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Abstract

This study deals with the stochastic Fitz-Hugh Nagumo (FHN) equation and its multiple
soliton solutions. The underlying model has numerous applications in neuroscience that
express the pulse behavior of neurons. In general, different kinds of noise affect neu-
rons, e.g., oscillations in the opening and closing of ion stations within cell membranes
and the fluctuations of the different conductivities in the system. This fluctuation creates
a sequence of stochastic excitation. Various applications are branching Brownian motion
process, flame propagation, nuclear reactor theory, autocatalytic chemical reaction, mobil-
ity in neurons, population growth in the open environment, and liquid environment. So,
need of the hour to consider the FHN equation under the impact of noise. The ¢®-model
expansion method is used to extract the analytical solutions that give a dynamic attitude of
the transmission for the nerve impulses of a nervous system. The different constraint con-
ditions for the existence of these solutions are also discussed. The solutions of this model
are represented in hyperbolic, trigonometric, and rational forms. The 2 and 3-dimensional
behavior of these solutions are depicted by choosing the different values of parameters.
The impact of noise on the physical system is analyzed and its real-world applications are
discussed. The spikes in the solutions are controlled through the Borel function. These
important results will open a new horizon of research for the young researchers.

Keywords Analytical solutions - Stochastic FHN equation - ¢°-model expansion method

1 Introduction

Non-linear partial differential equations have extensive applications to deal with many
physical problems. It is used to model many complicated dynamical systems. Mathemati-
cal modeling has a significant role in understanding the dynamics of such models and these
are used in various fields of study such as engineering, science, and social sciences. Differ-
ent models in neuroscience express the pulse behavior of neurons. The Fitz-Hugh Nagumo
(FHN) model is one of the most important models in neuroscience and it was given by
Huxle and Hodgkin in Wiese and Koppenhofer (1983). The FHN model has been studied
many times in literature and various new results of the FHN model are presented in recent
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papers (Postnikov and Titkova 2016; Saha and Feudel 2017; Schmidt et al. 2017; Zemskov
et al. 2017). There are different applications of the FHN equation such as flame propaga-
tion, branching Brownian motion process, autocatalytic chemical reaction, nuclear reactor
theory, mobility in neurons, and population growth in the open environment as well as in
liquid environment (Abbasbandy 2008; Abdusalam 2004; Zhang et al. 2023; Wang et al.
2022). The population growth can be described by the FHN equation in a wetter environ-
ment under the sea bed. So, it is directly connected with the ocean and engineering as well
as where in the sea.

Most of the physical phenomena naturally carry the random phenomena in them, the
continuous phenomena rarely exist. So Brownian motion or other processes play a funda-
mental role in the dynamics of the population which is governed by this model. For exam-
ple certain stages you have sudden increases or decreases in the population growth. This
type of sudden increase or decrease can not be expressed in the classical environment of
the PDEs because in such a situation we have a certain random process, where derivatives
of the function fail to exist and you have a jump situation, unbounded situation. In that situ-
ation, it is always better to consider a regular mathematical model under the influence of
the Brownian motion. Of course, population growth can increase suddenly, can decrease
suddenly or sometimes you have a very smooth phenomenon of growth for the decay of the
population. So, all of these situations can be dealt with using this model. Since the Borel
function is also multiplied with time noise. It is used to control noise phenomena in the
solution.

In the last decade, the analytical solutions of stochastic PDEs have been an active area
of research for scientists. Al-Askar et al. worked on the analytical solutions of the stochas-
tic breaking soliton equation (SBSE) perturbed by the Wiener process. They obtained the
various solutions, namely trigonometric, hyperbolic, and polynomial functions by using the
tanh-coth method (Al-Askar et al. 2022). Abdel-Aty finds the soliton solutions of the Wick-
type stochastic Schamel KdV equation. He used the modified Khater method to find the
solutions (Abdel-Aty 2020). Pan et al. used the exp-function method to find the analytical
solution stochastic Gardner equation(Pan et al. 2011). Yasin et al. obtained solitary wave
solutions by using the Riccati equation mapping method for the nonlinear stochastic advec-
tion—diffusion equation under the influence of the time noise(Igbal et al. 2023). Moham-
med et al. worked on the solution of the stochastic fractional-space Kuramoto-Sivashinsky
equation with the help of the Riccati equation method (Mohammed et al. 2022). Some
more work on the solutions of PDEs (Akinyemi et al. 2022a, b).

