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Abstract
In this study, we use a systematic approach named the generalized unified method (GUM) 
to construct the general exact solutions of the derivative nonlinear Schrödinger (DNLS) 
family that also includes perturbed terms, which are the Kaup–Newell equation, the Chen–
Lee–Liu equation, and the Gerdjikov–Ivanov equation. The GUM provides more general 
exact solutions with free parameters for nonlinear partial differential equations such that 
some solutions obtained by different exact solution methods, including the hyperbolic 
function solutions, the trigonometric function solutions, and the exponential solutions, are 
derived from these solutions by giving special values to these free parameters. Addition-
ally, the used method reduces a large number of calculations compared to other exact solu-
tion methods, enabling computations to be made in a short, effortless, and elegant way. We 
investigate the DNLS family in this work because of its extensive applications in nonlinear 
optics. Particularly, the obtained optical soliton solutions of the DNLS family are useful 
for describing waves in optics and facilitating the interpretation of the propagation of soli-
tons through optical fibers. Furthermore, this work not only contributes significantly to the 
advancement of soliton dynamics and their applications in photonic systems but also be 
productively used for more equations that occur in mathematical physics and engineering 
problems. Finally, 2D and 3D graphs of some derived solutions are plotted to illustrate 
behaviors of optical soliton.
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1  Introduction

Nonlinear partial differential equations (NPDEs) are powerful tools for modeling nonlinear 
physical phenomena that occur in science and engineering problems. Obtaining numerical or 
exact solutions for NPDEs (Bilal and Ren 2022; Bilal et al. 2021b, 2023b, 2024; Rizvi et al. 
2023, 2024a, b) has attracted the attention of the scientific community from many different 
fields in recent years, more than ever before, in terms of understanding these models in detail 
due to their use in scientific experiments that lead to technological breakthroughs. Therefore, 
improving methods in the process of obtaining solutions is of vital importance in supporting 
scientific advances. Particularly, the optical solitons arising from a wide variety of experimen-
tal and theoretical studies have pervasive significance in diverse physical applications such as 
in water waves, nonlinear acoustics, plasma physics, astrophysics, hydrodynamics, telecom-
munications, quantum field theory, the dynamics of particles, and nonlinear optics. In terms 
of maintaining their shape and energy without distortion over long distances and transmitting 
high-speed data through an optical fiber, these soliton solutions have contributed to the effi-
ciency of optical communication systems in recent years. One of the most important integra-
ble equations as a well-known soliton problem in the physical and engineering sciences is the 
classical nonlinear Schrödinger (NLS) equation given by:

The NLS equation and its various forms play an important role in the understanding of 
optical solitons (Bilal et al. 2021, 2021a, 2023a, b; Geng et al. 2023; Chen 2023; Bo et al. 
2023; Xu et al. 2023; Wen et al. 2023; Rizvi et al. 2024c). Due to its versatile application 
in many engineering problems such as in the field of transcontinental services and transo-
ceanic transmission, several generic deformations of the NLS equation under higher-order 
perturbations have been proposed depending on the nature of the problems. Some of these 
NLS equations have been derived from the following system (Abhinav et al. 2018; Zhu and 
Chen 2021), called the derivative nonlinear Schrödinger (DNLS) family.

where q = q(x, t) and r = r(x, t) are complex-valued functions with x and t being independ-
ent variables that are spatial and temporal variables respectively. Some of the important 
DNLS equations derived from Eq. (1.2) with some special parameters are presented below.

Taking � = −
1

2
 and r = −q∗ reduces the system (1.2) to the Kaup–Newell (KN) equation 

(Kaup et al. 1978), also called DNLS I

modeling to the description of sub-pico-second pulse which spreads via the single-mode 
optical fibers (Triki et al. 2019; Jawad et al. 2019a; Arshed et al. 2018).

Taking � = −
1

4
 and r = −q∗ reduces the system (1.2) to the Chen–Lee–Liu (CLL) equation 

(Chen 2023), also called DNLS II

(1.1)iqt +
1

2
qxx + |q|2q = 0.

(1.2)

{
qt = iqxx − (4� + 1)q2rx − 4�qqxr +

i

2
(1 + 2�)(4� + 1)q3r2,

rt = −irxx − (4� + 1)r2qx − 4�rrxq −
i

2
(1 + 2�)(4� + 1)q2r3,

(1.3)iqt + qxx − i(|q|2q)x = 0,

(1.4)iqt + qxx − i|q|2qx = 0,
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modeling to the transmission of ultrashort optical pulses (Khater 2023a, b; Ouahid et al. 
2023).

Taking � = 0 and r = −q∗ reduces the system (1.2) to the Gerdjikov–Ivanov (GI) equa-
tion (Gerdjikov and Ivanov 1982), also called DNLS III

modeling to the propagation parallel to the ambient magnetic field for the Alfvén waves 
(Mjølhus 1989; Xu et al. 2023; Ding et al. 2019). Here asterisk(*) sign denotes complex 
conjugation.

These three well-known DNLS equations, which play critical roles in various applied 
fields by modeling physics, mathematics, and engineering problems, have received increas-
ing attention recently. Particularly, the effects of high-order perturbations arising in the 
modern telecommunication industry and social media communications are being investi-
gated extensively. Optical soliton solutions of the KN equation were found by Biswas et al. 
(2018) using modified simple equation method and trial equation method, by Esen et al. 
(2022) using new Kudryashovs method and generalized projective Riccati equations, by 
Jawad et al. (2019b) using csch-function method. The CLL equation studied by Akinyemi 
et al. (2021) using 

(
G′

G

)
-expansion method, by Mohamed et al. (2022) using modified gen-

eralized exponential rational function method, by Arnous et al. (2022) using the enhanced 
Kudryashov and improved extended tanh-function methods. Moreover, Bilal et al. (2021) 
not only investigated optical soliton solutions of the CLL equation of monomode fibers by 
applying three different exact solution methods, which are the extended sinh-Gordon equa-
tion expansion method, logarithmic transformation, and the ansatz functions method but 
also discussed modulation instability analysis of the CLL equation. Manafian and Lake-
stani (2016) applied the improved tan(�

2
)-expansion method to study optical soliton solu-

tions for the GI equation. The bright soliton solutions were employed for the GI equation 
with Lie symmetry analysis by Biswas et al. (2017). Optical soliton perturbation of the GI 
equation was studied by Biswas et al. (2018b) by using modified simple equation method. 
Zhang and Fan (2020) applied the inverse scattering method for the GI equation with a 
nonzero boundary at infinity. Li et  al. (2021) studied the nonlocal GI equation by con-
structing its 2nd-fold Darboux transformation and had the bright-dark soliton, breather, 
rogue wave, kink, W-shaped soliton, and periodic solutions. The GI equation with nonzero 
boundary at infinity was studied by Luo and Fan (2021) by applying the Dbar-dressing 
method. The nonlinear GI equation with the M-fractional operator was studied by imple-
menting the modified exponential function method by Ismael et  al. (2023). Rizvi et  al. 
(2023) studied the GI equation using the polynomial method’s complete discrimination 
system, which plays a crucial role in performing quantitative and qualitative evaluations, 
and studying equilibrium points, phase diagrams, bifurcation behavior.

