the operation . Assume that x, z € S(A1). Then we have

h(x) x h(z) = (h()™ * h(2)™) A ()™ % [(h(xX)™ * h(x)) * (h(2)™ * h(2))])
= (h(x™) x h(z*)) A (R(X™) % [R(xX™ % x) * h(z" * 2)])
= (fX™) % f(@) A (FO*) * [§™* % x) % Z(2* % 2)])
= (fOX™* %) A (F ™) % [ % x) % (2 % 2))])
= (h(x™ % 2*%)) A GO 5 [(x™ % x) % (2 % 2)])
= (h(x™ % 2%) AR % [(x™ % x) * (2" % 2)])
= h((x™ % Z%) A (2 % [ % x) * (2 % 2)]))
= h(x * z).

The first and the last equalities follow from Lemma 3.9 (ii), the second one from the fact
that i preserves * and that A (x)™ % h(x) = h(x™" x x), the third one from the fact that
f =h| B(A)) and g = h | D(Ay), the fourth one since f and g preserve x*, the fifth
equality follows again from f = h | B(A) and the isomorphism of Q; and Q», the sixth
one from g = h | D(A1), the seventh equality holds because & preserves finite meets.

Let x € Aj. Then from Lemma 3.7 we have that x = x™* A (x** %xx), i.e., (x™*, x™*x) €
C(A1). We conclude (f(x**), g(x** % x)) € C(A2). Then there is an element y € A, such
that y = f(x*™) A g(x™ x x). Hence y** = f(x™)™ A g(x™ % x)™ = f(X™)™ A1 =
Fx*F**)y = f(x™). Since f(x™) * g(x™ xx) = g™ * ™ xx)) = g(x™ % x) and
y = y" A (™ % y) we have again from Lemma 3.7 that g(x™* % x) = y** x y. This yields
that (A1) C As.

Now, let y € A;. Then y = y** A (y** x y) and (y**, y** % y) € C(A»). Hence there are
a € B(A)) andd € D(A)) such that f(a) = y**, g(d) = y** *x y and (a,d) € C(A}). Put
x=aAdeA.Thenh(x) =h(and)=h(a) Ah(d) = fla) Ag(d) =y.

Since & is injective we obtain that 4 | A is a bijective mapping from A to A; that
preserves %, 1 and 0, i.e., it is an isomorphism of bounded Hilbert algebras. O

Corollary 5.9 Two (relatively) pseudocomplemented bounded Hilbert algebras are isomor-
phic if and only if their associated pcp-characterizing (rcp-characterizing) quadruples are
isomorphic.

Theorem 5.10 For any characterizing quadruple Q = (B, D, C, @), there exists a bounded
Hilbert algebra Aq whose associated characterizing quadruple Q(Aq) = (B(Aq),
D(Aq), C(AqQ), @q), is isomorphic to Q.

Proof Let 6 = (B, ﬁ, E, @) be a quadruple defined as follows: We put D= S(D), C =
B x,D = {(a,d) € BxSD) | $(a*)(d) = d} and ¢(a) = S(¢(a)) foralla € B. We
want to show that 6 = (B, ]5, E, @) is a characterizing quadruple. Conditions (i) and (ii) of
Definition 5.6 are readily satisfied. Let us check condition (iii). Assume first that a, b € B.
We compute:

¢(a Ve b) =S(p(a v b)) = S(p(a) o p(b)) = S(p(a)) o S(p(b)) = @(a) Vi ¢(b).
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Moreover, ¢(0) = S(¢(0)) = S(idp) = idsmp) = idjy and o(1) = S(p(1)) = S(p) =
15y = 1. To verify (iv) assume that (a, ¢), (b, d) € C. We have to check that

P((a* b)) (@@ (c xj d)) = g(a*)(c *5 d).
We compute:

g(a*)(cxp d) < @((a* b)) (@(a*)(c*p d) = p(a*)(@((a * b)*)(c *f d))

= 9(a*)(@((a x b)*)(c) *§ ¢((a * b)*)(d))

< @@ (@) (c) xj 9™ (d)) = g(a*)(c x5 d).
The first inequality follows from the fact that @((a * b)*) is a nucleus, the next equality
follows by interchangeability of the composition of nuclei (the composition of two nuclei is
their join). Then we use the fact that ¢'((a xb)*) preserves *g;. The second inequality follows
from the fact that ¢(0)(c) < @((a * b)*)(c), #((a * b)*))(d) < ¢(b*)(d) and the properties
of *f (Lemma 1.4 (v),(vi)). The last equality follows from the fact that ¢(0) = idgy and that
(b,d) e c (@(b*)(d) = d). The remaining parts of (iv) are evident.

