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Abstract
The (3+1)-dimensional double sine-Gordon equation plays a crucial role in various physi-
cal phenomena, including nonlinear wave propagation, field theory, and condensed matter

physics. However, obtaining exact solutions to this equation faces significant challenges. In
4

this article, we successfully employ a modified <% >-expansion and improved tan (@)

-expansion methods to construct new analytical solutions to the double sine-Gordon equa-
tion. These solutions can be divided into four categories like trigonometric function solu-
tions, hyperbolic function solutions, exponential solutions, and rational solutions. Our key
findings include a rich spectrum of soliton solutions, encompassing bright, dark, singular,
periodic, and mixed types, showcasing the (3+1)-dimensional double sine-Gordon equa-
tion ability to model diverse wave behaviors. We uncover previously unreported complex
wave structures, revealing the potential for complex nonlinear interactions within the
(3+1)-dimensional double sine-Gordon equation framework. We demonstrate the modified

4
<a>-expansion and improved tan (@)-expansion methods effectiveness in handling

higher-dimensional nonlinear partial differential equations, expanding their applicability in
mathematical physics. These method offers enhanced flexibility and broader solution cate-
gories compared to conventional approaches.

Keywords (3 + 1)-Dimensional double sine-Gordon equation - Solitons solutions

!
Modified <% >-expansion method - Improved tan (@ >-expansion method

1 Introduction

The (3+1)-dimensional double sine-Gordon equation, a well-known nonlinear partial dif-
ferential equation with many applications in mathematical physics, describes the evolution
of complex wave patterns in multidimensional space and time. Evolution equations, which
include both ordinary and partial differential equations, describe how systems change over
time, while nonlinear partial differential equations are involved partial derivatives and
emphasize nonlinear connections among variables, setting them apart within the realm of
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evolution equations (Al-Ali 2013; Zheng 2004; Evans 2022). In many branches of mathe-
matical physics, including field theory, condensed matter physics, and nonlinear wave
propagation, the (341)-dimensional double sine-Gordon equation is the gold standard.
However, it has shown to be a challenging task to uncover its secrets through exact solu-
tions. In this paper, we explore into the analytical solutions of this interesting equation,

. . . . . . . . G’
uncovering new perspectives into its behaviour by the implementation of a modified (—)

G2
. . ( P(&) ) .
-expansion and improved tan - -expansion methods.

In space-time dimension, the classical Sine-Gordon equation is a significant nonlinear
evolution partial differential equation. It has a significant history (Harrison 1999), includes
a wide range of solutions, and exhibits complex dynamics. They have revealed usage in
several disciplines of physics (Kivshar and Malomed 1989; Dauxois and Peyrard 2006).
In past years, more attention has been paid to the impact of inhomogeneities on the spread
of solitons (Kumar and Kumar 2022; Yang et al. 2019). Solitons flow with constant speed
and shape as an integrable solution in the classical sine-Gorden model. Solitons may, dis-
play more complex motion with varying velocity and structure under various situations
due to the inhomogeneities inside the medium (Contoyiannis et al. 2021). This might be
a useful impact for quick communication, quick movement, or perhaps a potential soliton
cannon (Ekomasov et al. 2018; Manoranjan 2021). The exact soliton solutions for the sine-
Gordon equation were found in Hirota (1973) using Hirota’s approach (Zagrodzinski 1979)
using Lamb’s method, Leibbrandt (1978) using the Backlund transformation (Kaliappan
and Lakshmanan 1979). Other authors have taken a variety of different approaches based
on various ways to solve the equation.

There are exact solutions for many different variations of the sine-Gordon equation,
which is a significant nonlinear partial differential equation in mathematical physics with
various applications (Gani et al. 2019; Gul et al. 2018; Joseph 2020a, b; Mohammadi and
Riazi 2019). There are numerous applications for the sinh-Gordon equation and its modi-
fications, and a number of the precise solutions for these equations utilizing the Lie group
and the straightforward equation methods may be found in Magalakwe et al. (2015, 2022),
Faridi et al. (2024), Akbar et al. (2023), Eslami and Rezazadeh (2016), Eslami et al. (2014),
Asghari et al. (2023a), Asghari et al. (2023b), Inan et al. (2017), Duran et al. (2012), Uddin
et al. (2011), Inan et al. (2011) and Asghari et al. (2023).

!
The group of <%>—expansi0n methods is special and gives nonlinear evolution

. . . . . G
equations approximately exact solutions. Li and Liu (2008) developed the <E>-expan—
sion method to construct new traveling wave solutions to nonlinear evolution equations

!

related issues. The extended (%)—expansion method, which Zayed and Gepreel (2009)

4
presented in 2009, successfully confirmed the effectiveness and accuracy of the <%>

!’
-expansion method. The two variables <%, é)—expansion method can be used to cre-

ate traveling wave solutions of nonlinear evolution equations, as has occasionally been
shown by many scientists and mathematicians. The concept was first presented forward

!/
by Li et al. (2010) in the year 2010. Recently, several writers have suggested the <%>
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-expansion method to obtain novel soliton solutions for numerous nonlinear evolution

. . G’ . .
equations. The modified I -expansion method, which has more unknown parame-

. . . . G .
ters, is the penultimate innovation of the <G—>-expan510n approach.