In this study, we are dealing with the perturbed Kaup–Newell (KN), the perturbed 
Chen–Lee–Liu (CLL) equation, and the perturbed Gerdjikov–Ivanov (GI) equation with 
three Hamiltonian-type perturbation terms that come with full nonlinearity. The mathemat-
ical forms of the perturbed KN equation, the perturbed CLL equation and the perturbed GI 
equation are given as follows, respectively:

(1.5)iqt + qxx − iq2q∗
x
+

1

2
|q|4q = 0,

(1.6)iqt + aqxx − ib(|q|2q)x = i
[
�qx + �(|q|2mq)x + �(|q|2m)xq

]
.
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The perturbed KN equation and the perturbed CLL equation describe the propagation of 
sub-picosecond pulses in the optical fiber. The terms on the left-hand side in Eqs. (1.6) 
and (1.7) stand for the time evolution, the group velocity dispersion, and a special form of 
nonlinearity, respectively.

The perturbed GI equation describes the dynamics of soliton propagation of the ultrashort 
signal through optical fibers, photonic crystal fibers (PCF), and metamaterial. The terms 
on the left-hand side in Eq. (1.8) stand for the time evolution, the group velocity disper-
sion, quintic nonlinearity, and nonlinear dispersion, respectively. The terms on the right-
hand side for these three equations are coming from the perturbation effects account for the 
intermodal dispersion, the self-steepening, and the nonlinear dispersion, respectively. Also, 
the full nonlinearity parameter is demonstrated by m for these three equations.

Various approaches by many scientists have been developed to solve the perturbed KN 
equation, the perturbed CLL equation, and the perturbed GI equation. Stability analysis and 
conservation laws were investigated by Yusuf et  al. (2018) for the perturbed KN equation. 
Elliptic periodic, chirped solitons and trigonometric solutions were obtained based on the Jac-
obian elliptic functions theory for the perturbed KN equation by Salas et al. (2020). Arshad 
et al. (2023); Qian et al. (2021) found analytical solutions of the fractional-order perturbed KN 
equation by employing generalized exp(−�(�))-expansion method and improved F-expansion. 
Hu et al. (2021) used the modified extended simple equation method to obtain the solution on 
bright-dark and multi-wave novel soliton structures. Esen et al. (2021) obtained solitary wave 
solutions of the CLL equation using the Sardar subequation method, taking the full nonlinear 
parameter m = 1 . After obtaining exact solutions for the CLL equation with m = 1 , Abdel-
Gawad (2022) demonstrated the behavior of these solutions represented by figures. Khater 
et al. (2023) investigated analytical and semi-analytical solutions of the CLL equation with the 
full nonlinear parameter m = 1 and depicted them graphically. The perturbed CLL equation 
was solved by seven exact solution methods, which are the sine-Gordon equation method, 
F-expansion method, functional variable method, exp-expansion method, method, trial equa-
tion method, modified simple equation method by Yildirim et al. (2020). The optical soliton 
solutions for the perturbed CLL equation were constructed by Baskonus et al. (2021) with the 
exp(−�(�))-expansion method and by Yokus et  al. (2021) with modified 

(
1

G′

)
-expansion 

method and modified Kudryashov methods. Optical solitons of the perturbed CLL equation 
with arbitrary refractive index were obtained by Kudryashov (2021) via the Jacobi and the 
Weierstrass elliptic functions. Houwe et  al. (2021) studied the perturbed CLL equation to 
obtain the chirped solitary waves. The semi-inverse variational principle applied to the per-
turbed GI equation by Biswas et al. (2017) to get Chirp-free bright optical solitons solutions. 
Obtaining optical soliton solutions for perturbed GI equation was investigated by Kaur and 
Wazwaz (2018) using the exp(−�(�))-expansion method and 

(
G′

G

)
-expansion method, by Bis-

was et al. (2018) using the extended trial equation method, by Biswas et al. (2018a) using the 
trial equation method, by Biswas et al. (2018) using the extended Kudryashov’s method, and 
by Onder et al. (2023) using the Sardar sub-equation and the modified Kudryashov’s methods. 
Arshed (2018) developed traveling wave solutions for the perturbed GI equation by using 
exp(−�(�))-expansion method and the Kudryashov method. The bright, dark, dark-bright, sin-
gular, and combined singular optical solitons are investigated for Hamiltonian type perturbed 

(1.7)iqt + aqxx + ib|q|2qx = i
[
�qx + �(|q|2mq)x + �(|q|2m)xq

]
,

(1.8)iqt + aqxx + b|q|4q + icq2q∗
x
= i

[
�qx + �(|q|2mq)x + �(|q|2m)xq

]
,
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GI equation using the sine-Gordon equation method by Yasar et al. (2018). Improved projec-
tive Riccati equations method applied to the perturbed GI equation by Al-Kalbani et al. (2021) 
to obtain bright, kink, and singular optical soliton solutions. Shehata et al. (2021) developed 
the new optical solitons of the perturbed GI equation with the balanced modified extended 
tanh-function and the non-balanced Riccati-Bernoulli Sub-ODE methods. Hassan et al. (2021) 
applied the collective variables technique to the perturbed GI equation for obtaining novel 
optical solitons. The modified extended tanh expansion method and exp-function approach 
were used to construct M-fractional optical solitons to the perturbed GI equation by Zafar 
et al. (2022). Rehman et al. (2023) investigated the new soliton solutions of the perturbed GI 
equation with the aid of the hyperbolic extended function method and generalized Kudryash-
ovs method. They produced the dark, bright, periodic, and singular solitons deriving the con-
sidered solutions with the appropriate choice of parameters.

