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Abstract
The maximum size, La(n, P ), of a family of subsets of [n] = {1, 2, ..., n} without con-
taining a copy of P as a subposet, has been extensively studied. Let P be a graded poset.
We say that a family F of subsets of [n] = {1, 2, ..., n} contains a rank-preserving copy
of P if it contains a copy of P such that elements of P having the same rank are mapped
to sets of same size in F . The largest size of a family of subsets of [n] = {1, 2, ..., n}
without containing a rank-preserving copy of P as a subposet is denoted by Larp(n, P ).
Clearly, La(n, P ) ≤ Larp(n, P ) holds. In this paper we prove asymptotically optimal
upper bounds on Larp(n, P ) for tree posets of height 2 and monotone tree posets of
height 3, strengthening a result of Bukh in these cases. We also obtain the exact value of
Larp(n, {Yh,s, Y

′
h,s}) and La(n, {Yh,s, Y

′
h,s}), where Yh,s denotes the poset on h + s ele-

ments x1, . . . , xh, y1, . . . , ys with x1 < · · · < xh < y1, . . . , ys and Y ′
h,s denotes the dual

poset of Yh,s , thereby proving a conjecture of Martin et. al. [10].
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1 Introduction

In extremal set theory, many of the problems considered can be phrased in the following
way: what is the size of the largest family of sets that satisfy a certain property. The very
first such result is due to Sperner [15] which states that if F is a family of subsets of
[n] = {1, 2 . . . , n} (we write F ⊆ 2[n] to denote this fact) such that no pair F,F ′ ∈ F
of sets are in inclusion F � F ′, then F can contain at most

(
n

�n/2�
)

sets. This is sharp as

shown by
( [n]
�n/2�

)
(the family of all k-element subsets of a set X is denoted by

(
X
k

)
and is

called the kth layer of X). If P is a poset, we denote by ≤P the partial order acting on the
elements of P . Generalizing Sperner’s result, Katona and Tarján [8] introduced the problem
of determining the size of the largest family F ⊆ 2[n] that does not contain sets satisfying
some inclusion patterns. Formally, if P is a finite poset, then a subfamily G ⊆ F is

• a (weak) copy of P if there exists a bijection φ : P → G such that we have φ(x) ⊆ φ(y)

whenever x ≤P y holds,
• a strong or induced copy of P if there exists a bijection φ : P → G such that we have

φ(x) ⊆ φ(y) if and only if x ≤P y holds.

A family is said to be P -free if it does not contain any (weak) copy of P and induced P -free
if it does not contain any induced copy of P . Katona and Tarján started the investigation of
determining

La(n, P ) := max{|F | : F ⊆ 2[n], F is P -free}
and

La∗(n, P ) := max{|F | : F ⊆ 2[n], F is induced P -free}.
The above quantities have been determined precisely or asymptotically for many classes
of posets (see [6] for a nice survey), but the question has not been settled in general.
Recently, Methuku and Pálvölgyi [11] showed that for any poset P , there exists a con-
stant CP such that La(n, P ) ≤ La∗(n, P ) ≤ CP

(
n

�n/2�
)

holds (whereas the inequality

La(n, P ) ≤ |P |( n
�n/2�

)
follows trivially from a result of Erdős [4]). However, it is still

unknown whether the limits π(P ) = limn→∞ La(n,P )

( n
�n/2�)

and π∗(P ) = limn→∞ La∗(n,P )

( n
�n/2�)

exist. In all known cases, the asymptotics of La(n, P ) and La∗(n, P ) were given by “tak-
ing as many middle layers as possible without creating an (induced) copy of P ”. Therefore
researchers of the area believe the following conjecture that appeared first in print in [7].

Conjecture 1.1 (i) For any poset P let e(P ) denote the largest integer k such that for
any j and n the family ∪k

i=1

( [n]
j+i

)
is P -free. Then π(P ) exists and is equal to e(P ).

(ii) For any poset P let e∗(P ) denote the largest integer k such that for any j and n the
family ∪k

i=1

( [n]
j+i

)
is induced P -free. Then π∗(P ) exists and is equal to e∗(P ).