The authors used the extended modified rational expansion method to gain the solitary
wave solutions of Zakharov—Kuznetsov modified equal width equation (Igbal et al. 2023).
They gained the analytical solutions of the Kudryashov—Sinelshchikov equation with the
modified mathematical method (Seadawy et al. 2019). The authors obtained a solution
of the damped modified Korteweg—de Vries equation with reductive perturbation tech-
nique (Seadawy et al. 2020). The authors obtained the solitary wave solution of gener-
alized Zakharov—Kuznetsov—Benjamin—-Bona—Mahony and simplified modified form of
Camassa—Holm equations with modified extended auxiliary equation mapping method
(Lu et al. 2018). The authors used the analytical technique to obtain the solution of the
nonlinear damped Korteweg—de Vries equation (Seadawy and Igbal 2021). The authors
considered the nonlinear evolution equation that describes the wave propagation in non-
linear low-pass electrical transmission lines by implementing the modification of math-
ematical method (Seadawy et al. 2020). The authors gained multiple optical soliton solu-
tions for wave propagation in nonlinear low-pass electrical transmission lines (Igbal et al.
2024). The authors gained the solution for the generalized breaking soliton system (Igbal
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et al. 2022). The authors gained the multiple solitary wave solutions for the nonlinear Jau-
lent—-Miodek hierarchy equation (Igbal et al. 2024). The authors considered the coupled
Drinfeld—Sokolov—Wilson equation and obtained a solution with the extension of the mod-
ified rational expansion approach (Igbal et al. 2023). The solution of the nonlinear Nizh-
nik—Novikov—Vesselov dynamical equation was gained by the extended modified rational
expansion method (Igbal et al. 2020). The solution of coupled Whitham—Broer—Kaup,
Broer—Kaup—Kupershmit, and Drinfel’d—Sokolow—Wilson equations was obtained (Lu
et al. 2018). The Auxiliary equation mapping and direct algebraic method were used to
investigate the families of solitary wave solutions of one-dimensional nonlinear longitudi-
nal wave equation (Igbal et al. 2019).

In recent years, the solitary wave solutions of nonlinear PDEs have their importance
in the research area. Many techniques are used to get the soliton-solutions such as G'/G
-expansion (Zhang et al. 2008; Younis and Rizvi 2015; Younis et al. 2021), new MEDA
(Seadawy et al. 2021; Igbal et al. 2023), Riccati equation mapping method (Igbal et al.
2023; Younis et al. 2022) etc. In this research work, we use the ¢° -model expansion
method (Zayed and Al-Nowehy 2018; Younis et al. 2022). The advantages of the under
considered method is that it will provided us the jaccobi elliptic function solutions (JEFs).
There are two types of the solutions are obtained by JEFs such as solitons and solitary
wave solutions. There are different types of soliton solutions are obtained in the form of
dark, bright, singular, combo and exact solitary wave solutions as well via ¢®-model expan-
sion technique.

The organization of the manuscript is given in four sections. Section 2 contains the gov-
erning model. Section 3 is related to the analytical study of the given model. In Sect. 4, the
description of the simulations is addressed. The last Sect. 5 contains the conclusion of the
manuscript.

2 Governing model

The stochastic Fitz-Hugh Nagumo equation in Yasin et al. (2022) is given as
b, = dp + P — a)(1 = @) + cpW (), (1)

where ¢(x, 1) is state variable. It represents the dynamical attitude of the transmission of the
nerve impulses of a nervous system, population growth under the sea bed, 0 <a < 1is a
positive constant, W() is the Wiener process, W() = dd—‘:/ is a time noise and o is the stand-
ard Borel function or control parameter for the time noise.

To get the solifary wave solution of Eq. (1), we are taking transformation as
¢d(x,t) = U (p)e”w_% where p = rx + st and changes the Eq. (1) into an ordinary differential
equation (ODE) as,

52 -2
—sU +r*dU" + U<Ue“W‘z - a) (1 - Ue"W‘z> =0, 2)
by taking the expectation on both expressions such as

o2 o2
—sU +rdU" + U(Ue"w(’)e_Z' - a) <1 - Ue"W<f>e‘z’> =0. 3)
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Since E(e°?) for every real,number ¢ and Z is the standard normal random variable, then
identities are E(e?") = ¢3". So, the above equation takes the following form

—sU +r?dU" + U(U = a)(1 - U) = 0. S

3 Analytical study

Suppose that the solutions of Eq. (4) that can be expressed in the polynomial form as
BX(p). For further detail see, Bilal et al. (2021), Zayed and Al-Nowehy (2020), Bibi (2021),
Shaikh et al. (2023), Younas et al. (2023).