To the best of our knowledge, there is no study in which these three problems with per-
turbed terms of the DNLS family are studied simultaneously. The purpose of this paper is 
to construct the general exact solutions with free parameters based on the generalized uni-
fied method (GUM) for the three members of the DNLS family, which are the perturbed 
Kaup–Newell equation, the perturbed Chen–Lee–Liu equation, and the perturbed Gerd-
jikov–Ivanov equation. Considering the studies in the past which mostly studied unperturbed 
DNLS family, we have obtained more general exact solutions with free parameters for the 
DNLS family with perturbed terms such that hyperbolic, trigonometric, and exponential func-
tion solutions can be also derived from these solutions. Therefore, the obtained results will 
be useful to explain better the propagation of ultrashort optical pulses in fibers in problems 
modeled by the family such as the modern telecommunication industry and social media 
communications.

The organization of this paper is as follows. Firstly, we give a brief description of the gen-
eralized unified method (GUM) in Sect. 2. Then, the exact optical soliton solutions of the per-
turbed KN, the perturbed GI, and the perturbed CLL equations are presented in Sect. 3. After 
summarizing the obtained solutions, physical structures and graphical illustrations of some 
selected solutions for these equations are displayed in the result and discussion part. Lastly, 
conclusive remarks are given in Sect. 5.

2 � Outline of The Generalized Unified Method

In this short section, we describe briefly the generalized unified method (GUM) for solv-
ing nonlinear partial differential equations (NPDEs). The reader is referred to these articles 
Aydemir (2023a, 2023b) for a more detailed discussion. The basic principle of exact solution 
methods based on the Ansatz method for finding exact solutions of NPDEs after reducing 
them to ordinary differential equations (NODEs) is to model the solution forms by finite series 
expansions, mostly represented by various Riccati differential equations (RDEs). The GUM 
expresses the solution of reduced ODEs by finite series expansion as below:

where � = �(�) satisfies the RDE defined � �(�) = �2(�) − �2 with � � =
d�

d�
 and 

� = (�1 + i�2) where �1 and �2 are parameters. The degree of this finite series expansion, 
called the balance parameter, is calculated by using the highest-order linear derivative term 

(2.1)Q(�) = a0 +

M∑
m=1

[
am�

m + bm�
−m

]
,
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and the highest nonlinear term. Substituting the finite series expansion and its derivatives 
with respect to wave variable into reduced ODE gives a system of algebraic equations. This 
system can be solved by any computer algebra systems (CAS) such as Maple or Mathemat-
ica to determine the coefficients of the finite series expansion. Lastly, the combinations of 
these coefficients and the solutions of the RDE provide exact solutions of NPDE with free 
parameters. The general solutions of this RDE are as follows:

where A ≠ 0 , B and C are real arbitrary parameters.

3 � Applications

Obtaining exact solutions provides valuable information for the problems modeled with 
these equations such as the structure of the wave shape and the propagation of nonlinear 
waves. This section contains exact optical soliton solutions of the perturbed Kaup–Newell 
equation (KN), the perturbed Chen–Lee–Liu (CLL) equation, and the Gerdjikov–Ivanov 
(GI) equation which have been obtained by applying the generalized unified method 
(GUM).

3.1 � Exact Optical Soliton Solutions of The Perturbed Kaup–Newell Equation

The perturbed KN equation is given by

Firstly, the wave transformation q(x, t) = Q(�)e−iΩ is applied to the perturbed KN equa-
tion to reduce it to the form of a nonlinear ordinary differential equation (NODE). Q(�) 
represents the shape of the wave pulse in this transformation with the wave variable 
� = x − vt + �0 and the phase of wave Ω = px − wt + Ω0 , where Ω0 , �0 are arbitrary free 
parameters. Substituting q(x, t) = Q(�)e−iΩ and its derivatives into Eq. (3.1), the perturbed 
KN equation is reduced to the NODE. By uncoupling this equation of real and imaginary 
parts, the following two equations are obtained, respectively.

(2.2)�(�) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�1 =
(�1+i�2)

�√
A2+(B+iC)2−A(cosh (2(�1+i�2)(�+�0))

�

(B+iC)+A sinh (2(�1+i�2)(�+�0))
,

�2 =
−(�1+i�2)

�√
A2+(B+iC)2+A(cosh (2(�1+i�2)(�+�0))

�

(B+iC)+A sinh (2(�1+i�2)(�+�0))
,

�3 =
(�1+i�2)(−A+e−2(�1+i�2 )(�+�0 ))

A+e−2(�1+i�2 )(�+�0 )
,

�4 =
−(�1+i�2)(−A+e2(�1+i�2 )(�+�0 ))

A+e2(�1+i�2 )(�+�0 )
,

�5 = −
1

�+�0

(3.1)iqt + aqxx − ib(|q|2q)x − i
[
�qx + �(|q|2mq)x + �(|q|2m)xq

]
= 0.

(3.2)
{

aQ�� − (w + �p + ap2)Q − bpQ3 − �pQ2m+1 = 0,

−(v + 2ap + �) − 3bQ2 − ((2m + 1)� + 2m�)Q2m = 0.
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The statement Q2m =
−(v + 2ap + �) − 3bQ2

(2m + 1)� + 2m�
 obtained from the imaginary part is substi-

tuted into the real part to get the following final equation used for finding exact solutions.

The coefficients of Eq. (3.3) are defined as D =

(
w + �p + ap2 −

�p(v + 2ap + �)

(2m + 1)� + 2m�

)
 and

E =

(
bp −

3�bp

(2m + 1)� + 2m�

)
 for simplicity. Hence, Eq. (3.3) is stated as follows:

Balancing between nonlinear and linear effects Q3 and Q′′ gives this simple equation 
3M = M + 2 . From here, the balance parameter is M = 1 . Using this balance parameter, we 
get the following finite series expansion for Q to explore the solutions.

where a0, a1 and b1 are coefficients of � which are determined later. Substituting Eq. (3.5) 
and its derivatives into Eq. (3.4) gives different power of � . All the expressions having the 
same order of � are brought together, then equating the coefficients of the same power of � 
to zero gives a system of nonlinear algebraic equations with a0, a1, b1 , and � . We obtain the 
following sets of parameters solving this algebraic equations system under the constraint 
(2m + 1)� + 2m� ≠ 0.

Set 1.
a0 = 0,      a1 = ∓

√
2a

E
      b1 = 0,      � = ∓

√
−D

2a
,

Set 2.
a0 = 0,      a1 = 0,      b1 = ∓

√
2a

E
�2      � = ∓

√
−D

2a
,

Set 3.
a0 = 0,      a1 =

b1

�2
,      b1 = ∓

√
2a

E
�2      � = ∓

√
−D

8a
,

Set 4.
a0 = 0,      a1 = −

b1

�2
,      b1 = ∓

√
2a

E
�2      � = ∓

√
D

4a
.

