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Abstract
In this article, we are interested in two principal topics. First, the bright optical soliton solu-
tions of the third-order (1+1)-nonlinear Schrödinger equation including power law nonlin-
earity with inter-modal and spatio-temporal dispersions are perused by taking advantage of 
the new Kudryashov method. Second, the impacts of power law nonlinearity parameters on 
soliton attitude are investigated for acquired bright soliton form. With the proposed tech-
nique, the bright optical soliton solution is acquired, and 3D, contour, and 2D plots are 
depicted. Then, the impact of power law nonlinearity parameters on the soliton attitude 
has been successfully demonstrated. As is clear from this perusal power law parameters 
have an important impact on the soliton attitude, and this impact alters based on the soliton 
form. As regards our investigation, this form of the equation has not been studied with the 
power law nonlinearity in the absence of the chromatic dispersion for nonlinear models and 
the proposed method has not been applied the introduced equation before. It is expected 
that the consequences which are acquired in this study will shed light on the studies in this 
field.

Keywords  Soliton molecule · Nonlinear effect · Spatio-temporal dispersion · Inter-modal 
dispersion · The new Kudryashov method

1  Introduction

Soliton theory is a branch of mathematics and physics that focuses on the study of soli-
tons, specifically, the mathematical description, properties, and behavior of these solitary 
wave solutions to nonlinear partial differential equations (NLPDEs) (Kudryashov 2023a, b; 
Kudryashov and Nifontov 2023; Kudryashov et al. 2023; Rizvi et al. 2021; Rezazadeh et al. 
2021; Triki et al. 2017; Iqbal et al. 2023; Cinar et al. 2023b; Peng et al. 2023; Onder et al. 
2022; Ozdemir et al. 2022; Malik et al. 2022, 2023a; Yadav et al. 2023; Malik et al. 2023b; 
Akbar et  al. 2022; Islam et  al. 2022a, b, c, 2023b; Abdullah et  al. 2023; ur Rehman et  al. 
2022; Ullah et al. 2022; Younis et al. 2014; Rehman et al. 2022a; Fahad et al. 2023; Rehman 
et al. 2022b, 2023a; Nasreen et al. 2023c; Seadawy et al. 2019; Nasreen et al. 2018). It plays 
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a crucial role in understanding phenomena observed in various physical systems, including 
fluid dynamics (Shen et al. 2021; Ma et al. 2021; Islam et al. 2023c; Yokuş et al. 2022), water 
waves (Akbar et al. 2023), optics (Chen et al. 2012; Hasegawa 2000; Islam et al. 2023a; Bou-
laaras et al. 2023; Rehman et al. 2021, 2022c, 2023b; ur Rehman and Ahmad 2023; Akram 
et al. 2023), and plasma physics (Deng et al. 2020; Khalique and Adeyemo 2021). Soliton 
theory has practical applications in various fields. For example, solitons are essential in the 
field of fiber optics for long-distance data transmission (Kodama and Nozaki 1987; Ahmad 
et  al. 2023; Nasreen et  al. 2023a, b). They also serve a function in comprehending rogue 
waves in fluid dynamics and other phenomena in different working areas of physics (Ren et al. 
2022; Ismael et al. 2023) and engineering. Overall, soliton theory provides a mathematical 
framework for understanding the behavior of solitons and has contributed to advancements in 
diverse scientific and technological areas. Researchers continue to explore new soliton equa-
tions and their applications, expanding our understanding of these intriguing nonlinear wave 
phenomena.