2m

Ulp) = ) 8,8 (p), 6, #0, ®)

k=0

where 6,(0 < k < 2m) are real constants and B(p) satisfies the Eq. (4). We are taking

(BY(p) =fy + £,B*(p) + [,B*(p) + £, B (p). (6)
B' (p) =,B(p) + 2/,B(p) + 3fsB°(p), @)
here, f,(k =0,2,4,6) are real constants. So Eq. (5) has the solutions as,
Q
B(p) = (p)

NaEnEr ®
where (g,Q%(p) + g,) > 0 and the equation has the solution Q(p) as,

Q2 =k, + k,Q%(p) + Q4 ), 9)
where k;, i = 1,2, 3 are constants, while g, and g, are given by,

Salky = 1)
(ky = ) + 3kiky — 2k (ky = f)

&1 = (10)

3kfs
(ky = ) + 3kiky — 2k (ky = f)

&= an

under the constraint condition,

L2y = f)[9iky — Uy = )y + 15)] + 35 [Bhiky — (12 = D] =0.  (12)

Here JEFs of Q(p) for the limits of N are taken as,

The above table provides the standard conversions of the Jacobi elliptic functions to the
trigonometric ones and vice versa. This table helps the reader to understand the physical
behaviors of the solutions dominant by the Jacobi elliptic functions (Table 1).

To find the value of N, we use the homogenous balancing principle (Jin-Liang et al.
2003), and obtain N = 1. So, by substituting the value of N in Eq. (4) takes the form,
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Table 1 Jacobi-Elliptic Functions

. . . Q(p,N) N -1 N-0 Q(p,N) N -1 N-0
and Trigonometric Conversions

sn(p,N) tanh(p) sin(p) ns(p,N) coth(&) csc(p)
cn(p,N) sech(p) cos(p) dn(p,N) sech(p) 1

cd(p,N) 1 cos(p) cs(p,N) csch(p) cot(p)
sc(p,N) sinh(p) tan(p) sd(p,N) sinh(p) sin(p)
ds(p,N) csch(p) csc(p) nc(p, N) cosh(p) sec(p)

U(p) =3y + 8,B(p) + 5,8*(p). (13)

Further, we substitute Eq. (13) and its derivatives in eq. (4) and equating the coefficients of

the same power of B(p) equal to zero, then we get the system of algebraic equations. Fur-

ther, solving this the system on Maple will lead to various families of solutions as follows,
Family 1: Here f; and k; are arbitrary constants along with

Aa—Dafy _ Va-lya 4@ -a)ff
Qa—-1)f,’ \/5\/3\/5’ ®7 32a- 12,

and substituting these values into eq.(13), we get the many different JEF dominant solu-
tions of Eq. (4) as,

5020, 6120, 52:

2(a — Daf,Q(p)*
Qa—1)f,(8,2p)* + &)

Type 1: Whenk, =1, k, = —(1+ N?), ky = N2, then Q(p) = sn(p) or Q(p) = cd(p) then
we have JEF dominant solutions as,

$(p) = a+ (14)

2(a — )af,sn(p)*
Qa—Dfy(g15n(p? +g,)

Upyp)=a+ (15)

or

2(a - Vaf,cd(p)*
Qa—Dfy(g,cd(p)? +g,)

Uynlp)=a+ (16)

where g, and g, as,

B fil=h-N*-1)

& (/=N —1)2=2(=N2 = 1)(=f, = N2 = 1) + 3N?’
_ s

T oV - 1) —2(-N = 1) (<o — N2~ 1) + 3N

solutions using constraint conditions as,

FH(=1 = N») = £)ION* = (=1 = N*) = L)(=2(1 + N*) + f)]
+3f5[3N* — (1 + N*)* = fH)* = 0.
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Case 1: For N — 1 we obtained soliton-solutions as,

¢y ,(x,0)
\/a—l\/Ex
2(a — 1)af, tanh* <st -
s ) V2V - (17
Va—14/ax
Qa—-1)f, <g1 tanh? <st -7 \/E\\[ﬂ +8
Case 2: For N — 0 we get periodic wave solutions as,
.4 \/c:\/ax
2(a — 1)af, sin <st - —\/iﬁ\/ﬁ> e
¢, 0)=]a+ e 2. (18)

2a - 1)f, <g1 sin® (st - @ﬁ;) + g2>

Type 2: When k, = 1 — N?%, k, = 2N? — 1, ky = —N?, then Q(p) = cn(p) then JEF domi-
nant solutions as,

2(a — 1)af4cn(p)4

Usn(p) =a+ ; 19
Q2a—Dfy(g1cn(p)* +8,) (1
where g, and g, are taking as,
g = f4(_f2+2N2_1)
D (=h 2N —1)2 = 2(2N2 — 1) (=fo + 2N? — 1) = 3(1 = N2)N?
3f,(1 - N?)
2= (=f, +2N2 = 1)2 = 2(2N2 = 1) (=f, + 2N? = 1) = 3(1 = N2)N?’
solutions using constraint conditions as,
FH@N? = 1) = fION* = 9N?) — (2N* = 1) = L) (4N = 2) + f,)]
+3f,[BN* = 3N?) — (2N? - 1)* = fDH)]* = 0.
Case 1: For N — 1 we obtained soliton-solutions as,
_ af o Va-lyax
2(a — 1)af,sech (st ﬁﬁ@) e
¢y, 1) =a+ 2 (20)
’ \/a—lﬁx
2a - 1), <glsech2 (st - m) + g2>
Case 2: For N — 0 we get periodic solitary wave solutions as,
_ 4 _ Va-1yax
2(a — 1)af,cos (st ﬁﬁ@) i
P30 =|a+ e 2, 1)