Before expressing briefly the representative general exact solutions for the perturbed KN 
equation, we list all solutions derived from (3.5) plugging these 4 coefficient sets along with 
Eq. (2.2) for providing clarity in the application of the method. Throughout this section, the 
first index n indicates which one of � solution in (2.2) is used and the second index m shows 
the set number above used in un,m . In this context, substituting the coefficients from set 1 to set 
4 along with �1 into (3.5) gives solutions respectively as follows:

(3.3)

aQ�� −

(
w + �p + ap2 −

�p(v + 2ap + �)

(2m + 1)� + 2m�

)
Q −

(
bp −

3�bp

(2m + 1)� + 2m�

)
Q3 = 0.

(3.4)aQ�� − DQ − EQ3 = 0.

(3.5)Q(�) = a0 + a1�(�) + b1�
−1(�)

(3.6)q1,1(x, t) = ∓

�
−D

E

⎛⎜⎜⎝

√
A2+(B+iC)2−A cosh

�√
−2D

a
�

�

(B+iC)∓A sinh

�√
−2D

a
�

�
⎞⎟⎟⎠
e−iΩ,
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Substituting the coefficients from set 1 to set 4 along with �2 into (3.5) gives the following 
solutions:

Substituting the coefficients from set 1 to set 4 along with �3 and �4 into (3.5), that gives

(3.7)q1,2(x, t) = ∓

�
−D

E

⎛
⎜⎜⎝

(B+iC)∓A sinh

�√
−2D

a
�

�

√
A2+(B+iC)2−A cosh

�√
−2D

a
�

�
⎞
⎟⎟⎠
e−iΩ,

(3.8)q1,3(x, t) = ∓
1

2

�
−D

E

⎛
⎜⎜⎜⎜⎜⎜⎝

√
A2+(B+iC)2−A cosh

�√
−D

2a
(�+�0)

�

(B+iC)∓A sinh

�√
−D

2a
(�)

�

+
(B+iC)∓A sinh

�√
−D

2a
�

�

√
A2+(B+iC)2−A cosh

�√
−D

2a
�

�

⎞
⎟⎟⎟⎟⎟⎟⎠

e−iΩ,

(3.9)q1,4(x, t) = ∓

�
D

2E

⎛
⎜⎜⎜⎜⎜⎜⎝

√
A2+(B+iC)2−A cosh

�√
D

a
�

�

(B+iC)∓A sinh

�√
D

a
(�)

�

−
(B+iC)∓A sinh

�√
D

a
�

�

√
A2+(B+iC)2−A cosh

�√
D

a
�

�

⎞
⎟⎟⎟⎟⎟⎟⎠

e−iΩ.

(3.10)q2,1(x, t) = ∓

�
−D

E

⎛⎜⎜⎝

√
A2+(B+iC)2+A cosh

�√
−2D

a
�

�

(B+iC)∓A sinh

�√
−2D

a
�

�
⎞⎟⎟⎠
e−iΩ,

(3.11)q2,2(x, t) = ∓

�
−D

E

⎛⎜⎜⎝

(B+iC)∓A sinh

�√
−2D

a
�

�

√
A2+(B+iC)2+A cosh

�√
−2D

a
�

�
⎞⎟⎟⎠
e−iΩ,

(3.12)q2,3(x, t) = ∓
1

2

�
−D

E

⎛
⎜⎜⎜⎜⎜⎜⎝

√
A2+(B+iC)2+A cosh

�√
−D

2a
�

�

(B+iC)∓A sinh

�√
−D

2a
(�)

�

+
(B+iC)∓A sinh

�√
−D

2a
�

�

√
A2+(B+iC)2+A cosh

�√
−D

2a
�

�

⎞
⎟⎟⎟⎟⎟⎟⎠

e−iΩ,

(3.13)q2,4(x, t) = ∓

�
D

2E

⎛
⎜⎜⎜⎜⎜⎜⎝

√
A2+(B+iC)2+A cosh

�√
D

a
�

�

(B+iC)∓A sinh

�√
D

a
(�)

�

−
(B+iC)∓A sinh

�√
D

a
�

�

√
A2+(B+iC)2+A cosh

�√
D

a
�

�

⎞
⎟⎟⎟⎟⎟⎟⎠

e−iΩ.
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where the wave variable � = x − vt + �0 , the phase of wave Ω = px − wt + Ω0 , 
D =

(

w + �p + ap2 −
�p(v + 2ap + �)
(2m + 1)� + 2m�

)

 and E =
(

bp −
3�bp

(2m + 1)� + 2m�

)

 under the constraint 

(2m + 1)� + 2m� ≠ 0.

3.2 � Exact Optical Soliton Solutions of The Perturbed Chen–Lee–Liu Equation

The perturbed CLL equation is given by

The perturbed CLL equation is reduced to NODE using the wave transformation 
q(x, t) = Q(�)e−iΩ similarly. Substituting q(x, t) = Q(�)e−iΩ and its derivatives into Eq. 
(3.18), then the reduced NODE is obtained. Splitting the real and imaginary parts of the 
NODE, the following two equations are obtained, respectively.

Substituting Q2m =
−(v + 2ap + �) + bQ2

(2m + 1)� + 2m�
 statement obtained from the imaginary part into 

the real part that gives

The coefficients of Eq. (3.20) are defined as D =

(
w + �p + ap2 −

�p(v + 2ap + �)

(2m + 1)� + 2m�

)
 

and

E =

(
−bp +

�bp

(2m + 1)� + 2m�

)
 for simplicity. Hence, Eq. (3.20) is stated as follows:

(3.14)q3,1(x, t) = ∓

�
−D

E

⎛
⎜⎜⎝
−A + e

∓

√
−2D

a
�

A + e
∓

√
−2D

a
�

⎞
⎟⎟⎠
e−iΩ,

(3.15)q3,2(x, t) = ∓

�
−D

E

⎛
⎜⎜⎝
A + e

∓

√
−2D

a
�

−A + e
∓

√
−2D

a
�

⎞
⎟⎟⎠
e−iΩ,

(3.16)q3,3(x, t) = ∓

�
−D

E

⎛⎜⎜⎝
A2 + e

∓

√
−2D

a
�

−A2 + e
∓

√
−2D

a
�

⎞⎟⎟⎠
e−iΩ,

(3.17)q3,4(x, t) = ∓

�
D

2E

⎛⎜⎜⎝
4Ae

∓

√
D

a
�

−A2 + e
∓2

√
D

a
�

⎞⎟⎟⎠
e−iΩ

(3.18)iqt + aqxx + ib|q|2qx − i
[
�qx + �(|q|2mq)x + �(|q|2m)xq

]
= 0.