Let P be a graded poset with rank function ρ. Given a family F , a subfamily G ⊆ F
is a rank-preserving copy of P if G is a (weak) copy of P such that elements having the
same rank in P are mapped to sets of same size in G. More formally, G ⊆ F is a rank-
preserving copy of P if there is a bijection φ : P → G such that |φ(x)| = |φ(y)| whenever
ρ(x) = ρ(y) and we have φ(x) ⊆ φ(y) whenever x ≤P y holds. A family F is rank-
preserving P -free if it does not contain a rank-preserving copy of P . In this paper, we study
the function

Larp(n, P ) := max{|F | : F ⊆ 2[n], F is rank-preserving P -free}.
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In fact, our problem is a natural special case of the following general problem introduced
by Nagy [13]. Let c : P → [k] be a coloring of the poset P such that for any x ∈ [k] the
pre-image c−1(x) is an antichain. A subfamily G ⊆ F is called a c-colored copy of P in
F if G is a (weak) copy of P and sets corresponding to elements of P of the same color
have the same size. Nagy investigated the size of the largest family F ⊆ 2[n] which does
not contain a c-colored copy of P , for several posets P and colorings c. Note that when c

is the rank function of P , then this is equal to Larp(n, P ). Nagy also showed that there is a
constant CP such that Larp(n, P ) ≤ CP

(
n

�n/2�
)
.

A complete multi-level poset is a poset in which every element of a level is related to
every element of another level. Note that any rank-preserving copy of a complete multi-level
poset P is also an induced copy of P . In fact, in [14], Patkós determined the asymptotics of
La∗(n, P ), for some complete multi-level posets P by finding a rank preserving copy of P .

By definition, for every graded poset P we have La(n, P ) ≤ Larp(n, P ). Boehnlein
and Jiang [1] gave a family of posets P showing that the difference between La∗(n, P )

and La(n, P ) can be arbitrarily large. Since their posets embed into a complete multi-level
poset of height 3 in a rank-preserving manner, the above mentioned result of Patkós implies
that for the same family of posets, Larp(n, P ) can be arbitrarily smaller than La∗(n, P ).
However, it would be interesting to determine if the opposite phenomenon can occur.

1.1 Our Results

1.1.1 Asymptotic Results

For a poset P its Hasse diagram, denoted by H(P ), is a graph whose vertices are elements
of P , and xy is an edge if x < y and there is no other element z of P with x < z < y. We
call a poset, tree poset if H(P ) is a tree. A tree poset is called monotone increasing if it has
a unique minimal element and it is called monotone decreasing if it has a unique maximal
element. A tree poset is monotone if it is either monotone increasing or decreasing.

A remarkable result concerning Conjecture 1.1 is that of Bukh [2], who verified Conjec-
ture 1.1 (i) for tree posets T by showing that La(n, T ) = (h(T ) − 1 + o(1))

(
n

� n
2 �

)
where

h(T ) denotes the height of T . In the following two results we strengthen his result in two
cases, by showing that the answer is asymptotically the same, even if one only forbids
rank-preserving copies of T (instead of forbidding all copies of T ).

Theorem 1.2 Let T be any tree poset of height 2. Then we have

Larp(n, T ) =
(

1 + OT

(√
log n

n

))(
n

� n
2 �

)
.

Theorem 1.3 Let T be any monotone tree poset of height 3. Then we have

Larp(n, T ) =
(

2 + OT

(√
log n

n

))(
n

� n
2 �

)
.

The lower bounds in Theorem 1.2 and Theorem 1.3 follow simply by taking one and two
middle layers of the Boolean lattice of order n, respectively. It is a natural question to ask
whether Bukh’s theorem can be strengthened similarly for other tree posets.
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1.1.2 An Exact Result

The dual of a poset P is the poset P ′ on the same set with the partial order relation of P

replaced by its inverse, i.e., x ≤ y holds in P if and only if y ≤ x holds in P ′. Let Yh,s

denote the poset on h+ s elements x1, . . . , xh, y1, . . . , ys with x1 < · · · < xh < y1, . . . , ys

and let Y ′
h,s denote the dual of Yh,s . Let �(n, h) denote the number of elements on the h

middle layers of the Boolean lattice of order n, so �(n, h) = ∑h
i=1

( n

� n−h
2 �+i

)
.