(2a - 1)f, <g1<:052 <st— @6‘2) +g2>
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Type 3: Whenk; = N> — 1, k, =2 — N2, k; = —1, then Q(p) = dn(p) then JEF solution as,

2(a — Dafydn(p)*

Usn(p) = a+ ,
T a — 1 (g1dn(p) + 22)

where g, and g, as,

f4(—f2 - N? +2)

8 T (h-N+2)2—2(2-N)(—f N> +2) —3(N2 - 1)’
B 3f,(N* = 1)
5 (/=N +2)2-2(2-N)(=f, N> +2) —3(N2 1)’

solutions using constraint conditions as,

fH@2 =N = H)[-9W? — 1) = (2 = N») - )22 - N*) + £,)]
+3f[-3(V? = 1) = (2 = NH* = fH* = 0.

Case 1: For N — 1then we get solitary wave solutions as

2(a — 1)af4sech4 (st - %)

2a - 1, (glsechz <Sf - gﬁ@) " gz)

Py (. 0)=]a+

(22)

(23)

Type 4: When k; = N2, k, = (=1 = N?), k; = 1, then Q(p) = ns(p) or Q(p) = dc(p) then

we have JEF dominant solutions as,

2(a — l)af4ns(p)4

Usv(p) =a+ ,
N Qa— Dfy(gins(p)? +g,)

or

2(a — 1)af4dc(p)4
Qa - Dfy(g,dec(p? + g,)

U(,,N(P) =a+

where g, and g, are taking as,

f4(_f2 +N? - 1)
~f, + N2 = 1)2 =2(N2 = 1) (=f, + N2 = 1) +3N?’
3f,N?
~f, + N2 = 1)2 =2(N2 = 1) (=f, + N2 = 1) + 3N?’

81:(

82=(

solutions using constraint conditions as,

FH(=1 =N = f)ION? = (-1 = N?) = £)(=2(1 + N?) + f,)]
+3f,[BN* = (1 + N*)* = fH]* =0.

Case 1: For N — 1then we get soliton-solutions as

24

(25)
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2(a — 1)af, coth* <st - ﬂ)

P 1(x, 1) =]a+ V2vdvf e"W—é. o6
, 2 Va—1y/ax
(2a - 1)f, <g1 coth <st - ﬁﬁw;) + g2>
Case 2: For N — 0 then we get solitary wave solutions as
— 4 _ \/ﬁ\/[;x
2(a — D)af, csc <st \ﬁﬁﬁ) .
solet) =fa+ VT @
X =
(2a—Df; <g1 csc? <st— m) +g2>
or
Va—1y/ax
2(a — af, cos* <st -7 >
Va7, 22
¢6,0(-xs t) =la+ \F cW—2= (28)

Valyar
_ 2 (g —
2a - 1)f, (gl cos (st Vovavi + 8
Type 5: when k; = —N?, k, =2N?—1, k3 =1— N2, then Q(p) = nc(p) then we have
JEF dominant solutions as,

2(a — Dafync(p)*
(2a — Dfy(gnc(p)* + 85)

Uynp)=a+ (29)

where g, and g, are taking as,

fi(=f +2N* =1)
(=f, +2N2 = 1)2 = 2(2N2 = 1) (=f, + 2N2 = 1) + 3(1 = N2)N?’
3f,N?
—f, +2N2 = 1)2 = 2(2N2 = 1) (=f, + 2N2 = 1) + 3(1 = N2)N?’

81 =

82=(

solutions using constraint conditions as,

FH@N? = 1) = fION* —9N?) — (2N? = 1) = ) (AN? = 2) + f,)]
+3f,[BN* = 3N?) — (2N* - 1)* = f)])* = 0.