(3.19)
{

aQ�� − (w + �p + ap2)Q + bpQ3 − �pQ2m+1 = 0,

−(v + 2ap + �) + bQ2 − ((2m + 1)� + 2m�)Q2m = 0.

(3.20)

aQ�� −

(
w + �p + ap2 −

�p(v + 2ap + �)

(2m + 1)� + 2m�

)
Q −

(
−bp +

�bp

(2m + 1)� + 2m�

)
Q3 = 0.
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Balancing between nonlinear and linear terms Q3 and Q′′ gives this simple equation 
3M = M + 2 . From here, the balance parameter is M = 1 . Using this balance parameter, we 
get the following finite series expansion for Q to explore the solutions

where a0, a1 and b1 are coefficients of � which are determined later. Substituting Eq. (3.22) 
and its derivatives into Eq. (3.21) gives different power of � . Because of having the same 
NODE equation for perturbed KN and CLL equations, we obtain also the same coefficients 
and solution structures from Eqs. (3.6) to (3.17) for perturbed CLL equation but under dif-
ferent statement for D and E.

3.3 � Exact Optical Soliton Solutions of The Perturbed Gerdjikov–Ivanov Equation

The perturbed GI equation is given by

Firstly, the wave transformation q(x, t) = Q(�)e−iΩ is applied to reduce the perturbed GI 
equation to the form of a nonlinear ordinary differential equation. Q(�) represents the shape 
of the wave pulse in this transformation with the wave variable � = x − vt + �0 and the 
phase of wave Ω = px − wt + Ω0 , where Ω0 , �0 are arbitrary free parameters. Substituting 
q(x, t) = Q(�)e−iΩ , q∗(x, t) = Q(�)eiΩ and its derivatives into Eq. (3.23), then the reduced 
NODE is obtained. By decomposing the NODE into real and imaginary parts, the follow-
ing two equations are obtained, respectively.

The statement Q2m =
−(v + 2ap + �) + cQ2

(2m + 1)� + 2m�
 obtained from the imaginary part is substi-

tuted into the real part to get the following final equation used for finding exact solutions.

The coefficients of Eq. (3.25) are defined as D =

(
w + �p + ap2 −

�p(v + 2ap + �)

(2m + 1)� + 2m�

)
 

and

E =

(
cp +

�cp

(2m + 1)� + 2m�

)
 for simplicity. Therefore, Eq. (3.25) is stated as 

follows:

(3.21)aQ�� − DQ − EQ3 = 0.

(3.22)Q(�) = a0 + a1�(�) + b1�
−1(�)

(3.23)iqt + aqxx + b|q|4q + i
[
cq2q∗

x
− �qx − �(|q|2mq)x − �(|q|2m)xq

]
= 0.

(3.24)
{

aQ�� − (w + �p + ap2)Q − cpQ3 + bQ5 − �pQ2m+1 = 0,

−(v + 2ap + �) + cQ2 − ((2m + 1)� + 2m�)Q2m = 0.

(3.25)aQ′′ −
(

w + �p + ap2 −
�p(v + 2ap + �)
(2m + 1)� + 2m�

)

Q −
(

cp +
�cp

(2m + 1)� + 2m�

)

Q3 + bQ5 = 0.

(3.26)aQ�� − DQ − EQ3 + bQ5 = 0.
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Balancing between the linear term of the highest order Q′′ with the nonlinear term of the 
highest degree Q5 gives this simple equation 5M = M + 2 . From here, it is M =

1

2
 . How-

ever, Eq. (3.26) requires the transformation Q(�) = R
1

2 (�) to obtain a useful balance num-
ber for finite series expansion, then

After simplifying the Eq. (3.27) that gives:

Balancing between nonlinear and linear effects R4 and RR′′ in Eq. (3.28), we find 
4K = 2K + 2 so that K = 1 . Using this balance number, we get the following finite series 
expansion for R to explore the solutions.

where a0, a1 and b1 are coefficients of � which are determined later. Substituting Eq. 
(3.29) and its derivatives into Eq. (3.26) with Q(�) = R

1

2 (�) gives different power of � . 
All the expressions having the same order of � are brought together, then equating the 
coefficients of the same power of � to zero gives a system of nonlinear algebraic equa-
tions with a0, a1, b1 , and � . Solving this algebraic equations system under the constraints 
3E2 + 16Db = 0 and (2m + 1)� + 2m� ≠ 0 , we obtain the following sets of parameters:

Set 1.
a0 =

3E

8b
,      a1 =

√
−3ab

2b
      b1 = a1�2,      � =

√
−ab(9E2+32Db)

8ab
,

Set 2.
a0 =

3E

8b
,      a1 = −

√
−3ab

2b
      b1 = a1�2,      � =

√
−ab(9E2+32Db)

8ab
,

Set 3.
a0 =

3E

8b
,      a1 =

√
−3ab

2b
      b1 = a1�2,      � = −

√
−ab(9E2+32Db)

8ab
,

Set 4.
a0 =

3E

8b
,      a1 = −

√
−3ab

2b
      b1 = a1�2,      � = −

√
−ab(9E2+32Db)

8ab
,

Before expressing briefly the representative general solutions for the perturbed GI equation, 
we list all derived solutions plugging these 4 coefficient sets along with Eq. (2.2) for provid-
ing clarity in the application of the method. Throughout this section, the first index n indicates 
which one of � solution in (2.2) is used and the second index m shows the set number above 
used in un,m . In this context, substituting the coefficients from set 1 to set 4 along with �1 into 
(3.29) with q(x, t) = Q(�)e−iΩ and Q(�) = R

1

2 (�) gives solutions respectively as follows:

(3.27)
a

4

(
−R

−3

2 R�2 + 2R
−1

2 R��
)
− DR

1

2 − ER
3

2 + bR
5

2 = 0.

(3.28)
a

4

(
−R�2 + 2RR��

)
− DR2 − ER3 + bR4 = 0.