2

The tan <@>-expansion method has a wide range of applications. For various
nonlinear fractional physical models, Manafian and Farshbaf Zinati (2020) use the
tan <@>-expansion approach to find trigonometric function, hyperbolic function,
exponential function and rational function solutions. Ugurlu et al. (2017) obtained trave-
ling wave solutions of the potential KdV equation (pKdV), and the (3+41)-dimensional
shallow water wave equation (SWWE) with the help of the tan <@>- expansion
method. The (2+1)-dimensional Kadomtsev—Petviashvili-Benjamin—-Bona—Mahony
(KP-BBM) wave equation was solved using this method by Khan et al. (2018), who got
several different types of exact solutions. Abundant soliton solutions for Rad-
hakrishnan—Kundu-Laksmanan (RKL) equation with Kerr law non-linearity by Akram
et al. (2021) and Younis et al. (2021) using the suggested method.

The main advantage of these approaches is their ability to provide exact analytical
solutions for various kinds of nonlinear partial differential equations. These are particu-
larly helpful since they provide researchers with closed-form expressions that highlight
the functional forms of the solutions. These methods follow a structured and systematic
approaches. Researchers can easily access the approaches due to their systematic nature,
which also helps to organise the solution process. Nonlinear partial differential equa-
tions are common in mathematical physics and other scientific fields, and these tech-
niques are specifically made to deal with them. These are especially useful for solving
equations with nonlinear terms, providing insight into the behavior of complex systems.
These approaches have the disadvantage that, although they are effective for particular
classes of nonlinear partial differential equations, their ability to be generalised may be
restricted in other situations. Certain forms of nonlinear partial differential equations,
particularly those with incredibly complicated or irregular solutions, may provide dif-
ficulties for the approaches to handle. Numerical techniques or other analytical methods
might be better suitable in these situations.

2 Description of the methods

Consider a nonlinear partial differential equation
P(W’ Yy Wy? Wy Wx)n le’ ll/yp )’ (21)

where v = y(x,y,z,t) is unknown variable, x, y, z, and ¢ are denoted partial derivatives.
Now we introduce the wave transformation

wx,y,2,) =0¢), E=x+y+z-—t, 2.2)

where v is wave speed. The following nonlinear ordinary differential equation is obtained
after substituting Eqs. 2.2 into 2.1
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W(D, ', —vd' V@, ) =0, (2.3)

where prime denotes derivatives.

2.1 The modified <— )—expansmn method

Step 1. Assume the solution of Eq. 2.3 has the following form

/ 1\ 7
D) = Mo+2l <G>M_,»<%> ] 2.4)

N\’ ’ 7\ 2
(%) =a+e<%>+;{<%> , @.5)

where o,6, and y are constant coefficients, while My, M; and M_;(j =1,2,---,N) are
unknown constants. Additionally, only one of M; or M_; can be zero at once; neither M; nor
M_; can be zero simultaneously. Using the homogeneous balance principle on Eq. 2. 3 we
can calculate the value of the real number N.

Step 2. A system of algebraic equations is obtained by inserting Eqs. 2.4 and 2.5 into 2.3,

where G = G(&).

7\ /
gathering all coefficients that have the same power of < %) where (j =0, 1,2, ---) equal to

zero. The system of algebraic equations can be solved by Maple software.

Step 3. The ordinary differential Eq. 2.5 has five possible types of solutions, as described
in the following:

Type 1: If 6 y > Oand 6 = O then

Viezi |2 cos (Viozle) + @ssin (Vizic |

(2)- o
1[92 cos (\/ﬁg) —Qsin (VW&)]
Type 2: If 04 < 0 and = O then
<G,> i \/ﬁ[gl sinh (2@5) +Q cosh (24/lox1¢) + 2
@) ;([Ql cosh (24/lox1¢) +, sinh (2/lox1¢) - 92] e

Type 3: If 6 =0, y # 0 and @ = O then

G Q
()8 .
G 1(9154‘92)

Type 4: If 6 # 0 and A > 0 then
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)
)

/ V=i[ Q, cos ﬂg - Q, sin
o )

where Q,, Q, are arbitrary real numbers and A = 82 — 40 y.
Step 4. The exact solutions of Eq. 2.1 can be obtained by inserting the values of

\/E(Ql cosh < ¢ ) +Q, sinh
0

o Ao L
(&)= o)
(=

(2.9)

NSRS

2
Type 5: If 6 # 0 and A < O then

4
My, M;,M_; and % into Eq. 2.4 and then putting into Eq. 2.2.

2.2 Theimproved tan ("’@) expansion method

Step 1. Suppose the solution of Eq. 2.3 has the following form Manafian and Farshbaf
Zinati (2020), Khan et al. (2018) and Akram et al. (2021)

N
D) = ZM<k+tn<¢(§)>> ZM__<k+tan<¢(§)>>, @2.11)
=1

where M; and M_; are unknown constants, such that both M; # 0 and M_; # 0 and ¢(&) sat-
isfies the followmg ordinary differential equation

¢'(8) = o sin (&) + 0 cos ($E) + 7. 212)
for sake of simplicity we convert sin (¢)(¢)) and cos (¢(€)) into tan (¢p(£)/2), so we can write
. 2 tan(¢(8)/2) 1 —tan?($(©)/2)

sin (¢(§)) = T4 a2 /D GO/ cos (¢(8)) = T 2 (6E)/2) GO/ (2.13)

Step 2. Inserting Egs. 2.11, along \_Vith 2.12, 2.13 into Eq. 2.3, then setting the coefficients

j
of same powers of (tan (@)) , where (j =0, 1,2, ---) equal to zero, we obtained a sys-

tem of algebraic equations.
We will consider the following special solutions of Eq. 2.12:
Type 1: If A=06%+ 6> — y> < 0and 6 — y # O then

o ()]

0—x 06—y

$(&) =2 tan™! [ (2.14)

Type 2: If A = 6% + 6> — > > 0and 6 — y # O then
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00—y 60—y

¢(§)=2tan_1[ g +ﬁtanh(gé)].

