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Abstract
This research investigates the utilization of a modified version of the Sardar sub-equation 
method to discover novel exact solutions for the generalized Pochammer Chree equation. 
The equation itself represents the propagation of longitudinal deformation waves in an 
elastic rod. By employing this modified method, we aim to identify previously unknown 
solutions for the equation under consideration, which can contribute to a deeper 
understanding of the behavior of deformation waves in elastic rods. The solutions obtained 
are represented by hyperbolic, trigonometric, exponential functions, dark, dark-bright, 
periodic, singular, and bright solutions. By selecting suitable values for the physical 
parameters, the dynamic behaviors of these solutions can be demonstrated. This allows for 
a comprehensive understanding of how the solutions evolve and behave over time. The 
effectiveness of these methods in capturing the dynamics of the solutions contributes to our 
understanding of complex physical phenomena. The study’s findings show how effective 
the selected approaches are in explaining nonlinear dynamic processes. The findings reveal 
that the chosen techniques are not only effective but also easily implementable, making 
them applicable to nonlinear model across various fields, particularly in studying the 
propagation of longitudinal deformation waves in an elastic rod. Furthermore, the results 
demonstrate that the given model possesses solutions with potentially diverse structures.
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1 Introduction

In order to explore the properties and traits of nonlinear models found in nonlinear 
science, thorough investigation is necessary. Nonlinear science encompasses a vast array 
of disciplines, including chaos theory, fractals, complex systems, and nonlinear dynamics. 
These models exhibit behaviors that are not easily predictable or linearly related to 
their inputs, making them particularly intriguing and challenging to study. By delving 
into the intricacies of these nonlinear models, researchers can gain valuable insights 
into the complexity and interconnectedness of natural phenomena, leading to a deeper 
understanding of our world and its underlying dynamics. A crucial area of focus lies in 
the in-depth exploration of the propagation of nonlinear waves, particularly emphasizing 
their behavior within multilayered bodies. This subject is essential for a thorough 
analysis and understanding of the intricate dynamics and properties associated with the 
transmission of nonlinear waves in the context of layered materials. Through a meticulous 
examination of these phenomena, the goal is to furnish a comprehensive understanding 
of the distinctive challenges and complexities inherent in the propagation of nonlinear 
waves within multilayered structures. These investigations significantly contribute to the 
advancement of our knowledge in this field, offering insights into the subtle interactions 
and dynamics that govern the propagation of nonlinear waves across various material 
configurations. Nonlinear partial differential equations pose significant challenges when it 
comes to finding analytical solutions. These equations involve nonlinear terms that make 
it difficult to employ conventional methods for solving linear partial differential equations. 
As a result, researchers have developed various techniques to tackle these nonlinear 
equations, including numerical methods, perturbation methods, integral transforms, and 
more. While exact analytical solutions are often elusive for nonlinear partail differential 
equations (NPDEs), approximate solutions or qualitative insights can still be obtained 
through these methods. Nonlinear partial differential equations are challenging to solve 
analytically, and various methods have been developed to obtain exact or approximate 
solutions. Some commonly used techniques include the �6-model expansion technique 
(Ullah et al. 2023; Isah and Yokus 2022; Isah 2023; Yao et al. 2023; Ali et al. 2022; Sadaf 
et al. 2022), The Kudryashov method (Murad et al. 2023; Malik et al. 2023; Cinar et al. 
2023; Esen et  al. 2023), the Hirota bilinear method (Ismael et  al. 2023; Yokus and Isah 
2023; Mandal et al. 2023; Batool et al. 2023; Seadawy et al. 2021; Yokus and Isah 2022; 
Ismael and Sulaiman 2023; Ali et al. 2023), the extended simplest equation method (Murad 
et al. 2023; Zayed and Shohib 2019; Ahmed et al. 2021; El Sheikh et al. 2020; Hassan and 
Altwaty 2020), and other methods (Ali et  al. 2023; Kamal Ali et  al. 2022; Ismael et  al. 
2023, 2023; Ali et al. 2023, 2023; Zhu et al. 2021; Isah and YOKUS 2022; Günerhan et al. 
2020; Zayed and El-Ganaini 2024; Al-Amr 2015; El-Ganaini et al. 2023; Mubaraki et al. 
2024; Asif et al. 2023a, b; Mubaraki et al. 2023; Mahdy 2023, 2022; Mahdy et al. 2022; 
Al-Bugami et  al. 2023; Mahdy et  al. 2023, 2022; Mahdy and Mohamed 2022; Mahdy 
et al. 2023; Anaç 2023). In this study, we will employ the modified version of the Sardar 
sub-equation method (MSSEM) as our chosen approach. Extensive research has been 
conducted on this particular method, with numerous studies dedicated to its exploration 
and analysis. Akinyemi et  al. conducted a comprehensive investigation of the unstable 
nonlinear Schrödinger equation when generalized to incorporate the mentioned method 
(Akinyemi et al. 2022). Another research endeavor focused on the examination of optical 
solitons utilizing the mentioned method (Cinar et  al. 2022). The method was applied to 
the space-time fractional modified third-order Korteweg-de Vries equation to investigate 
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soliton solutions in a research study (Rehman et  al. 2022). Numerous studies have been 
conducted on this method, encompassing a wide range of equations and employing diverse 
approaches. These investigations have delved into various aspects and applications, 
contributing to a comprehensive understanding of the method’s effectiveness and 
versatility in different contexts (Ullah et al. 2023; Rehman et al. 2022; Asjad et al. 2022; 
Onder et al. 2023; Yao et al. 2023; Akinyemi et al. 2021; Yusuf et al. 2022; Faisal et al. 
2023; Akinyemi 2021; Alia et al. 1402; Muhammad et al. 2022). In this particular study, 
our focus will be on utilizing the generalized Pochhammer–Chree equation as the primary 
equation of interest. We applied the modified Sardar sub-equation method to construct 
some novel solutions. The Pochhammer-Chree equation, introduced by Clarkson et al. in 
(1986), represents the propagation of longitudinal deformation waves in an elastic rod. It is 
mathematically described as follows:

where the function u(x, t) represents the longitudinal displacement at time t of a material 
point that was initially located at position x. It serves as a fundamental quantity for studying 
the behavior and dynamics of the deformation waves within the elastic rod (Clarkson et al. 
1986). Bogolubsky successfully obtained soliton-type solutions by considering various 
values of n, specifically n = 2, 3, and5 . These solutions offer valuable insights into the 
behavior and characteristics of solitons within the context of the Pochhammer–Chree 
equation (Bogolubsky 1977). Exact solutions have been acquired by Triki et al. for n = 6 
(Triki et al. 2015). The generalized Pochhammer–Chree equation is given by Yokus et al. 
(2022), Parand and Rad (2010)

where � , � and v are constants. The Pochhammer-Chree equation has been extensively 
investigated using various methods, for obtaining solitary wave solutions, periodic 
solutions, kink shape solutions, singular solutions, complex rational function solutions, 
complex periodic solutions, and so Weiguo and Wenxiu (1999), Liu (1996), Wazwaz 
(2008), Li and Zhang (2002), Shawagfeh and Kaya (2004), El-Ganaini (2011), Mohebbi 
(2012), Parand and Rad (2010), Zuo (2010), Zhang (2005), Zhang et  al. (2010), Jaradat 
et  al. (2022). These different approaches have been employed to analyze the equation, 
explore its properties, and obtain meaningful solutions. Each method offers unique 
advantages and insights into the behavior and dynamics of the equation, contributing to a 
comprehensive understanding of its mathematical properties.