Investigation on La(n, Yh,s) was started by Thanh in [16], where asymptotic results were
obtained. Thanh also gave a construction showing that La(n, Yh,s) > �(n, h), from which
it easily follows that La(n, Y ′

h,s) > �(n, h) as well. Interestingly, De Bonis, Katona and
Swanepoel [3] showed that if both Y2,2 and Y ′

2,2 are forbidden, then an exact result can be
obtained: La(n, {Y2,2, Y

′
2,2}) = �(n, 2). Later this was extended by Methuku and Tompkins

[12], who proved La(n, {Yh,2, Y
′
h,2}) = �(n, h), and La∗(n, {Y2,2, Y

′
2,2}) = �(n, 2). Very

recently, Martin, Methuku, Uzzell and Walker [10] and independently, Tompkins and Wang
[17] showed that La∗(n, {Yh,2, Y

′
h,2}) = �(n, h). We prove the following theorem which

extends all of these previous results and proves a conjecture of [10].

Theorem 1.4 For any pair s, h ≥ 2 of positive integers, there exists n0 = n0(h, s) such
that for any n ≥ n0 we have

Larp(n, {Yh,s, Y
′
h,s}) = �(n, h).

The lower bound trivially follows by taking h middle layers of the Boolean lattice of
order n. (Note that adding any extra set creates a rank-preserving copy of either Yh,s or
Y ′

h,s .) Moreover, any rank-preserving copy of Yh,s (respectively Y ′
h,s) is also an induced

copy of Yh,s (respectively Y ′
h,s). Therefore, Theorem 1.4 implies that La∗(n, {Yh,s, Y

′
h,s}) =

La(n, {Yh,s, Y
′
h,s}) = �(n, h).

Remark One wonders if the condition h ≥ 2 is necessary in Theorem 1.4. Katona and
Tarján [8] proved that La(n, {Y1,2, Y

′
1,2}) = (

n
n/2

)
if n is even and La(n, {Y1,2, Y

′
1,2}) =

2
(

n−1
(n−1)/2

)
>

(
n

n/2

)
if n is odd. The following construction shows that no matter how little we

weaken the condition of being {Y1,2, Y
′
1,2}-free, there are families strictly larger than

(
n

n/2

)

even in the case n is even. Let us define

F2,3 =
{
F ∈

( [n]
n/2 + 1

)
: n − 1, n ∈ F

}
∪

{
F ∈

( [n]
n/2

)
: |F ∩ {n − 1, n}| ≤ 1

}
.

Observe that F2,3 is {Y1,2, Y
′
1,3}-free and its size is

(
n−2

n/2−1

) + (
(

n
n/2

) − (
n−2

n/2−2

)
) >

(
n

n/2

)
.

2 Proofs

Using Chernoff’s inequality, it is easy to show (see for example [7]) that the number of sets
F ⊂ [n] of size more than n/2 + 2

√
n log n or smaller than n/2 − 2

√
n log n is at most

O

(
1

n3/2

(
n

n/2

))
. (1)

Thus in order to prove 1.2 and 1.3, we can assume the family only contains sets of size more
than n/2 − 2

√
n log n and smaller than n/2 + 2

√
n log n.
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2.1 Proof of 1.2: Trees of Height Two

The proof of 1.2 follows the lines of a reasoning of Bukh’s [2]. The new idea is that we
count the number of related pairs between two fixed levels as detailed in the proof below.

Let F be a T -free family of subsets of [n] and let the number of elements in T be t .
Using (1), we can assume F only contains sets of sizes in the range [n/2−2

√
n log n, n/2+

2
√

n log n]. A pair of sets A,B ∈ F with A ⊂ B is called a 2-chain in F . It is known by a
result of Kleitman [9] that the number of 2-chains in F is at least

(
|F | −

(
n

� n
2 �

))
n

2
. (2)

For any i such that n/2 − 2
√

n log n ≤ i ≤ n/2 + 2
√

n log n, let Fi := F ∩ ([n]
i

)
.

Claim 2.1 For any i < j , the number of 2-chains A ⊂ B with A ∈ Fi and B ∈ Fj is at
most (t − 2)(|Fi | + ∣∣Fj

∣
∣).

Proof Suppose otherwise, and construct an auxiliary graph G whose vertices are elements
of Fi and Fj , and two vertices form an edge of G if the corresponding elements form a 2-
chain. This implies that G contains more than (t − 2)(|Fi | +

∣
∣Fj

∣
∣) edges, so it has average

degree more than 2(t − 2). One can easily find a subgraph G′ of G with minimum degree at
least t−1, into which we can greedily embed any tree with t vertices. So in particular, we can
find T in G′ which corresponds to a rank-preserving copy of T into F , a contradiction.