Type 3:If A =062+ 62— 2> > 0,0 # Oand y = O then

$(&) =2 tan”!

=+
0

Type 4: If A =06%+ 62— ?> <0, y # 0and 6 = 0 then

¢ =2tan"" |-

X 2

Type 5:If A=06%+6>— 4?> > 0,0 — y # Oand ¢ = 0 then

$(&) =2 tan™! [1/ z t j; tanh< 022_ 7 5)]

Type 6: If 0 = 0 and y = O then

[e206 _ 1 2e%

= tan™! — R = .
v €208 417 206 41

Type 7: If 6 = 0 and y = O then
207 o2¢ 1]

@& =tan™ | ——, ———|.
| €206 +1 @296 41|

Type 8: If 6 + 62 = 4 then

O'ef+2]

$(&) =2 tan™! [ -
@ - x)i

Type 9: If c = 8 = y = so then
$(&) =2 tan™! [e‘“”f - 1].

Type 10: If 6 = y = so and 0 = —so then

so’f
HE) = -2 tan~! | -S|
—1 4+ eso¢
Type 11: If y = o then
(6 = —2 tan-! | CEO = 1]
(o —0)e% — 1

Type 12: If ¢ = y then
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0+ x)e +1
g(&) =2 tant [CEDHL] (225)
0 — x)e -1
Type 13: If y = —o then
e 40—
$(&) =2 tan™! [ﬁ] . (2.26)
Type 14: If 0 = — y then
oé
$&) =2 tan” [lfe—ﬂg] 2.27)
Type 15: If 8 = 0 and 6 = y then
E+2
$&) =2 tan”" | £ ié . (2.28)
Type 16: If 6 = 0 and 8 = y then
$(&) =2 tan”! [;{3] : (2.29)
Type 17:If 6 = 0 and @ = — y then
a1
$(&) = -2 tan”! [E] (2.30)
Type 18: If ¢ = 0 and 6 = 0 then
&) = xé+C. (2.31)
Type 19: If 6 = y then
o€ _
¢ =2 tan™! [e 4 ] (2.32)
o

where & = & + C.
Step 4. The exact solutions of Eq. 2.1 are obtained by inserting the values of M,, M;, M
and ¢(¢) into Eq. 2.4 and then putting the value of ¢(x, y, z, ) into Eq. 3.5.

=

3 Application of the methods

Consider the (3 + 1) dimensional double sine-Gordon equation Wang (2021) as:
Vi T 205 — Wy W — W — Wy, — Wy, iy, = siny +sin 2y 3.1
Now

P, y,7,1) = VO, (3.2)
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1
v(x,y,z,1) = 7 Inp(x,y,z,1),

3.3)
Also
— ! 2 _ -2 -1
sinw:%, sin2w=%, cosw:qH_q) , (34
i i

w(x,y,z,1) = cos™! <"’(x’y’z’ N+~ (x,y,2,1)

> > (3.5)

The (3+1)-dimensional sine-Gordon equation is changed to an equivalent nonlinear partial
differential equation, which is represented as, by substituting Egs. 3.3 and 3.4 into Eq. 3.1.

200, =20, + 4900, — 40,0, - 200, + 20,0,

+ 200, = 20] =200, + 20,0, - 209, 56
+ 20,0, — 200, +2¢0,0,+ 20 ¢,
-20,0, -0 -0 +o+1=0.

Making wave transformation

@ =),

3.7
where { = ax + fy+ yz — vt. For sake of simplicity take a= = y =1. To convert into
nonlinear partial differential equation, substitute Eqgs. 3.7 into 3.6

22+ VPP () — 22 + v) (c1>’(c))2 —P - DO+ D) +1=0, 3.8)

3.1 Exact solutions by the improved (g—; >—expansion method

With N = 1, Eq. 2.4 contains the following formal solution

/ / -1
W) =M, + M, (%) + M, (9> ,

G2

(3.9)
Substituting Eqs. 3.9 and 2.5 into Eq. 3.8 and collecting all coefficients that have the same

powers of (g—;) ,i=0,1,.-,8, equals to zero, the following system of algebraic equations
is obtained
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46°M* - M* 4+ 2vo’M? =0,

469M%1 +4ve’MM_| — M? | + 86 MM _,

+2veOM? | — 4AMM? | =0,

6veOMM_| — 3MM* — AMM3 + 8vo>M\M_,

+166*M\M_; — 6MIM>| + 1260 MM_; = 0,

—3M;M_; — 3M\M* — 4M)M_, + 32606 M\M_,

+8c yMM_, — 40;{le - 2v0;(M31

+4vo y MM_, + 40°MM_; + M_; — 12MM M?
+2v0*MM_, + 16ve OMM_| = 0,

My + 46 0MyM, + 40 y M|M_, — My — 4 y*M?|

S +2veOMM, - 6 MM M_; +2v0 y MyM_,

+160°M\M_| — 46°M? + 16ve y M\M_; — M
—2vo’Mi+ 1+ 320 yM\M_, — 12M;M\M_,

+8VOMM_| — 6MIM? | — 2v y*M?* =0,

16v0 y M\M_; + 2v0*MM, — 12MM:M_, + M,
—2veOM; — 40 OM; + 4vo y M|M, — 3 MM,

—4MIM, + 320 yM\M_, + 86 y M|M, — 3M;M_, + 46*M,M, = 0,

—3MM?} + 16 y*M_ M, — 6 MM} — AMM_, + 126 y MyM,
+8vy*M_ M, + 6v0 y MM, = 0,

8x*MoM, + 40 y M7 — M + 2v0 y M} + 4v y*MyM, — 4MyM; = 0,

2v*MT + 4 M7 — M| = 0.