(3.29)R(�) = a0 + a1�(�) + b1�
−1(�)
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Substituting the coefficients from set 1 to set 4 along with �2 gives the following solutions:

(3.30)q1,1(x, t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

3E

8b
+

�
−3D

16b

⎛
⎜⎜⎜⎜⎜⎜⎝

√
A2+(B+iC)2−A cosh

�√
D

a
�

�

(B+iC)+A sinh

�√
D

a
�

�

+
(B+iC)+A sinh

�√
D

a
�

�

√
A2+(B+iC)2−A cosh

�√
D

a
�

�

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

1

2

e−iΩ,

(3.31)q1,2(x, t) =

⎛⎜⎜⎜⎜⎜⎜⎝

3E

8b
−

�
−3D

16b

⎛⎜⎜⎜⎜⎜⎜⎝

√
A2+(B+iC)2−A cosh

�√
D

a
�

�

(B+iC)+A sinh

�√
D

a
�

�

+
(B+iC)+A sinh

�√
D

a
�

�

√
A2+(B+iC)2−A cosh

�√
D

a
�

�

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

1

2

e−iΩ,

(3.32)q1,3(x, t) =

⎛⎜⎜⎜⎜⎜⎜⎝

3E

8b
−

�
−3D

16b

⎛⎜⎜⎜⎜⎜⎜⎝

√
A2+(B+iC)2−A cosh

�√
D

a
�

�

(B+iC)−A sinh

�√
D

a
(�)

�

+
(B+iC)−A sinh

�√
D

a
�

�

√
A2+(B+iC)2−A cosh

�√
D

a
�

�

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

1

2

e−iΩ,

(3.33)q1,4(x, t) =

⎛⎜⎜⎜⎜⎜⎜⎝

3E

8b
+

�
−3D

16b

⎛⎜⎜⎜⎜⎜⎜⎝

√
A2+(B+iC)2−A cosh

�√
D

a
�

�

(B+iC)−A sinh

�√
D

a
�

�

+
(B+iC)−A sinh

�√
D

a
�

�

√
A2+(B+iC)2−A cosh

�√
D

a
�

�

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

1

2

e−iΩ.

(3.34)q2,1(x, t) =

⎛⎜⎜⎜⎜⎜⎜⎝

3E

8b
−

�
−3D

16b

⎛⎜⎜⎜⎜⎜⎜⎝

√
A2+(B+iC)2+A cosh

�√
D

a
�

�

(B+iC)+A sinh

�√
D

a
�

�

+
(B+iC)+A sinh

�√
D

a
�

�

√
A2+(B+iC)2+A cosh

�√
D

a
�

�

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

1

2

e−iΩ,

(3.35)q2,2(x, t) =

⎛⎜⎜⎜⎜⎜⎜⎝

3E

8b
+

�
−3D

16b

⎛⎜⎜⎜⎜⎜⎜⎝

√
A2+(B+iC)2+A cosh

�√
D

a
�

�

(B+iC)+A sinh

�√
D

a
�

�

+
(B+iC)+A sinh

�√
D

a
�

�

√
A2+(B+iC)2+A cosh

�√
D

a
�

�

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

1

2

e−iΩ,
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Substituting the coefficients from set 1 to set 4 along with �3 and �4 gives

where the wave variable � = x − vt + �0 , the phase of wave Ω = px − wt + Ω0 , 

D =
(

w + �p + ap2 − �p(v+2ap+�)
(2m+1)�+2m�

)

 and E =

(
cp +

�cp

(2m+1)�+2m�

)
 under the constraints 

3E2 + 16Db = 0 and (2m + 1)� + 2m� ≠ 0.

4 � Result and Discussion

We have obtained the general exact solutions for three Schrödinger-type reductions 
in the previous section. In this section, first of all, the solutions are summarized and 
described briefly. Moreover, we will plot the 3D and 2D graphs of some selected 

(3.36)q2,3(x, t) =

⎛
⎜⎜⎜⎜⎜⎜⎝

3E

8b
+

�
−3D

16b

⎛
⎜⎜⎜⎜⎜⎜⎝

√
A2+(B+iC)2+A cosh

�√
D

a
�

�

(B+iC)−A sinh

�√
D

a
�

�

+
(B+iC)−A sinh

�√
D

a
�

�

√
A2+(B+iC)2+A cosh

�√
D

a
�

�

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

1

2

e−iΩ,

(3.37)q2,4(x, t) =

⎛⎜⎜⎜⎜⎜⎜⎝

3E

8b
−

�
−3D

16b

⎛⎜⎜⎜⎜⎜⎜⎝

√
A2+(B+iC)2+A cosh

�√
D

a
�

�

(B+iC)−A sinh

�√
D

a
�

�

+
(B+iC)−A sinh

�√
D

a
�

�

√
A2+(B+iC)2+A cosh

�√
D

a
�

�

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠

1

2

e−iΩ.

(3.38)q3,1(x, t) =

�
3E

8b
+

�
−3D

4b

�
A2+e

−2

√
D
a
�

−A2+e
−2

√
D
a
�

�� 1

2

e−iΩ,

(3.39)q3,2(x, t) =

�
3E

8b
−

�
−3D

4b

�
A2+e

−2

√
D
a
�

−A2+e
−2

√
D
a
�

�� 1

2

e−iΩ,

(3.40)q3,3(x, t) =

�
3E

8b
−

�
−3D

4b

�
A2+e

2

√
D
a
�

−A2+e
2

√
D
a
�

�� 1

2

e−iΩ,

(3.41)q3,4(x, t) =

�
3E

8b
+

�
−3D

4b

�
A2+e

2

√
D
a
�

−A2+e
2

√
D
a
�

�� 1

2

e−iΩ,



	 T. Aydemir 

1 3

 1018   Page 14 of 24

solutions with suitable values of the physical parameters by considering the constraints 
and definitions of the proposed method and equations. Therefore, these graphical repre-
sentations will be beneficial to give insight into the physical interpretation of the solu-
tions and the behaviors of some optical solitons.

We have found and listed the general exact solutions of the perturbed KN equation from 
Eqs. (3.6) to (3.17). These solutions are summarized under the following 6 solution forms:

where the wave variable � = x − vt + �0 , the phase of wave Ω = px − wt + Ω0 , 
D =

(

w + �p + ap2 −
�p(v + 2ap + �)
(2m + 1)� + 2m�

)

 and E =
(

bp −
3�bp

(2m + 1)� + 2m�

)

 under the constraint 

(2m + 1)� + 2m� ≠ 0 . Taking A = 1 , B = 0 and C = 0 in Eqs.(4.1)–(4.6) and considering 
the hyperbolic identities sinh(2y) = 2 sinh(y) cosh(y) and cosh(2y) = cosh2(y) + sinh2(y)
= 2 cosh2(y) − 1 = 2 sinh2(y) + 1 give us the following hyperbolic and exponential function solu-
tions. Besides deriving these reduced hyperbolic and exponential function solutions from 
the general exact solutions, trigonometric function solutions can also be obtained depend-
ing on the coefficient of � with the aid of sinh(iy) = i sin(y) and cosh(iy) = cos(y).