Claim 2.1 implies that the total number of 2-chains in F is at most
∑

n/2−2
√

n log n≤i<j≤n/2+2
√

n log n

(t − 2)(|Fi | + ∣
∣Fj

∣
∣) = (t − 2)(4

√
n log n) |F | .

Combining this with (2), and simplifying we get

|F |
(

1 − 8(t − 2)

√
log n

n

)

≤
(

n

� n
2 �

)
.

Rearranging, we get

|F | ≤
(

n

� n
2 �

)(

1 + OT

(√
log n

n

))

as desired.

2.2 Proof of 1.3: Monotone Trees of Height Three

First note that it is enough to prove the statement for T = Tr,3 the monotone increasing
tree poset of height three where all elements, except its leaves (i.e., its elements on the
top level) have degree r . Let F ⊆ 2[n] be a family of sets which does not contain any
rank-preserving copies of Tr,3. Using (1) we can assume that for any set F ∈ F we have
|F − n/2| ≤ 2

√
n log n.

We will prove that for such a family,
∑

F∈F
|F |!(n − |F |)! ≤ (2 + Or(1/n))n! (3)
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holds. This is enough as dividing by n! yields

|F |
(

n
�n/2�

) ≤
∑

F∈F

1
(

n
|F |

) ≤ (2 + Or(1/n))

and hence the statement of the theorem will follow.
Observe that

∑
F∈F |F |!(n−|F |)! is the number of pairs (F, C) where F ∈ F ∩C and C

is a maximal chain in [n]. We will use the chain partitioning method introduced in [5]. For
any G ∈ F we define CG to be the set of maximal chains C in [n] such that the smallest set
of C ∩ F is G.

To prove (3) it is enough to show that for any fixed G ∈ F the number of pairs (F,C)

with F ∈ F ∩ C, C ∈ CG is at most (2 + Or(1/n))|CG|. We count the number of these
pairs (F, C) in three parts.

Firstly, the number of pairs where either F = G or F is the second smallest element of
F ∩ C is at most 2|CG| (there might be chains in CG with C ∩ F = {G}).

Let us consider the following sub-partition of CG. For any G � G′ ∈ F let CG,G′ denote
the set of maximal chains C such that G and G′ are the smallest and second smallest sets
in F ∩ C, respectively. Observe that |CG,G′ | = mG · mG,G′ · (n − |G′|)!, where mG is the
number of chains from ∅ to G that do not contain any other sets from F and mG,G′ is the
number of chains from G to G′ that do not contain any other sets from F .

Secondly, let us now count the pairs (F, C) such that F ∈ F∩C, C ∈ CG,G′ and there are
less than r2 sets F ′ ∈ F with |F ′| = |F |, G′ � F ′. To this end, let us fix G′ and count such
pairs (F, C). All sets in F have size at most n/2 + 2

√
n log n and at least n/2 − 2

√
n log n,

so |G′| ≥ n/2 − 2
√

n log n. For a set F � G′ the number of chains in CG,G′ that contain F

is mGmG,G′ · (|F |− |G′|)!(n−|F |)!, thus we obtain that the number of such pairs is at most

4
√

n log n∑

i=1

r2mGmG,G′ · i!(n − |G′| − i)! ≤ 2r2mGmG,G′(n − |G′| − 1)!

= 2r2

n − |G′| |CG,G′ | ≤ 5r2

n
|CG,G′ |.

Summing this for all G′ we obtain that the total number of such pairs (F, C) of this second

type is at most 5r2

n
|CG|.

Finally, let us count the pairs (F,C) with F ∈ C ∩ F , C ∈ CG,G′ and there are at least
r2 many sets F ′ ∈ F with G′ � F ′, |F ′| = |F |. To this end we group some of the CG,G′ ’s
together. Let

CG,k := ∪G′:|G′|=kCG,G′ , FG,k := {G′ ∈ F : G ⊆ G′, |G′| = k}
and let us introduce the function fG,k : FG,k → [n] by

fG,k(G
′) :=

{
j : ∃ distinct F1, F2, . . . , Fr2 ∈ F , such that G′ ⊆ Fi, |Fi | = j

for all i = 1, 2, . . . , r2
}

,

that is the set of the levels that contains at least r2 many elements from F above G′. Observe
that for any distinct G′