(3.10)
Solving Eq. 3.10 with the help of Mathematica, we have

1 3
M. =—=+0 —, M, =0, :
T 2T TV e de ! GIb
3 3
M =x0y\| —F—F—v="2- ——".
! —-02+40y 2(92—40')() G12
1 3 -3 —3
M=t ooy M T E N S ae M T O T T e ey

(3.13)

Plugging Eq. 3.13 along with Eqgs. 3.9 into 3.7 then we obtained following soliton solutions
of 3.1,
Type 1: If o y > 0and# = O then
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2
_ l i(ﬂzcos(\/ﬁ{)—ﬂl sin(ﬁ()) 1
] 2 7 2 \Qcos(y/ort)+Q,sin (/o)

Q, cos (1/o1¢)-Q, sin(\/aé)
-1z \/§<Q, cos (y/ox&)+Q, Si"(\/‘ﬁ‘:))

w1 (X,Y,2,1) = cos” , (3.14)

l\)l'—‘

+ﬁ(ﬂwm(ﬁc)+szzsin<¢m>>>2+1
— 2\ Q08 (y/oxg) —Q sin (y/ox¢)
1+\/_<Qlcos(\/_éj)+£225m(\/_éj)>

Q, cos (y/ox¢) = Qsin (y/ox¢)

|C

Wy (X,Y,2,1) = cos”

(3.15)
where{ =x+y+z—vt.
Type2:Ifo y <0andd = 0 then
1 \/— Q, cosh (2 Viexl ¢)+gl smh 2 \/|0',( c
277 Q, sinh (2 Vioxl g)ml cosh 2\/|0‘;{ c +Q,
ws,(x,y,2,1) = cos™!
Q, cosh (2 Viexl §)+Ql sinh 2 \/|0‘)( g
-1F \/3
Q, sinh (2 izl g)m, cosh 2\/|0';( g +Q,
(3.16)
1 \/_ s1nh<2y/|o‘1 ¢)+szl cosh 2\/|0’,{§ +92
2ty Q, cosh (2 izl g)m, sinh 2\/|o’,( g
Wyn(x,y,2,1) = cos™!
| \/— Q 91nh<2\/|a;( g)ml cosh 2\/|o';(§ +Q2
-1F
Q, cosh (2 Viex| §’>+Q| smh 2\/|z7;( C
(3.17)
where{ =x+y+z—vt.Type3:Ifc = 0, y # Oand § = 0O then
(5
Ws3(x, y, 2, 1) = cos (—5), (3.18)
where { =x+y+z—vt. Type4:If0 # Oand A = 6% —46y > Othen
e |
26 7|, cosh ¢ |+, sinh
—% Fi % 6+ [ ]] f[ [ ] /1 +1
—6] @, cosh z +Q, sinh ¢~V @, cosh ¢ |+, sinh ¢
y/(w(x, V.2, 1) = cos™!
201 Q:cosh[%g +Q|sinh[TA§
12/ 3]0+
\/> -6]©, cosh g [+, sinh ?g” ﬁ[n. cosh %g o, sinh[\/ng]’
(3.19)
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2
A A
V| Q, cosh £§ +Q, sinh ic
2 2
- F= 3 0— +1
2 2V 4 A A
chosh[%C]+Ql sinh[gf]
Wy 4(x,y,2,1) = cos™! ,
vV vV
V| Q, cosh Tg +Q, sinh -
-1F i\/E 0—
A Vil o [va
Q, cosh ) { [+€2, sinh 5 ¢
(3.20)
where { =x+y+z—t.
Type 5:1f6 # Oand A = #2 — 46y < Othen
V), (VT ‘
| - 26 4| Q, cos 3 ¢ |+, sin 3 14
T2 i\/; o+ i V=1 - V=i *!
-0, m[ 3 {]+!l,.\in[T§]]f\/j[!llu[ ;]421«“[ 3 ¢
SN
2@ o8l — ¢ |+, sin -
—-1+2 0+
& P SNECY A=Y I TR
(3.21)
-1 A ’
\FQ] cos| —— ¢ |-Q, sin _2_ ¢
- ¥ LAV E! 0 - +1
2 2V A4 /=1 —1
Q, cos| ————( [+Q, sin| ——¢
2 2
Wos(x,,2,1) = cos™! :
V-2 -1
\/7(21005 ¢ |-Q, sin 2 ¢
_. /3
—1Fi\/=>|0 -
A . o I
H COS ¢ |+, sin ) ¢
(3.22)

where { =x+y+z—t.