Case 1: For N — 1then we get solitary wave solutions as

2(a - Daf, cosh? <st - @@)

(a - 1), <g1 cosh? <st— %{/‘?) +82)

Case 2: For N — 0 then we get periodic wave solutions as

I
0'W7

¢ 0 =|at (30)
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VT Jax
2(a — Daf; sec* <st - —> .
bro(r,0) = |a+ VAVAVR VT G1)

(2a - D, (81 sec? <St— @@) +g2)

Type 6: When k, = 1, k, =2 — N2, ky=(1- N?), then Q(p) = sc(p) then we have JEF
dominant solutions as,

2(a — Dafysc(p)*

Ugy(p)=a+ ) 32
W (2a = 1)fy (15¢(p + 82) ¢y
where g, and g, are taking as,
_ @ =N - f)
fTE-N) £ +3(1=N) =22 =N)((2-NH) ~fo)
_ 3,
2@ -m £ +3(1=N) =22 = N)((2-NH) ~fo)
solutions using constraint conditions as,
fH@=N) = L1 =N} = (2 = N) = )22 = N*) +f3)]
+ 331 =N = (@ =N - ) =0.
Case 1: For N — 1then we get soliton-solutions as
_ .4 _ Va-1yax
2(a — 1)af, sinh <st \/E\/E\/E> e
g (x, 1) =|a+ N 2 (33)
12 a—ly/ax
2a- 1), <g1 sinh <st - ﬁﬁ@) + g2>
Case 2: For N — 0 then we get solitary wave solutions as
Va—1y/ax
2(a — 1)af, tan* <st - >
V2V 2
Pgolxr.0) =|a+ v W=7 (34)

(2a - Df, (81 tan’ <st— @@) +g2>

Type7: whenk, = 1, k, = 2N? — 1, ky = —N?(1 — N?), then Q(p) = sd(p) then we have
JEF dominant solutions as,

2(a — 1)af4sd(p)4
(2a = 1)fy(g15d(p)* + 8,)

Upn(p)=a+ (35)

where g, and g, are,
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~ F(@N2 = 1)~ f)
T(@NT =D - )P+ 3NANE — 1) - 22N — (N2 — D)~ )’
_ 3,

(QN? = 1)~ o7 + 3NA(N? — 1) — 22N? — (@N? = D) — )’

81

82

solutions using constraint conditions as,

JH@N? = 1) = fION* = 9N?) = (2N* = 1) = f)(AN* = 2) + f;)]
+3f,[BN* = 3N*) — (2N* - 1)* = f)])* = 0.

Case 1: For N — 1then we get solitary wave solutions as,

2a - 1)af, sinh® (st - ﬁf)

V2vayF, _a?

bo (5, 1) = |a+ - - W3 (36)
_ ) _ Va—14/ax
(2a - 1)f, <g1 sinh (st —\/5\/3\@) +g2>
Case 2: For N — 0 then we get periodic wave solutions as
2(a -1 sin* ( st — Va-1y/ax

= bt (- Y2 e

Poolx,0) =|a+ 37

_ .2 _ \/a—l\/;uc
2a - 1), <g1 sin <st ﬁﬁ@) +g2>
Type 8: when k; = 1 —N?%, k, =2—N?, k; =1, then Q(p) = cs(p) then we have JEF
dominant solutions as,

2(a - Dafcs(p)*
Q2a - Dfy(gie5(0 + 82)

Upn(p) =a+ (38)

where g, and g, are,

_ F(@=N)—f)
(@-N) = +3(1-N) - 22 - N2 -ND) - )’
31— NV,
(@-N)— /P + 31N - 22 - N2 -N>) - /)’

81

82 =

solutions using constraint conditions as,

(@2 =N =£)[+9(1 = N*) = (2 = N») - )22 = N*) + )]
+3f[3(1 = N — (2 = N»* = fH)* =0.

Case 1: For N — 1 then we get soliton-solutions as,
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PN 1)
ﬁﬁ»)
2(a — Daf,csch*( st —
@ e ( V2V -2 (39)
=la+ \/7 4 2.
a—14/ax
2a - 1)f, <glcsch2 <st - ﬁﬁ%) + g2>
Case 2: For N — 0 then we get solitary wave solutions as,
NS SR =
2(a — 1)af,cot <sz \ﬁﬁ\/ﬁ) s
Py =|a+ 2 (40)

(2a - 1)f, (glcot2 <st - %{fg) + g2>

Type 9: when k; = —=N*(1 = N?), k, =2N?> -1, k; = 1, then Q(p) = ds(p) then we have
JEF dominant solutions as,