(4.1)qKN1
(x, t) = ∓

�
−D

E

⎛
⎜⎜⎝

√
A2+(B+iC)2∓A cosh

�√
−2D

a
�

�

(B+iC)∓A sinh

�√
−2D

a
�

�
⎞
⎟⎟⎠
e−iΩ,

(4.2)qKN2
(x, t) = ∓

�
−D

E

⎛⎜⎜⎝

(B+iC)∓A sinh

�√
−2D

a
�

�

√
A2+(B+iC)2∓A cosh

�√
−2D

a
�

�
⎞⎟⎟⎠
e−iΩ,

(4.3)qKN3
(x, t) = ∓

1

2

�
−D

E

⎛
⎜⎜⎜⎜⎜⎜⎝

√
A2+(B+iC)2∓A cosh

�√
−D

2a
�

�

(B+iC)∓A sinh

�√
−D

2a
(�)

�

+
(B+iC)∓A sinh

�√
−D

2a
�

�

√
A2+(B+iC)2∓A cosh

�√
−D

2a
�

�

⎞
⎟⎟⎟⎟⎟⎟⎠

e−iΩ,

(4.4)qKN4
(x, t) = ∓

�
D

2E

⎛
⎜⎜⎜⎜⎜⎜⎝

√
A2+(B+iC)2∓A cosh

�√
D

a
�

�

(B+iC)∓A sinh

�√
D

a
(�)

�

−
(B+iC)∓A sinh

�√
D

a
�

�

√
A2+(B+iC)2∓A cosh

�√
D

a
�

�

⎞
⎟⎟⎟⎟⎟⎟⎠

e−iΩ,

(4.5)qKN5
(x, t) = ∓

�
−D

E

⎛⎜⎜⎝
A + e

∓

√
−2D

a
�

−A + e
∓

√
−2D

a
�

⎞⎟⎟⎠
e−iΩ,

(4.6)qKN6
(x, t) = ∓

�
D

2E

⎛⎜⎜⎝
4Ae

∓

√
D

a
�

−A2 + e
∓2

√
D

a
�

⎞⎟⎟⎠
e−iΩ,
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In the first row of the Fig.  1, 3D graphs of modulus, real part, and imaginary part 
of the obtained solutions q31 for the Kaup–Newell equation are plotted for the values 
m = 1, a = 1, b = 1, p = 1, w = 1, � = 1, � = 1, � = 1, v = 5 , A = 5 , B = 4 , C = 3 over 
the intervals −10 < x < 10 , 0 < t < 10 . In the second row of the Fig. 1, 2D line plots are 
plotted with the same parameters at x = 0 . It can be seen from the Fig. 1 that the obtained 
optical soliton solutions behave periodically.

Similarly, we have summarized the general exact solutions of the perturbed CLL equa-
tion under the following 6 solution forms, then reduced them to hyperbolic, trigonometric, 
and exponential function solutions in (4.14).

(4.7)qKN(x, t) ⟶

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qKN1
= ∓

�
−D

E
tanh

��
−D

2a
�

�
e−iΩ,

qKN2
= ∓

�
−D

E
coth

��
−D

2a
�

�
e−iΩ,

qKN3
= ∓

�
−D

E
coth

��
−2D

a
�

�
e−iΩ,

qKN4
= ∓

�
2D

E
cosech

��
4D

a
�

�
e−iΩ,

qKN5
= ∓

�
−D

E

�
1 +

2

−1 + e
∓

√
−2D

a
�

�
e−iΩ,

qKN6
= ∓

�
D

2E

⎛⎜⎜⎝
4e

∓

√
D

a
�

−1 + e
∓2

√
D

a
�

⎞⎟⎟⎠
e−iΩ.

Fig. 1   The 3-D graphs of the perturbed Kaup–Newell solution q31 are plotted above for the parameter 
choices m = 1, a = 1, b = 1, p = 1, w = 1, � = 1, � = 1, � = 1, v = 5 , A = 5 , B = 4 , C = 3 over the 
intervals −10 < x < 10 , 0 < t < 10
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where the wave variable � = x − vt + �0 , the phase of wave Ω = px − wt + Ω0 , 
D =

(

w + �p + ap2 −
�p(v + 2ap + �)
(2m + 1)� + 2m�

)

 and E =
(

−bp +
�bp

(2m + 1)� + 2m�

)

 under the constraint 

(2m + 1)� + 2m� ≠ 0 . Taking A = 1 , B = 0 and C = 0 in Eqs. (4.8)–(4.13) and considering 
the hyperbolic identities give us the following hyperbolic and exponential function 
solutions.
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In the first row of the Fig. 2, 3D graphs of modulus, real part, and imaginary part of 
the obtained solutions q21 for the Chen–Lee–Liu equation are plotted for the values 
m = 1, a = 1, b = 1, p = 1, w = 1, � = 1, � = 1, � = 1, v = 5 , A = 5 , B = 4 , C = 3 over 
the intervals −10 < x < 10 , 0 < t < 10 . In the second row of the Fig. 2, 2D line plots are 
plotted with the same parameters at x = 0 . It can be seen from the Fig. 2 that the obtained 
optical soliton solutions behave periodically.