3.2 Exact solutions by the improved tan (‘1’@) ) expansion method

Equation 2.11 contains the following formal solution

-1
D) = M0+M1<k+tan<¢(C)>>+M_1<k+tan<@)> , (3.23)
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Substituting Eqs. 3.23, 2.12 and 2.13 into 3.8 and collecting all coefficients that have the
(9N
2

same powers of tan < ,i=0,1,--,8, equals to zero, the following result of alge-

braic equations is solved with the help of Maple

+V3(k y — o —k0) — 1/~ (c? + 62 = 12)
M, = ,
24/ (02 + 62— 42)
M—e VX020 (3.24)
2¢/— (02 + 62— 4?)
4(c*+6%— ) +3
M_=0,v=-— (6 X)

2(02+ 62 — 42)

Plugging 3.24 along with Eqgs. 3.23 into 3.7 then the soliton solutions of Eq. 3.1 are listed
below
Type 1: When A = 62 + 6% — 2> < 0and § — y # Othen

w1 1(X, Y, 2,1) = cos™ \/_ ; (3.25)
“1 A <_ )
wheref =@x+y+z—-v)+C.
Type 2: When A = 62 4+ 0> — 2 > 0and § — y # O then
(—% F l% tanh <£$>)
Wy, (x,y,2,1) = cos™! 7 , (3.26)
A4
—-15iV3 tanh<7C>
wheref =@x+y+z—-v)+C.
Type 3: When A = 6% + 6% — 2 > 0,6 # 0,and y = 0 then
2
1 A3 Vo2 +062,
-~ Fi— tanh| ———¢ +1
2 2 2
ws5(x,y,2,1) = cos™! . 32D

—137i\/3 tanh(—”’z;azf)

where £ = (x+y+z—vi)+ C. Type 4: When A=062+62— 42<0, y#0, and 6 =0
then
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| (—% ¥ V3 tan(ch))zH

2

N v ’
—11\/§tan<%f)

Wy 4(X,Y,2,1) = cos” (3.28)

wherefz(x+y+z—vt)+C.Type5:When/1=0'2+02—;(2>0,9—;(7é0,and0'=0

then
V02— x% .,
LS Y S NN (R Ay ) R
272\ x-96 2
Wss5(X,Y,2,1) = cos™! , (3.29)

V02— x2,

1+ tanh | —————¢
x—0 2

wheref=(x+y+z—vt)+C.Type6: When o = 0,and y = 0 then

1_ /3 1 1 26 ’
—— Fi— tan (— tan~! ( _ , — >> +1
. 2 2 2 205 +1 206 4+ 1

208 _ 0t
—1¢i\/§tan<% tan~! <e 1 2 >>

e 417 2% 1

We.6(X, Y, 2,1) = cOS™

s

(3.30)
where = (x+y+z—vtH)+ C.Type 7: When § = 0,and y = O then
2
(—1 ii\/§>
—— | +1
1 2
W77(X,9,2,1) = cos” . (3.31)
—1+i\/3
Type 8: Wheno = 6 = y = so then
2
—-1+iv3 1
2
wyg(x,y,2,1) = cos™! : (3.32)
—-1+ivy3

Type 9: Wheno = y = so and @ = —s o then

@ Springer



807 Page 140f23 Z.Manzoor et al.

emg“ -1

()

1

Wo (X, ¥,2,1) = cOS™ A ’ .
. 24/3e%¢
—-1+iV3Fi——
esol — 1
where { = (x+y+z—v) + C.
Type 10: When y = o then

2 2\ (c-0)e¥ -1

-1F l\/_< 1+(o— 9)&5) ’ (3.34)

—0)et<—1

2
(—l ¥ iﬁ (—”“’“’?eog )) +1

W10.10(%: Y, 2, 1) = cos”

where { = (x+y+z—v) + C.
Type 11: When o = y then

+H

2
-1 iﬁ ( 1+(0—p)e” ) +1
2 2 \(O-pe¥-1
1
1% l\/_< 1+(6— ;()eec> > (3.35)

(0-p)e® -1

w1, 2, 1) = cos”

where £ = (x +y+z—vt)+ C.Type 12: When y = —o then

2
1 - \/3 e’ +0+c 1
_5 F* ZT prr +
1
17 i/3( 5 ) ’ (3.36)

e —0—c

Wi012(%, ¥, 2, 1) = cos™

where = (x+y+z—vt)+ C.Type 13: When 0 = — y then

V31305 Y, 2, 1) = cos”

« ; (3.37)
=

where £ = (x +y 4z — vf) + C. Type 14: When o = 0 and 6 = 0 then
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Fig.1 3D and  contour  graphs of y;, for  different  values of  parameters:
Q=1Q=-102,6=2,0=0 y=-035y=0,z=0

(b)

Fig.2 3D and  contour  graphs  of y,, for different  values of  parameters:
Q,=05Q,=0002,06=19,0=0, y =-0.65,y=0,z=0

|C

N | —

2

2
$§tan<ﬂ:+ C>> +1
C

Wi4,14(%,Y,2,1) = cos™ T , (3.38)
-1F \/gtan <)( 3 )
where § = x+y+z —vt. Type 15: When 6 = y then
2
( -1+ z\/§>
—— ] +1
2
W55 3,2, 1) = cos™! : (3.39)

—1ii\/§
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o 406Y.Z)

Fig.3 3D and  contour  graphs of g, for different  values of  parameters:
Q,=42,9Q,=12,6=50=15, y=0.19,y=0,z=0

4 Y
Wiz i
7 1
777 W,
i i
i I i i
i
i QNN
i ’”’w\\ A\ ‘\\\\\\\\\
AN

Fig.4 3D  and  contour  graphs  of  y;, for different  values of  parameters:
Q=142,Q,=42,6=5,0=15,y=019,y=0,z=0

Fig.5 3D and  contour  graphs of yy5 for  different  values of  parameters:
Q =-1529,Q,=702,06=4.03,0=6.5, y=189,y=0,z=0
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(b)