2(a — Daf,ds(p)*

Upn(p) =a+ ; 41
(2a = 1)f,(8,ds(p)* + &) @
where g, and g, are,
_ [(@N* = 1) = fy)
SN - — )2 + 3N} (N? = 1) = 202N2 = 1)(2N? = 1) = f,)]
~ —3N2(1 - N,
82 (2N -1) — 6P +3N2(N2 = 1) = 202N2 = 1)Y((2N2 = 1) = f,)°
solutions using constraint conditions as,
FH@N? = 1) = f)ION* = 9N?) = (2N* — 1) = f)(AN* = 2) +f3)]
+3f[BN* = 3N?) — (2N* = 1)’ = fH]* = 0.
Case 1: For N — 1 then we get solitary wave solutions as,
_ af o, Va-lyax
2(a — 1)afycsch <st \/Eﬁ\/ﬁ) i
G =la+ Vv e 2. 42)
a—1+/ax
2a - 1), <glcsch2 (st - \6\/&\@) + g2>
Case 2: For N — 0 then we get periodic wave solutions as,
_ 4 _ \/ﬁ\ﬁx
2(a — 1af,csc <st \/5\/2\/5> e
P10l =a+ = 2 (43)
a—14/ax
2a - 1)f, <glcsc2 <st - ﬁﬁ\/ﬁ) + g2>
Type 10: When k, = “TN ky = ”TN ky = I‘TN then Q(p) = nc(p) + sc(p) or ﬁ

then we have JEF dominant solutions as,
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2(a — Daf,(nc(p) + sc(p)*
Q2a - Dfy (g,(nc(p) £ sc(p)? + &)

Uppn(p) =a+ (44)

or

2(a — 1afy(<22- 4

1+sn(p)

Ca— 1, (1 (G222 + g, )

1+sn(p)

Upn(p)=a+ (45)

where g, and g, are,

(M -p)

2
LN (1=N2)? 1+N?
(58 () -1 (5 1)
N2

()

£2= 1+N? 2 (1-N2)? 2 14N2 ’
(557 -) +3(555) - (o) (57 -5)

solutions using constraint conditions as,

2 — N2)2 2
() b(E5) - (5o ewron

_ A2 1+N2)° 2
() - (B )] -

Case 1: For N — 1 then we get soliton-solutions as,

PRLE))]

s

81 =

. VaTyar Vorljax
2a~ Daf, (S‘nh <” ) W) oo <“ Vv > >4

2a - 1)f, <g, <sinh (st— @@) + cosh <sz - g@))z +g2>

2
o
o'W2

=la+

e
(46)

or

\ Va=1y/ax
32(a — 1)af,sech <S" VaVavh >

Qa—1), <4g1sech2 <st - E{;) + g2> @7

¢13,1(P) =la+

2
o
eaW—7 .

Case 2: For N — 0 then we get solitary wave solutions as,
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$120(p)

VT VorlVax

. 2(a - 1)af4<sec (St_ \/5\/3\@) =tan (St_ \/Eﬁ\/ﬁ>>4
=la
2a - 1), <g1 <sec <st - ﬁ@) + tan <st - @@) >2 + 82>
eaW—é .
(48)
or
$130(p)
~ _ Va-lax
+ 2(a - Daf cos* (S’ ﬁﬁ«ﬁ)
=
= e (o )
(2a—1)f, <sm (st - ) + 1>4 1 ar T8
\/5\/3\/]? (sin (st— \/\/;‘;\5/;)‘“)2
eo‘W—% .

Type 11: when k; = —%, ky, = # ky = —i, then Q(p) = Ncn(p) + dn(p) then we
have JEF dominant solutions as,

2(a - Dafy(Nen(p) + dn(p))*
(2a = 1)f, (g, (Nen(p) + dn(p))> + g5)

Upn(p) = +a (50)

where g, and g, are,
()

(1+2N2 —f2>2 +3<(1—11;'2)2) _ (1 +N2)<1+21\/2 _fz)
—3($>f4

(5 =) +a(52) - o) (47 =)

solutions using constraint conditions as,

2 — N2)2 2

_ N2 1482 :
+3fﬁl3<(1 1]6\’) )—(( 2 ) —fzz)] =0.

Case 1: For N — 1then we get solitary wave solutions as,

81 =

s

)
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P141(x,0)
\/a—l\/zzx \/a—l\ﬁx 4
2(a—1 sech| st — + sech| st —
. (a )“f‘*< <S v ) e T avavs
=|a
_ _ \/a—l\/ax _ \/ﬁ\/ax )
2a 1)f2<g1 <sech<st VvV + sech| st Vivavh + g
ea‘W—é.
(5D
Type 12: when k, = i, ky = %, ky = j—‘, then Q(p) = li'i(n”()p) then we have JEF domi-
nant solutions as, -

2a - 1)aﬁ(—li"c<n”(>p) )
Uisyp)=a+ ~ ’ (52)
Qa— 1 (8 (227 +,)

1+cn(p)

where g, and g, are,

(22 )

)

s

)
8 = (;‘)ﬁt
(55 -5) + (%) - (-2v) (2 -5)

solutions using constraint conditions as,
of 1—-2N? 9 1 —2N? )
1 < ) —f (E) - ) —f ((1 — 2N )+f2)

(1-232)?  \1°
(%)‘(T‘fzﬂ =0

Case 1: For N — 1then we get solitary wave solutions as

+ 3fs

¢15’1(x, )]
4 Va—1y/ax
N 2(a - l)af4 tanh <Sl - m)
=la

2 Va—1y/ax
Va—1y/ax & tanh (”- mm)
(2a - 1)f, (sech (st - +1)4 + g,
24/dA/F- Va—1+/ax 2
ff\/g (sech(.vt— NN )+1>

2
o
eaW—7 .