Many different powerful and effective exact solution methods such as tan(�
2
)-expansion 

method, 
(

G′

G

)
-expansion method, the extended sinh-Gordon equation expansion method, 

(4.14)qCLL(x, t) ⟶
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Fig. 2   The 3-D graphs of the perturbed Chen–Lee–Liu solution q21 are plotted above for the parameter 
choices m = 1, a = 1, b = 1, p = 1, w = 1, � = 1, � = 1, � = 1, v = 5,A = 5 , B = 4 , C = 3 over  the 
intervals −10 < x < 10 , 0 < t < 10
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modified generalized exponential rational function method, modified simple equation 
method, trial equation method, new Kudryashovs method, generalized projective Riccati 
equations, csch-function method have been used by mathematicians to find exact solutions 
for the perturbed or unperturbed KN equation and the perturbed or unperturbed CLL equa-
tion in Biswas et  al. (2018); Esen et  al. (2022); Jawad et  al. (2019b); Akinyemi et  al. 
(2021); Mohamed et al. (2022); Arnous et al. (2022); Bilal et al. (2021); Salas et al. (2020); 
Hu et al. (2021); Esen et al. (2021); Khater et al. (2023); Yildirim et al. (2020); Baskonus 
et al. (2021); Yokus et al. (2021); Kudryashov (2021); Houwe et al. (2021). Each method is 
tailored to a certain sort of solution that gives bright, dark, singular, hyperbolic, trigono-
metric, and periodic solutions such that these can be already derived from the general exact 
solutions obtained by the GUM as shown in Eqs. (4.7) and (4.14). Additionally, the solu-
tions of the unperturbed forms obtained aforementioned studies can be also derived from 
Eqs. (4.1)–(4.6) and Eqs. (4.8)–(4.13) removing the last terms of D and E taking � = 0.

Lastly, summarizing the general exact solutions of the perturbed GI equation under the 
following 2 solution forms, we have reduced them to hyperbolic, trigonometric, and expo-
nential function solutions in (4.17), in a similar way.

where the wave variable � = x − vt + �0 , the phase of wave Ω = px − wt + Ω0 , 

D =
(

w + �p + ap2 − �p(v+2ap+�)
(2m+1)�+2m�

)

 and E =

(
cp +

�cp

(2m+1)�+2m�

)
 under the constraints 

3E2 + 16Db = 0 and (2m + 1)� + 2m� ≠ 0.

In the first row of the Figs. 3 and 4, 3D graphs of modulus, real part, and imaginary part 
of the obtained solutions q12 , q31 for the Gerdjikov–Ivanov equation are plotted for the val-
ues m = 1, a = 1, b = 1, p = 1, w = 1, � = 1, � = 1, � = 1, v = − 387

20
 , A = 5 , B = 4 , C = 3 over the 

intervals −10 < x < 10 , 0 < t < 10 . In the second row of the Figs. 3 and 4, 2D line plots 
are plotted with the same parameters at x = 0 . It can be seen from the Fig. 3 and 4 that the 
obtained optical soliton solutions behave periodically. The coefficients a and c represent 
the group velocity dispersion and nonlinear dispersion, respectively. Therefore, as these 
parameters increase, the wave amplitude will decrease and the wavelength will increase.
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Comparing other studies in Manafian and Lakestani (2016); Arshed (2018); Yasar 
et  al. (2018); Zafar et  al. (2022); Shehata et  al. (2021); Ismael et  al. (2023); Biswas 
et al. (2018b); Zhang and Fan (2020); Rizvi et al. (2023); Li et al. (2021); Rehman et al. 
(2023) used several exact solution methods such as tanh-function method, the exp(−�(�))

Fig. 3   The 3-D graphs of the perturbed Gerdjikov–Ivanov solution q12 are plotted above for the parameter 
choices m = 1, a = 1, b = 1, c = 1, p = 1, w = 1, � = 1, � = 1, � = 1, v = −

387

20
 , A = 5 , B = 4 , C = 3 

over the intervals −10 < x < 10 , 0 < t < 10

Fig. 4   The 3-D graphs of the perturbed Gerdjikov–Ivanov solution q31 are plotted above for the parame-
ter choices m = 1, a = 1, b = 1, c = 1, p = 1, w = 1, � = 1, � = 1, � = 1, v = − 387

20
 , A = 5 , B = 4 , C = 3 

over the intervals −10 < x < 10 , 0 < t < 10
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-expansion method, the sine-Gordon equation method, the modified extended tanh expan-
sion method, exp-function approach, the modified simple equation method, the modified 
exponential function method, the balanced modified extended tanh-function, the inverse 
scattering method, the polynomial method’s complete discrimination system, 2nd-fold 
Darboux transformation, the hyperbolic extended function method, generalized Kudryash-
ovs method, the GUM gives more general exact solutions for the perturbed or unperturbed 
GI equation as shown in Eq. (4.17). The solutions of the unperturbed forms of the GI equa-
tion can be also obtained from Eqs. (4.15) and (4.16) removing the last terms of D and E 
taking � = 0.

It has been concluded that the obtained solutions provide more solution sets in compact 
form with free parameters. Certain types of solutions obtained by different methods that 
give bright, dark, singular, hyperbolic, trigonometric, and periodic solutions can be pro-
duced from these general exact solutions as shown in this section. The 3D and 2D profiles 
of some selected of these obtained solutions have been plotted for the special values as 
above.

5 � Conclusions

In this study, we have obtained general exact solutions for the three Schrödinger-type 
reductions using the generalized unified method (GUM). The aims of this study are two-
fold in terms of the application of the GUM and obtaining the general exact solutions of 
three members of the DNLS family.

One of the most fundamental purposes of exact solution methods is to obtain an exact 
solution family by finding a concise, direct, effective, and elegant way. The GUM provides 
more general exact solutions with free parameters in compact forms. The obtained solu-
tions are valuable for a comprehensive insight into the dynamics of the mentioned family 
using free parameters. Compared to previous studies that give hyperbolic, trigonometric, 
and exponential function solutions, the solutions obtained by the GUM can be converted 
to these aforementioned function-type solutions. Consequently, considering the obtained 
results, the proposed exact solution method can be easily applied to the derivative nonlin-
ear Schrödinger family as well as more complex nonlinear problems in various fields for 
future studies without having tedious calculation complexity.

Due to explaining the transmission of the pulses through optical fibers, the three 
members of the DNLS family called the perturbed Kaup–Newell equation, the perturbed 
Chen–Lee–Liu equation, and the Gerdjikov–Ivanov equation play a significant role in mod-
eling telecommunication problems. Particularly, the optical soliton solutions obtained here 
will be very useful in depicting the propagation of solitons through optical fibers due to 
their wide applications in nonlinear optics. Considering the contributions of finding solu-
tions to these equations in applied sciences such as the telecommunication industry that 
uses these equations to model their problems, the obtained solutions give promising results 
for computational tools for further analysis.

The graphical representations of some obtained solutions are plotted to demonstrate the 
behaviors of optical solitons. These solutions indicate various and rich wave structures for 
selections of different parameters.

In this study, computations and verifications were made with Maple 12, and graphical 
illustrations were plotted by Mathematica. In future studies, we intend to focus on a theo-
retical comparative study of the GUM and other exact solution methods.
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