Fig.6 3D and  contour  graphs of wy,, for different  values  of
06=2,0=0, y=-0.35 C=-0.005y=0,z=0

parameters:

(b)

Fig.7 3D and  contour  graphs of w55 for  different  values of
06=0,0=15y=1,C=-5,y=0,z=0

parameter:

Fig.8 3D and  contour  graphs  of wyy for  different  values  of
0=-303,60=202, y =0.05,C=-1025,j=-0.05,y=0,z=0

parameters:
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(b)

Fig.9 3D and  contour  graphs of g, for different values of  parameters:
o =100.03, 6 = -2.02, y =100.03, C =—-0.005,y=0,z=0

(b)

Fig.10 3D and contour  graphs of w,;;; for different values of  parameters:
6=0,0=32y=052,C=-05,y=0,z=0

(b)

Fig.11 3D  and  contour  graphs of y,,, for different  values of  parameter:
6 =118.03,0 =2.02, y =-118.03, C=-0.005,y=0,z=0
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(b)

Fig.12 3D and contour  graphs of 3,3 for different values of  parameters:
6=5,60=035 y=-035C=-15,y=0,z=0

4 The graphical representation

In order to visualize the physical behavior of the solutions and explain the shape of soli-
tons, this part displays the solitions solutions using 3D, and contour graphs.

5 Physical interpretation

We explained the 3D and contour plots that are shown in the graphical representation part
in this section. These graphs have the goal to illustrate the wave function’s structure and
the physical characteristics of the obtained solutions. We discuss the interpretation of these
graphs and their importance in understanding the characteristics of the solutions. The wave
function can be visualised using both the 3D graph and the contour graph, which can reveal
details about the dynamics of the system and help understand its behaviour. They are use-
ful in determining whether solitons, nonlinear effects, and other interesting wave function
characteristics are present. The Figs. 1, 2, 3 and 4 display combination of periodic and
singular soliton solutions. Similarly, the Fig. 5 display periodic solutions. Furthermore, the
Figs. 8,9, 10, 11 and 12 display combination of periodic and rational solution, and Figs. 6,
7 display combination of periodic and dark soliton solution.

6 Conclusion

!

This research investigated the modified <%>-expansion and the improved tan <@>

expansion, two novel expansion techniques for the analysis of the (3 + 1)-dimensional
double sine-Gordon equation. Every technique offers a wide range of solutions, includ-
ing rational, hyperbolic, exponential, and trigonometric functions, each with complex

physical explanations and possible practical uses. After applying these two techniques,
/
we came to the conclusion that modified (%)-expansion has a wider application range,
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a simpler study of soliton interactions, and is more easily applied to nonlinear partial
4

differential equations. < ¢

a) technique provides only a few different kinds of solutions.

While, the improved tan <@> -expansion offers a wider range of options, some of

!
which are inaccessible through the modified (%) -expansion. This method use is more

complex and results in certain excessive solutions. However, the resulting soliton solu-
tions of this method improve our knowledge of nonlinear wave processes by providing
insight into physical phenomena such as ocean waves. Both expansion techniques solve
the (3 + 1)-dimensional double sine-Gordon equation with amazing efficiency and may
be used to solve other kinds of nonlinear partial differential equations. This work pro-
vides an important starting point for future investigations into the (3 + 1)-dimensional
double sine-Gordon equation and provides fascinating new perspectives on nonlinear
wave phenomena and the capabilities of creative analytical techniques. In the future, we
will examine soliton interactions in more detail, including multi-soliton structures and
higher-order interactions. We will also utilise this equation to simulate real-world sys-
tems that have extra complexity, such as impurities and external potentials. We can bet-
ter understand complex physical systems and create even more powerful tools for solv-
ing the challenges of nonlinear research by following the indicated future directions.

Acknowledgements Not applicable.

Author Contributions MSI Software, Data Curation, Writing, Formal Analysis. ZM, FA: Data Curation,
Software, Formal Analysis, Writing. MAT, SH Writing-Reviewing Editing, Investigation. MI Conceptual-
ization, Supervision, Writing-Reviewing Editing, Validation.

Funding Open access funding provided by the Scientific and Technological Research Council of Tiirkiye
(TUBITAK).

Declarations

Conflict of interest The authors declare no conflict of interest.
Ethics approval Not applicable.

Availability of data and materials Not Applicable.

Consent for publication All the authors have agreed and given their consent for the publication of this
research paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

@ Springer


http://creativecommons.org/licenses/by/4.0/

New exact solutions of the (3+1)-dimensional double sine-Gordon... Page 210f23 807

References

Akbar, M.A., Abdullah, F.A., Islam, M.T., Al Sharif, M.A., Osman, M.S.: New solutions of the soliton type
of shallow water waves and superconductivity models. Results Phys. 44, 106180 (2023)
Akram, G., Sadaf, M., Dawood, M.: Abundant soliton solutions for Radhakrishnan—Kundu—Laksmanan

)

equation with Kerr law non-linearity by improved tan (%)—expansion technique. Optik 247,
167787 (2021a)

Akram, G., Sadaf, M., Dawood, M.: Abundant soliton solutions for Radhakrishnan—Kundu—Laksmanan

o]

equation with Kerr law non-linearity by improved tan (%)—expaﬂsion technique. Optik 247,
167787 (2021b)

Al-Ali, E.M.: Traveling wave solutions for a generalized Kawahara and Hunter—Saxton equations. Int. J.
Math. Anal. 7, 1647-1666 (2013)

4

Aljahdaly, N.H.: Some applications of the modified <£>—expansi0n method in mathematical physics.