Now one can repeat the construction from [29, Theorem 5.2] of a bounded implicative
semilattice AQ whose associated characterizing triple corresponds uniquely to our charac-
terizing quadruple Q (B, D C @). Note that an admissible function f of [29, Theorem
5.2] is in our sense defined as f(a, d) = ¢(a*)(d). We only describe here AQ

We put AQ C and for elements (a, d), (b, e) € C let

(a,d) AR, (b,e) = (a A b, @((a AB b)")(d Ap €))

and
(a,d) *Xo (b,e) = (a*B b, P(a™)(d x5 €)).

Then (KQ, /\KQ (1 1), (0, 1)) is an implicative semilattice with the associated char-
acterizing quadruple (B(AQ) D(AQ) C(AQ) (pQ) Here B(AQ) {(a,1) | a € B},
(a, 1) *B(Xo) (b,1) = (a *B b, §(@*)(1 x5 1)) = (a *B b, 1). Hence the mapping id1
given by the prescription a +— (a, 1) is an isomorphim of Boolean algebras. Similarly,
D(Aq) = {(a,1) | a € D}, (1,d) *D(Ro) (1,e) = (1 % 1, ¢(0)(d x5 )) = (1, d = e).
Therefore the mapping 1d11) given by the prescription d +— (1, d) is an isomorphism of
Hilbert algebras. N

It remains to check that id11~) (@(a)(d) = p(id} (a))(id]l~)(d)) foralla € B,d € D. Let us
compute:

id};@(a)(d)) = (1, @(a)(d) = (a*p 1, 9(a)(1 x5 d))
= (@*, 1) xz, (1. d) = g(idy(a)) (df(d)).

We conclude that the characterizing quadruples (N) = (B, ﬁ, E, ¢) and (B (KQ), D(KQ),
C (KQ), @6) are isomorphic.

Now, let us put Ag = C C C. Let (a,d), (b,e) € C. Since Q is a characterizing
quadruple we can use condition (iv) of its definition that says that (a, d) *Xo (b,e) =
(axp b, ¢(a*)(d *pe)) € C. Clearly (0, 1), (1, 1) € C. Hence (Aq, *Aaq, (1,1),(0, 1)) isa
Hilbert subalgebra of XQ where x4, is a restriction of *x .

Clearly B(Aq) =B x {1}, D(Ag) = {1} xDand C(Aq) = {((a, 1), (1,d)) € B(Aq) x
D(Aq) | (a, 1) C (1,d) inAq, and (a, )*a4 (1, d) = (1, d)} = {((a, 1), (1,d)) | (a,d) €
C}. We know that the mapping id]13 : B — B(Aq) given by the prescription a — (a, 1) is
an isomorphim of Boolean algebras. Similarly, the mapping idll) : D — D(Aq) given by the
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prescription d +— (1, d) is an isomorphism of Hilbert algebras, E is the isomorphism of
Nuc D to Nuc D(KQ) assigning to each j € Nuc D the nucleus id%) ojo (idll))_1 on D(XQ),
and (id} x id}))(C) = C(Aq).

Moreover,

Polidh@) (1. d) = Bo((a. DL, d) = ug Y2 (1 d) = (@*, 1) ¥aq (1.d)

(@, 1) x5, (1.d) = (@ xp 1, (@) (1 d)) = (1. p(@)(d))
id} (p(a)(d)) = (i}, o p(a) o (idh) ") (1, d)) = id}(p(a))((1, d))

foralla € B, (1,d) € D(Aq). Hence @ °op =9qgo id]13. It is easy to see that Q(Aq) =
(B(Aq), D(AqQ), C(Aq), Pq) is a characterizing quadruple which is isomorphic to Q via
isomorphisms idlls and idll). O

Corollary 5.11 (a) For any pcp-characterizing quadruple Q, there exists a bounded
pseudocomplemented Hilbert algebra Aqg whose associated pcp-characterizing
quadruple Q(Aq) is isomorphic to Q.