1, G
′
2, . . . , G

′
r ∈ FG,k we have ∩r

i=1fG,k(G
′
i ) = ∅. Indeed, if j ∈

∩r
i=1fG,k(G

′
i ) �= ∅, then one could extend G,G′

1,G
′
2, . . . , G

′
r to a rank-preserving copy of

Tr,3 such that all sets corresponding to leaves of Tr,3 are of size j .
Note that by the assumption on the set sizes of F , the function fG,k maps to [n/2 −

2
√

n log n, n/2 + 2
√

n log n], so its range has size at most 4
√

n log n. As every maximal
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chain contains exactly one set of size j (not necessarily contained in F ), we obtain that the
number of pairs (F, C) with F ∈ F ∩ C, C ∈ CG,k is at most

mG · 4
√

n log n(r − 1)(k − |G|)!(n − k)!. (4)

Indeed, if the size j of F is fixed, then j belongs to fG,k(G
′) for at most r − 1 sets G′ ∈

FG,k , so for this particular j the number of pairs is at most mG · (r − 1)(k − |G|)!(n − k)!.
Summing up (4) for all k > |G| we obtain that the number of pairs (F, C) of this third

type is at most

n/2+2
√

n log n∑

k=|G|+1

mG · 4
√

n log n(r − 1)(k − |G|)!(n − k)! ≤ 8(r − 1)
√

n log n

n − |G| mG(n − |G|)!

≤ 17(r − 1)
√

n log n

n
|CG|.

Adding up the estimates on the number of pairs (F, C) of these 3 types, completes the proof.

2.3 Proof of 1.4: {Yh,s , Y ′
h,s }-free Families

Let F ⊂ 2[n] be a family not containing a rank-preserving copy of Yh,s or Y ′
h,s . First, we

will introduce a weight function. For every F ∈ F , let w(F) = (
n

|F |
)
. For a maximal chain

C, let w(C) = ∑
F∈C∩Fw(F) denote the weight of C. Let Cn denote the set of maximal

chains in [n]. Then

1

n!
∑

C∈Cn

w(C) = 1

n!
∑

C∈Cn

∑

F∈C∩F
w(F) = 1

n!
∑

F∈F
|F |!(n − |F |)!w(F) = |F |.

This means that the average of the weight of the full chains equals the size of F . Therefore
it is enough to find an upper bound on this average. We will partition Cn into some parts and
show that the average weight of the chains is at most �(n, h) in each of the parts. Therefore
this average is also at most �(n, h), when calculated over all maximal chains, which gives
us |F | ≤ �(n, h).

Let G = {F ∈ F | ∃P,Q ∈ F\{F }, P ⊂ F ⊂ Q}. Let A1 ⊂ A2 ⊂ · · · ⊂ Ah−1 be
h − 1 different sets of G. Then we define C(A1, A2, . . . , Ah−1) as the set of those chains
that contain all of A1, A2, . . . Ah−1 and these are the h − 1 smallest elements of G in them.
We also define C− as the set of those chains that contain at most h − 2 elements of G. Then
the sets of the form C(A1, A2, . . . Ah−1) together with C− are pairwise disjoint and their
union is Cn.

Now we will show the average weight within each of these sets of chains is at most
�(n, h). This is easy to see for C−. If C ∈ C−, then |C ∩ F | ≤ h, since every element of
F ∩ C except for the smallest and the greatest must be in G. Therefore w(C) ≤ �(n, h) for
every C ∈ C−, which trivially implies

∑

C∈C−
w(C) ≤ |C−|�(n, h).

Now consider some sets A1 ⊂ A2 ⊂ · · · ⊂ Ah−1 in G such that C(A1, A2, . . . Ah−1)

is non-empty. We will use the notations C(A1, A2, . . . , Ah−1) = Q, |A1| = �1 and n −
|Ah−1| = �2 for simplicity. Note that the chains in Q do not contain any member of F of
size between |A1| and |Ah−1| other than the sets A2, A3 . . . Ah−2. Such a set would be in G
(since it contains A1 and is contained in Ah−1), therefore its existence would contradict the
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minimality of {A1, A2, . . . , Ah−1}. The chains in Q must also avoid all subsets of A1 that
are in G for the same reason.

Let N1 denote the number of chains between ∅ and A1 that avoid the elements of G
(except for A1). Let N2 denote the number of chains between A1 and Ah−1 that contain the
sets A2, A3, . . . , Ah−2, but no other element of F . Then |Q| = N1N2�2!.