G2
Results Phys. 13, 102272 (2019)

Asghari, Y., Eslami, M., Rezazadeh, H.: Soliton solutions for the time-fractional nonlinear differential-dif-
ference equation with conformable derivatives in the ferroelectric materials. Opti. Quantum Electron.
55(4), 289 (2023a)

Asghari, Y., Eslami, M., Rezazadeh, H.: Exact solutions to the conformable time-fractional discretized
mKadv lattice system using the fractional transformation method. Opt. Quantum Electron. 55(4), 318
(2023b)

Asghari, Y., Eslami, M., Rezazadeh, H.: Novel optical solitons for the Ablowitz—Ladik lattice equation with
conformable derivatives in the optical fibers. Opt. Quant. Electron. 55(10), 930 (2023c)

Contoyiannis, Y., Hanias, M.P., Papadopoulos, P., Stavrinides, S.G., Kampitakis, M., Potirakis, S.M., Bala-
sis, G.: Tachyons and solitons in spontaneous symmetry breaking in the frame of field theory. Sym-
metry 13(8), 1358 (2021)

Dauxois, T., Peyrard, M.: Physics of Solitons. Cambridge University Press, Cambridge (2006)

Duran, S., Ugurlu, Y., Inan, LE.: Expansion Method for (3+ 1)-dimensional Burgers and Burgers Like
Equation. World Appl. Sci. J. 20(12), 1607-1611 (2012)

Ekomasov, E.G., Gumerov, A.M., Kudryavtsev, R.V., Dmitriev, S.V., Nazarov, V.N.: Multisoliton dynamics
in the sine-Gordon model with two point impurities. Braz. J. Phys. 48(6), 576-584 (2018)

Eslami, M., Rezazadeh, H.: The first integral method for Wu-Zhang system with conformable time-frac-
tional derivative. Calcolo 53, 475-485 (2016)

Eslami, M., Fathi Vajargah, B., Mirzazadeh, M., Biswas, A.: Application of first integral method to frac-
tional partial differential equations. Indian J. Phys. 88, 177-184 (2014)

Evans, L.C.: Partial Differential Equations, vol. 19. American Mathematical Society, New York (2022)

Faridi, W.A., Tipu, G.H., Myrzakulova, Z., Myrzakulov, R., Akinyemi, L.: Formation of optical soliton
wave profiles of Shynaray-IIA equation via two improved techniques: a comparative study. Opt. Quan-
tum Electron. 56(1), 132 (2024)

Gani, V.A., Moradi Marjaneh, A., Saadatmand, D.: Multi-kink scattering in the double sine-Gordon model.
Eur. Phys. J. C 79(7), 1-12 (2019)

Gul, Z., Ali, A., Ahmad, I.: Dynamics of ac-driven sine-Gordon equation for long Josephson junctions with
fast varying perturbation. Chaos Solitons Fractals 107, 103-110 (2018)

Harrison, H.R.: Classical dynamics: a contemporary approach. In: Jose, J.V., Saletan, E.J. (eds) Cambridge
University Press. Cambridge (1998). Illustrated.€ 29.95. Aeron. J. 103(1027), 442442 (1999)

Hirota, R.: Exact three-soliton solution of the two-dimensional sine-Gordon equation. J. Phys. Soc. Jpn.
35(5), 1566-1566 (1973)

Inan, LE., Kili¢, B., Duran, S.: (G’ /G) expansion method and its applications to the 2-Dimensional Burgers
equation and coupled Burgers type equation. Sci. J. World Appl. (2011)

Inan, L.E., Duran, S., Ugurlu, Y.: TAN(F(£2))-expansion method for traveling wave solutions of AKNS
and Burgers-like equations. Optik 138, 15-20 (2017)

Joseph, S P.: New exact solutions for double sine-Gordon equation. In: International Conference on
Computational Sciences-Modelling, Computing and Soft, pp. 109-121. Springer, Singapore
(2020a)

Joseph, S.P.: Traveling wave exact solutions for general sine-Gordon equation. Adv. Math. Sci. J. 9(4),
2293-2298 (2020b)

Kaliappan, P., Lakshmanan, M.: Kadomstev—Petviashvile and two-dimensional sine-Gordon equations:
reduction to Painleve transcendents. J. Phys. A Math. General 12(10), L249 (1979)

@ Springer



807 Page22o0f23 Z.Manzoor et al.

Khan, U., Irshad, A., Ahmed, N., Mohyud-Din, S.T.: Improved tan ¢(§) -expansion method for

(2+1)-dimensional KP-BBM wave equation. Opt. Quantum Electron. 50(3), 1-22 (2018)

Kivshar, Y.S., Malomed, B.A.: Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys.
61(4), 763 (1989)

Kumar, S., Kumar, A.: Abundant closed-form wave solutions and dynamical structures of soliton solu-
tions to the (3+ 1)-dimensional BLMP equation in mathematical physics. J. Ocean Eng. Sci. 7(2),
178-187 (2022)

Leibbrandt, G.: New exact solutions of the classical sine-Gordon equation in 2+1 and 341 dimensions.
Phys. Rev. Lett. 41(7), 435 (1978)

!