In this article, we provide an introduction in the previous section. Then, in the second 
section, we provide an overview of the MSSEM. Next, in the third section, we apply 
MSSEM to find new exact solutions for The generalized Pochhammer-Chree equation and 
present them using 3D, 2D, and counter plots. Finally, we conclude our work in the last 
section.
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2  Description of the MSSEM

The Sardar sub-equation method is a powerful technique to obtain exact solutions of 
nonlinear PDEs (Akinyemi et al. 2022). A recent study proposed a modification version of 
this method, incorporating arbitrary functions into the trial solution ansatz. The NPDEs is 
expressed as:

If we consider the following transformation:

The new modification of the Sardar sub-equation method depends on the following 
function:

where �
i
, (i = 0, 1, 2, ..., L) are coefficients of Qi(�) with �

N
≠ 0 and the following equation 

exists for the Q(�) function:

where �0 , �1 and �2 are constants. The general solutions Eq. (6) are outlined as follows:

1.   When �0 = 0 , 𝛾1 > 0 , and �2 ≠ 0 , then

2. When �0 = 0 , 𝛾1 > 0 , and �2 = ±4�1�2 , then

where �1 and �2 are constants.
3. When �0 =

�2
1

4�2
 , 𝛾1 < 0 , and 𝛾2 > 0 , with constants A1 and A2 , then

(3)F(u, u
x
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...) = 0.
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4. When �0 = 0 , 𝛾1 < 0 , and �2 ≠ 0 , then

5. When �0 =
�2
1

4�2
 , 𝛾1 > 0 , 𝛾2 > 0 , and A2

1
− A

2

2
> 0 , then

6. When �0 = 0 , 𝛾1 > 0 , then

(12)Q6(�) = ±
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−
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�
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,
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3  Applications of MSSEM

In this portion, the MSSEM is applied to Eq. (2). At first, by inserting the transformation 
Eq. (4) into Eq. (2), we have

By using the transformation U(�)n = V(�),

is attain. In this study, our focus will be on searching for solutions specifically for the n = 1 
case. By using balance principle to Eq. (26), yields L = 1 and substituting Eq. (5)

is obtain. Substituting Eq. (26) in Eq. (27), a system of nonlinear equations is obtained. By 
utilizing the computer program to solve the obtained system, we will examine the solutions 
by considering the following result from the obtained results:

Considering Eqs. (4), (27) and (28), we find solutions of Eq. (2) for the following situations.

1.  When �0 = 0 , 𝛾1 > 0 , and �2 ≠ 0 , considering Eqs. (7) and (8) respectively, so the 
solutions of Eq. (2) are given by
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2.  When �0 = 0 , 𝛾1 > 0 , and �2 = ±4�1�2 , considering Eq. (11), so the solution of Eq. (2) 
is given by

3.  When �0 =
�2
1

4�2
 , 𝛾1 < 0 , and 𝛾2 > 0 , considering Eqs. (10), (11), (12), (13) and (14) 

respectively, so the solutions of Eq. (2) are given by
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4.  When �0 = 0 , 𝛾1 < 0 , and �2 ≠ 0 , considering Eqs. (15) and (16) respectively, so the 
solutions of Eq. (2) are given by

5.  When �0 =
�2
1

4�2
 , 𝛾1 > 0 , and 𝛾2 > 0 , with constants A2

1
− A

2

2
> 0 , considering Eqs. (17),  

(18), (19),  (20), (21), and (22) respectively, so the solutions of Eq. (2) are given by
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6.  When �0 = 0 , 𝛾1 > 0 , considering Eq. (23), and Eq. (24) respectively, so the solutions 
of Eq. (2) are given by

(41)
u13(x, t) =
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Fig. 1  The graphics of Eq. (29) solution for �
1
= 0.5 , r = −0.05 , � = −1.2 , � = 0.04 , �

2
= 2.5 , and � = 1

Fig. 2  The graphics of Eq. (30) solution for �
1
= 0.5 , r = 0.05 , � = 1.2 , � = 0.04 , �

2
= −0.5 , and � = 1
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Fig. 3  The graphics of Eq. (31) solution for �
1
= 0.5 , r = 1.75 , � = 1.2 , � = 4 , �

0
= 1 , �

1
= 2 and �

2
= 3

Fig. 4  The graphics of Eq. (32) solution for �
1
= −0.2 , r = 3 , � = 1.2 , � = 1.5 , �

2
= 0.1 and � = 1
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Fig. 5  The graphics of (33) solution for �
1
= −0.5 , r = 0.9 , � = 2 , � = 1.2 , �

2
= 2 ,, and � = 1

Fig. 6  The graphics of (39) solution for �
1
= 2 , r = 1.05 , � = 1.7 , � = 2.3 , �

2
= 0.6 and � = 1
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Fig. 7  The graphics of (40) solution for �
1
= 0.004 , r = 0.1 , � = 1.4 , � = 1.25 , �

2
= 2 and � = 1

Fig. 8  The graphics of (43) solution for �
1
= 0.5 , r = 0.01 , � = 0.2 , � = 3 , �

2
= 0.3 , A

1
= 0.1 , A

2
= 0.2 and 

� = 1
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4  Conclusions

This paper introduces a novel approach using MSSEM to analyze various solutions of the 
generalized Pochhammer Chree equation that describes the propagation of longitudinal 
deformation waves in an elastic rod. The generalized Pochhammer Chree equation is 
a fundamental equation in the field of solid mechanics. It characterizes the behavior of 
an elastic rod subjected to longitudinal forces or deformations. It takes into account 
the material properties of the rod, such as its elasticity and density, as well as the wave 
propagation characteristics, such as the wave speed. Through the solution of the equation, 
we gain the capability to analyze the behavior of the rod under diverse loading conditions. 
This enables a comprehensive study of the propagation of deformation waves along the 
length of the rod. By applying mathematical methods to address the equation, we unlock 
insights into how the rod responds to varying external forces or conditions, allowing 
for a detailed examination of the dynamic processes involved in the transmission of 
deformation waves. This analytical approach provides a valuable tool for understanding 
the intricate mechanics governing the rod’s response to different stimuli and contributes 
to a deeper comprehension of wave propagation phenomena in the context of structural 
materials. This equation is widely used in various fields, including structural engineering, 
mechanical engineering, and materials science, to understand and design structures and 
systems involving elastic rods. To provide a physical interpretation of the solutions and 
better understand this situation, we present them graphically in Figs. 1, 2, 3, 4, 5, 6, 7, 8, 
9. Figures 1, 2, 3, 4, 5, 6, 7, 8, 9 shows how the settings have an influence. In addition, 
it can be interpreted from the figures that each solution is different and the solutions it 
belongs to have different structures.Muhammad et al. (yyy) Apart from this, it can be seen 

Fig. 9  The graphics of (44) solution for �
1
= 0.03 , r = 2 , � = 0.1 , � = 1 , �

2
= 0.01 and � = 1
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that the solutions found are different from studies such as solitary solutions (Yokus et al. 
2022), periodic wave solutions (Parand and Rad 2010; Jaradat et al. 2022; Ali et al. 2020) 
and soliton solutions (Hussain et al. 2023). These figures visually depict the behavior and 
characteristics of the solutions, allowing for a clearer understanding of the propagation of 
longitudinal deformation waves in the elastic rod. Consequently, the solutions obtained are 
in the form of bright solutions for Eq. (29) as presented in Fig. 1, singular solutions for 
Eqs. (29), and (33) as shown in Figs. 2 and 5, trigonometric solutions for Eqs. (31), (43) 
and (44) as seen in Figs. 3,  8 and 8 , dark solutions for Eq. (32) as presented in Fig. 4, and 
periodic solutions for Eq. (39) and Eq. (40) as presented in Figs. 6 and Fig. 7. This diverse 
set of solution types provides valuable insights into the complex dynamics and phenomena 
associated with the propagation of longitudinal deformation waves in elastic rods. It 
showcases the effectiveness of these methods in capturing the rich complexity of nonlinear 
partial differential equations and their applications in fields such as physics, engineering, 
and applied mathematics.
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