Now we will investigate how much the sets of certain sizes can contribute to the sum
∑

C∈Q
w(C). (5)

The sets A1, A2, . . . Ah−1 appear in all chains of Q, so their contribution to the sum is

|Q|
h−1∑

i=1

w(Ai) = |Q|
h−1∑

i=1

(
n

|Ai |
)

≤ |Q|�(n, h − 1).

We have already seen that there are no other sets of F in these chains with a size between
|A1| and |Ah−1|.

If �1 < n
2 − 2

√
n log n, then (by (1)) the contribution coming from the subsets of A1 is

trivially at most

|Q|
�1−1∑

i=0

(
n

i

)
= |Q|O

((
n

n/2

)
1

n3/2

)
.

The contribution coming from supersets of Ah−1 is similarly small if �2 < n
2 − 2

√
n log n.

From now on we consider the cases when �1 ≥ n
2 − 2

√
n log n and �2 ≥ n

2 − 2
√

n log n.
There are no s supersets of Ah−1 of equal size in F , since these would form a rank-

preserving copy of Yh,s together with the sets A1, A2, . . . Ah−1 and some set P ∈ F , P ⊂
A1. (Such a set exists, since A1 ∈ G.)

A superset of Ah−1 of size n − i appears in |Q|(�2
i

)−1
chains of Q. Therefore the total

contribution to the sum (5) by supersets of Ah−1 is at most

|Q|w([n]) +
�2−1∑

i=1

|Q|
(

�2

i

)−1

(s − 1)

(
n

n − i

)
≤ |Q| + |Q|(s − 1)

(
n

� n
2 �

) �2−1∑

i=1

(
�2

i

)−1

= |Q|
(

n

� n
2 �

)
Os

(
1

n

)
.

There are no s subsets of A1 of equal size in F , since these would form a rank-preserving
copy of Y ′

h,s together with the sets A1, A2, . . . Ah−1 and some set Q ∈ F , Ah−1 ⊂ Q.
(Such a set exists, since Ah−1 ∈ G.)

A subset of A1 of size i appears in at most
(
�1
i

)−1
�1!N2�2! chains of Q. Therefore the

total contribution to the sum (5) by subsets of A1 is at most

�1!N2�2!w(∅) +
�1−1∑

i=1

(
�1

i

)−1

�1!N2�2!(s − 1)

(
n

i

)

≤ �1!N2�2! + �1!N2�2!(s − 1)

(
n

� n
2 �

) �1−1∑

i=1

(
�1

i

)−1

(6)

= �1!N2�2!
(

n

� n
2 �

)
Os

(
1

n

)
. (7)
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We will show that if n is large and �1 ≥ n
2 − 2

√
n log n then most chains between ∅ and

A1 avoid the elements of G, therefore N1 is close to �1!. There are at most s − 1 sets of G
on any level (otherwise a rank-preserving copy of Y ′

h,s would be formed), and ∅ �∈ G. There

are �1!
(
�1
i

)−1
chains between ∅ and A1 containing a set of size i. Therefore

�1! − N1 ≤ (s − 1)

�1−1∑

i=1

�1!
(

�1

i

)−1

= �1!O
(

1

n

)
.

This means that for large enough n, we have �1! ≤ 2N1. Then (6) can be continued as

�1!N2�2!
(

n

� n
2 �

)
Os

(
1

n

)
≤ 2N1N2�2!

(
n

� n
2 �

)
Os

(
1

n

)
= |Q|

(
n

� n
2 �

)
Os

(
1

n

)
.

To summarize, we found that the contribution to the sum (5) from the subsets of A1 and the
supersets of Ah−1 is at most

|Q|
(

n

� n
2 �

)
Os

(
1

n

)
.

For large enough n this is smaller than |Q| (�(n, h) − �(n, h − 1)), which means that
∑

C∈Q
w(C) ≤ |Q|�(n, h).

This completes the proof.

Remark We had to use a weighting technique in the above proof because the usual Lubell
method (proving that

∑
F∈F

(
n

|F |
)−1 ≤ h, and deducing |F | ≤ �(n, h) from that) does not

work for this problem. To see this, let h ≥ 3, n ≥ 2h and consider the following set system:

F = {F ∈ [n] | |F | ≤ h − 2 or |F | ≥ n − h + 2}.
For s ≥ 2h−2 this set system is Yh,s-free and Y ′

h,s-free (even in the original sense, not

necessarily in the rank-preserving sense). However, we have
∑

F∈F
(

n
|F |

)−1 = 2(h−1) > h.
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