(53)
Case 2: For N — 0 then we get periodic wave solutions as
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P150(x, 1)
. \/a—l\/;vc
2(a — Daf, sin* ( st —
=14 (54)
.o Va=ly/ax
\/c;\/;x gy sin <‘Yt_\/§\/3\@>
2a - 1), (cos (st - +1 )4 + g,
2vd . Va-1y/ax
\[WVE (cos(sr— \/5\/5\/6>+1>2
l12
e”W_T .
Type 13: When k, = i, k, = %, ky = %, then Q(p) = —0)_ then we have JEF

. cn(p)xdn(p)
solutions

2(a — Dafy(—22yt
U16,N (.0 =a+ cn(p)xdn(p)

’ (55)
_ sn(p) 2
@a=Df (g](C”(P)tdn(p)) +g2)
where g, and g, are,
2
(25 -1)
81 = 2 )
14+N? (1-N?)? 1472
(55 -5) +3(557) - (142 (155 =)
(1)
2= 14N 2 (1-N?) 1+N ’
+N2 _N2)2 +N2?
() () - ()
solutions using constraint conditions as,
1+ N2 (1 =N?)? 1+ N?
ﬁ42< ) —f2> [9< 16 - ) —AH ) (A+N)+1)
2 2
(1- N2 (M) O\ _
+ 3f 3( 16 1 s =0.
Case 1: For N — 1 then we get soliton-solutions as,
P161(x, 1)
a—1+/ax
) 2(a — 1)af, tanh* (st - %)
=la
_ _ Va-1yax _ Ve )\,
2a - 1)f, <sech<st VvV + sech| st VAvavE (J+g2)
eo‘W—%g
(56)

@ Springer



1047 Page 16 of 23 M.S. Igbal et al.

VaTya
g, tanh? ( st—
where J = < ‘/M‘/E) . Case 2: For N — 0 then we get periodic
(sech (Sl— Va-T ar >¢sech <st— o lya ))2
VEVavh VEVavh
wave solutions as,
¢16,0(xa t)
2(a — 1)af, sin* (st - V.—%)
2
=[a+ (57
) VaTyax
1 Jax gy sin? [ s1— YV
Qa - 1)f2<cos<st— v.—%) + 1)4 M +
2
o2
eo‘W—T ,
a—l\/;x
where J = cos| st — —=— | + 1.
(- V2%

4 Results and discussion

The Fitz Hugh-Nagumo model is the precursor of the excitable system (e.g., neurons).
The geometrical structure from Figures (1, 2, 3, 4, 5 and 6) encodes the behavior of
the electrically excited cells in the living organism under the effects of noise. Due to
the presence of the stochastic term the formation of the perturbed current signals in
neurons is demonstrated with the help of surface and contour plots. In short, all the
figures presented the emulation of electrically excitable cells especially neurons (that
have to transmit information). The abrupt spikes in graphs represent the noise term in

dulkt) Sl ‘|

(a) 3D plot for o = 0.
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(d) 2D plot for o = 0. (e) 2D plot for o = 0.3. (f) 2D plot for o = 0.5.

Fig. 1 Dark soliton solution for the solution ¢ ;(x, 7) for the different choices of parameters

@ Springer



Soliton solutions of nonlinear stochastic Fitz-Hugh Nagumo... Page 17 0f23 1047

ualet) |
1k
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(d) 2D plot for o = 0. (e) 2D plot for o = 0.3. (f) 3D plot for o = 0.5.

Fig.2 Solitary wave solution for the solution ¢, ((x, 7) for the different choices of parameters
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(d) 2D plot for o = 0. (e) 2D plot for o = 0.3. (f) 2D plot for o = 0.5.

Fig.3 Bright soliton solution for the solution ¢,  (x, #) for the different choices of parameters

the mathematical model but physically they can be related to the pattern of signals used
by the neurons to transmit the data. Our main purpose of this study is to find the exact
solitons of stochastic FHN. These results are very helpful for a better understanding of
the behavior of population growth under the sea bed. We find the JEF solutions and it
gives us the solitary wave solutions and solitons. In the ocean, these results are very
applicable because they have randomness with consistent behavior such as solitons. in
ocean and engineering.
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Fig.4 Solitary wave solution for the solution ¢, ,(x, ¢) for the different choices of parameters
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(d) 2D plot for o = 0. (e) 2D plot for o = 0.3. (f) 2D plot for o = 0.5.