(b) For any rcp-characterizing quadruple Q, there exists a bounded relatively pseudo-
complemented poset Aq whose associated rcp-characterizing quadruple Q(Aq) is
isomorphic to Q.

Proof (a): From the proof of Theorem 5.10 we obtain a bounded Hilbert algebra Ag.
Evidently, it satisfies condition (RPP1) from Theorem 5.2. Hence it is pseudocomple-
mented. The remaining parts then follow from Theorem 5.10.

(b):  From the proof of part (a) we obtain a bounded pseudocomplemented Hilbert algebra
Aq such that Q(Aq) is isomorphic to Q. Evidently, it satisfies conditions (RPP1)-
(RPP3) from Theorem 5.5. Hence it is relatively pseudocomplemented.

O

We are going to show that, given a Boolean algebra B, a Hilbert algebra D and an action
¢ of B on D, the relation C can be introduced in various ways to yield various Hilbert
algebras with the corresponding quadruplets. In Example 5.12 we show for which relation
C the resulting Hilbert algebra is the smallest or the greatest one. This also proves that the
triple (B, D, ¢) is not sufficient for a characterization of the resulting Hilbert algebra.

Example 5.12 Let B = (B, %, 1, 0) be a Boolean algebra and D = (D, *p, 1) be a Hilbert
algebra. Let ¢ : B — NucD be a join-preserving mapping that preserves both the least and
the greatest element.

(@) Weput C = ({1} x D) U (B x {1}). Let us check condition (iv) from Definition 5.6.
Assume that (a, d), (b, ¢) € C. We have

(a*gb,p(@)(1xpl) =(a*gb,1)eCifd=e=1,

. (s 1.pO)d4pe) =(,d4pe) e C ifa=b=1,
(@B b, 9(@™)(d*D €D=\ (1 40 b w(0)(d #p 1)) = (b, 1) € C ifa=lande=1,
(a#p 1,00)(1p €)) = (1, p(0)(e)) € C ifb=1andd = 1,

and
o0)d)=d if

. _ a=1,
w(a )(d)—{ e =1=d ifd =1.
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Hence (a, d), (b, e) € C implies (a *B b, p(a*)(d *p ¢)) € C and p(a*)(d) = d. We
conclude that Q = (B, D, C, ¢) is a characterizing quadruple and the corresponding
Hilbert algebra will be (Aq, * Ag- (1, 1), (0, 1)) according to Theorem 5.10. Evidently,
this is the smallest Hilbert algebra with prescribed Boolean algebra of closed elements
isomorphic to B and prescribed Hilbert algebra of dense elements isomorphic to D and
the construction does not depend on ¢.

(b) Weput C = {(a,d) € B x D | p(a*)(d) = d}. Again, let us verify condition
(iv) from Definition 5.6. We have ¢(1*)(d) = ¢(0)(d) = d and ¢(a*)(1) = 1, i.e.,
({1} xD)U (B x {1}) < C. Assume that (a, d), (b, ¢) € C. By the same arguments as
in the proof of Theorem 5.10 we obtain

¢((a xg b)*)(p(@*)(d *p €)) = ¢(a™)(d *p e.)

But this is equivalent to (a*pb, ¢(a*)(d*pe)) € C. The last condition of (iv) from Def-
inition 5.6 is satisfied by the definition of C and Q = (B, D, C, ¢) is a characterizing
quadruple. Now, the corresponding Hilbert algebra (Aq, *Aq, (1, 1), (0, 1)) accord-
ing to Theorem 5.10 is the greatest Hilbert algebra with prescribed Boolean algebra
of closed elements isomorphic to B, prescribed Hilbert algebra of dense elements
isomorphic to D and chosen action of B on D.

Remark 5.13 The usual motivation for various triple constructions has been the desire for
reduction of algebras under consideration to simpler, or better known algebraic structures. In
our construction we follow the idea of W.C. Nemitz [29] for constructing bounded implica-
tive semilattices having a given Boolean algebra for closed algebra, and a given implicative
semilattice for dense filter. As in [29] we work with an action of the Boolean algebra on
dense elements but instead of making a quotient of the cartesian product of the Boolean
algebra with the dense filter we directly specify possible pairs of elements of our Boolean
algebra and dense elements. The reason is that our represented structure does not have meets
and congruences do not always induce relatively pseudocomplemented posets, i.e., we need
to be more demanding in other conditions.
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