Li, S., Liu, Z., Wang, M.L., Li, X.Z., Zhang, J.L.: The % -expansion method and travelling wave

solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372, 417-423
(2008)

4

Li, L.X., Li, E.Q., Wang, M.L.: The <% é)—expansmn method and its application to travelling wave solu-

tions of the Zakharov equations. Appl. Math. A J. Chin. Univ. 25(4), 454462 (2010)

o]
Liu, H.Z., Zhang, T.: A note on the improved tan (% )-expansion method. Optik 131, 273-278 (2017)

Magalakwe, G., Muatjetjeja, B., Khalique, C.M.: Exact solutions and conservation laws for a generalized
double combined sinh-cosh-Gordon equation. Mediterr. J. Math. 13(5), 3221-3233. Islam, M.T.,
Akter, M.A., Ryehan, S., Gémez-Aguilar, J.F., Akbar, M.A.: A variety of solitons on the oceans
exposed by the Kadomtsev Petviashvili-modified equal width equation adopting different techniques. J.
Ocean Eng. Sci. (2016)

Magalakwe, G., Muatjetjeja, B., Khalique, C.M.: Generalized double sinh-Gordon equation: symmetry
reductions, exact solutions and conservation laws (2015)

Manafian, J., Farshbaf Zinati, R.: Application of tan < o) >-expansi0n method to solve some nonlinear

fractional physical model. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 90(1), 67-86 (2020)
Manoranjan, V.: Analytical solutions for the generalized sine-Gordon equation with variable coefficients.
Physica Scr. 96(5), 055218 (2021)
Mohammadi, M., Riazi, N.: The affective factors on the uncertainty in the collisions of the soliton solutions
of the double field sine-Gordon system. Commun. Nonlinear Sci. Numer. Simul. 72, 176-193 (2019)

Raza, N., Afzal, J., Bekir, A., Rezazadeh, H.: Improved tan< 2© >—expansion approach for burgers equa-

tion in nonlinear dynamical model of ion acoustic waves. Braz. J. Phys. 50(3), 254-262 (2020)
Uddin, M., Haq, S.: Application of a numerical method using radial basis functions to nonlinear partial dif-
ferential equations. Selguk. J. Appl. Math. 12(1), 77-93 (2011).

Ugurlu, Y., Inan, LE., Bulut, H.: Two new applications of tan ( F& )—expanswn method. Optik 131, 539—

546 (2017)

Wang, G.: A novel (3+ 1)-dimensional sine-Gorden and a sinh-Gorden equation: derivation, symmetries
and conservation laws. Appl. Math. Lett. 113, 106768 (2021)

Yang, Z., Zhong, W.P., Zhong, W., Beli¢, M.R.: New traveling wave and soliton solutions of the sine-Gor-
don equation with a variable coefficient. Optik 198, 163247 (2019)

Younis, M., Seadawy, A.R., Baber, M.Z., Husain, S., Igbal, M.S., Rizvi, S.T.R., Baleanu, D.: Analytical
optical soliton solutions of the Schrddinger—Poisson dynamical system. Results Phys. 27, 104369
(2021)

Zagrodzinski, J.: Particular solutions of the sine-Gordon equation in 241 dimensions. Phys. Lett. A 72(4-5),
284-286 (1979)

!
Zayed, EM.E., Gepreel, K.A.: The <% >—expansion method for finding traveling wave solutions of nonlin-

ear partial differential equations in mathematical physics. J. Math. Phys. 50(1), 013502 (2009)

4
Zhang, G., Qi, J., Zhu, Q.: On the study of solutions of Bogoyavlenskii equation via improved <%>

method and simplified tan ( 2¢©) > method. AIMS Math. 7(11), 19649-19663 (2022)
Zheng, S.: Nonlinear Evolution Equations. CRC Press, New York (2004)

@ Springer



New exact solutions of the (3+1)-dimensional double sine-Gordon... Page 23 0f23 807

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Zuha Manzoor' - Muhammad Sajid Igbal®*? - Farrah Ashraf' - Roobaea Alroobaea® -
Muhammad Akhtar Tarar® - Mustafa Inc® - Shabbir Hussain'

<l Mustafa Inc
minc @firat.edu.tr

Zuha Manzoor
zuha.manzoor10@gmail.com

Muhammad Sajid Igbal
$ajid606 @ gmail.com

Farrah Ashraf
farrah.ashraf @math.uol.edu.pk

Roobaea Alroobaea
r.robai @tu.edu.sa

Muhammad Akhtar Tarar
akhtartarar2000 @yahoo.com

Shabbir Hussain
cmshabbirhussain93 @ gmail.com
Department of Mathematics and Statistics, University of Lahore, Lahore, Pakistan

School of Foundation Studies and Mathematics, OUC with Liverpool John Moores University
(UK), Qatar Campus, 12253 Doha, Qatar

3 Department of H & BS, Military College of Signals, NUST, Islamabad, Pakistan

Department of Computer Science, College of Computers and Information Technology, Taif
University, P. O. Box 11099, 21944 Taif, Saudi Arabia

Civil Engineering Department, The University of Lahore, Lahore, Pakistan

Department of Mathematics, Science Faculty, Firat University, 23119 Elazig, Turkey

@ Springer



	New exact solutions of the (3+1)-dimensional double sine-Gordon equation by two analytical methods
	Abstract
	1 Introduction
	2 Description of the methods
	2.1 The modified -expansion method
	2.2 The improved -expansion method

	3 Application of the methods
	3.1 Exact solutions by the improved -expansion method
	3.2 Exact solutions by the improved -expansion method

	4 The graphical representation
	5 Physical interpretation
	6 Conclusion
	Acknowledgements 
	References