Fig.5 Bright soliton solution for the solution ¢ ; (x, #) for the different choices of parameters

The population growth, and neuron diffusion models are related to the FHN equation and
this model has serious significance in applications. The current study describes the multiple
solutions for such problems in different environments depending on the choice of the param-
eters, but the fundamental contribution is that we consider the FHN equation under the influ-
ence of the noise which leads to more physical problems and the solution provides the suf-
ficient information of the solution and true behavior of the species growth as well as neuron
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Fig.6 Dark-Bright soliton solution for the solution ¢, ; (x, 7) for the different choices of parameters

mobility. In any environment under the sea bed as well as on the common surface. Eichinger
et al. considered the stochastic FHN equation with additive noise and analyzed the stability of
traveling-pulse solutions (Eichinger et al. 2022). Tuckwell and Rodriguez worked on the sto-
chastic FHN equation under Gaussian white noise with analytical noise (Tuckwell and Rodri-
guez 1998). Tuckwell used the numerical technique to gain the solution of the stochastic FHN
equation (Tuckwell 2008). The authors used the Chebyshev spectral collocation for the com-
putational solution (Singh and Saha Ray 2022). Bonaccorsi et al. worked on the FHN equation
with stochastic boundary conditions and they proved the global well-posedness (Marinelli and
Scarpa 2022). The authors considered the stochastic FHN equation and analyzed its solution
(Benes et al. 2021). But in this, study we used the ¢°®-model expansion method. The method
under consideration is providing us with the solutions for the Jacobi elliptic function (JEFs).
Solitons and solitary wave solutions are the two sorts of solutions that JEFs can produce. By
using the ¢%-model expansion technique, several soliton solutions can be found, including
dark, bright, singular, combo, and exact solitary wave solutions. Figure (1) is drawn for the
solutions ¢ ; (x, 7) that will give us the dark soliton solution. The subfigures (1a, d) are drawn
for the o zero, and that will provide us the dark solution while we increase the value of ¢ = 0.3
and our solution shows the randomness in their behavior that are dispatched in subfigures (1b,
e) and subfigures (lc, f) for ¢ = 0.5. Figures (2,4) are drawn for the solutions ¢; o(x, ) and
¢ 0(x, 1) Tespectively that will provide us the solitary wave solutions clearly and the noise
is shown in their corresponding subfigures as well. Figure (3,5) are drawn for the solutions
¢y.1(x, 1) and ¢  (x, 1) that will gives us the bright soliton solutions. Figure (6) is drawn for the
solution ¢ ; (x, 7) that gives us the dark-bright solution solution.
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5 Conclusion

In this research, we studied the stochastic Fitz-Hugh Nagumo (FHN) equation analyti-
cally. The multiple soliton solutions of the FHN model are successfully constructed.
This model is widely used in flame propagation, branching Brownian motion process,
autocatalytic chemical reaction, nuclear reactor theory, and mobility in neuroscience
that expresses the pulse behavior of neurons and the population growth model. So, it is
directly connected with the ocean and engineering as well as where in the sea. To con-
struct the soliton-solutions of this model we adopted the ¢°-model expansion method. If
these solutions are considered as the population growth under the sea bed, these solu-
tions will represent the population growth in an environment where the solutions are
very important for the people who are working in the framework of ocean engineering.
So Brownian motion or other processes play a fundamental role in the dynamics of the
population which is governed by this model. For example certain stages you have sud-
den increases or decreases in the population growth. So, these solutions are successfully
constructed under the stochastic behavior or Brownian motion and, hopefully, are used
in the wave motions that are directly connected to sea and ocean engineering. Using this
model we constructed the new families of the solitary wave solutions successfully in
different forms. Under the different constraint conditions, the existence of these solu-
tions to the pulse behavior of neurons is also observed in the form of hyperbolic, trigo-
nometric, and rational forms. The graphical behaviors are also depicted for different val-
ues of parameters in 3D and corresponding contour shapes. The nature is full of random
behavior. As classical models can not incorporate the fluctuation of the environment,
or in the system, it is necessary to consider the classical model under the effect of the
noise. The effect of the noise is controlled with the Borel function. Moreover, the under-
lying model has vast applications in neuroscience that express the pulse behavior of
neurons. In general, different kinds of noise have an effect on neurons, e.g., oscillations
in the opening and closing of ion stations within the cell membrane and the fluctuations
of the different conductivities in the system. This fluctuation creates a sequence of sto-
chastic excitation. A similar procedure can be adopted to observe the impact of noise on
the classical models.
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