In many cases, the nonlinear Schrödinger equation (NLSE), which is a NLPDE that 
includes terms representing both dispersion and nonlinearity describes the dynamics of soli-
tons. The NLSE is a fundamental equation in soliton theory and has solutions that describe the 
evolution of solitons over time and space. As is known to all, dozens forms of the NLSE have 
been attained and these forms have been subjected to perusal by many researchers. Some of 
these investigations are: the higher order NLSE with Kudryashov’s sextic power-law of non-
linear refractive index (Ozisik et al. 2023a; Samir et al. 2023), the NLSE with Kudryashov’s 
law arbitrary refractive index and generalized non-local laws of nonlinearity (Zayed et  al. 
2022), a generalized NLSE including dual power-law media (Triki et al. 2019), the perturbed 
NLSE with cubic-quartic dispersive including parabolic non-local combo law nonlinearity 
(Zayed et al. 2021a), the highly dispersive NLSE having cubic-quintic-septic law nonlinear-
ity (Az-Zo’bi et al. 2022; Kohl et al. 2019), the higher-order NLSE with cubic and quintic 
nonlinearities (Triki and Kruglov 2022), the cubic-quartic NLSE with the parabolic law media 
in birefringent fibers (Li and Kai 2023), the resonant NLSE including Kerr, parabolic, power, 
dual-power, triple-power, parabolic law with non-local, polynomial, anti-cubic, quadratic-
cubic, generalized anti-cubic, generalized quadratic-cubic nonlinearities in the presence of 
spatio-temporal dispersion (STD) and inter-modal dispersion (IMD) (Ozisik et al. 2023b), the 
NLSE with anti-cubic law nonlinearity (Ozisik et  al. 2023c), the three-component coupled 
NLSE (Malik et al. 2023c), the NLSE with parabolic law and non-local law non-linearities 
(Yao et al. 2023), the stochastic (2+1)-dimensional chiral NLSE with multiplicative noise in 
the Itô sense (Rehman et al. 2023c).

In this paper, the third-order (1+1)-NLSE (Al-Kalbani et al. 2021) with power-law of self-
phase modulation (SPM), STD and IMD in the absence of chromatic dispersion is given as:

Herein, Θ = Θ(x, t) refers to the complex soliton profile, x, t are the independent spatial and 
temporal variables, iΘt stands for the general representation of evolution term, � , � denote 
the coefficients of third-order dispersion, the STD terms, respectively. Besides, � is the 
coefficient of the power law media parameter that explicates SPM. The exponent p stands 
for the type of power law media and it is necessary that p ≠ 0 . Furthermore, the coef-
ficients of � and � express the nonlinear dispersion effects, and � indicates the coefficient 
of the inter-modal dispersion term. Besides � , � , � , � , � and � represent the real constants.

The third-order NLSE with power law nonlinearity in the absence of chromatic dis-
persion is a specific form of the NLSE that considers third-order nonlinearity with 

(1)i
(
Θt + �Θxxx

)
+ �Θxt +

(
�Θ + i�Θx

)|Θ|2p + i�Θ
(|Θ|2p)

x
= i�Θx.
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a power-law dependence on intensity and ignores the effects of chromatic disper-
sion. This type of model is often employed to study the behavior of optical pulses in 
fiber optics and other nonlinear optical systems. Researchers use such models to gain 
insights into the dynamics of optical wave propagation in media with specific nonlinear 
characteristics. The absence of chromatic dispersion means that the equation does not 
consider the spreading of different frequency components, focusing solely on the non-
linear effects on the pulse envelope as it propagates through the medium. Chromatic 
dispersion and self-phase modulation are often interconnected in optical communica-
tion systems. The dispersion-induced pulse broadening can increase the intensity of 
the optical pulse, leading to self-phase modulation. In turn, self-phase modulation can 
cause spectral broadening, which can exacerbate the effects of chromatic dispersion. 
The interplay between these two phenomena is a critical consideration in designing 
high-speed and long-distance optical communication systems. The absence of chro-
matic dispersion in an optical communication system is a desirable condition because 
chromatic dispersion can lead to signal degradation and limitations on the data-car-
rying capacity of the system. When chromatic dispersion is effectively eliminated or 
minimized, it allows for better signal quality and longer-distance communication with-
out significant signal distortion. Why the absence of chromatic dispersion is important 
is explained in the cited studies (Younas et  al. 2021; Zahran and Bekir 2022; Zayed 
et  al. 2020; Rehman et  al. 2022d; Yıldırım et  al. 2020; Zayed et  al. 2021b; Biswas 
et al. 2021). One of the sensitive points in soliton transmission is maintaining the bal-
ance between the chromatic dispersion and self-phase modulation. For this reason, the 
interaction between them is important. However, in 2016, it was shown in a laboratory 
study by Redondo et al. that the effect of the absence of the chromatic dispersion term 
on soliton transmission is not undeniably large (Blanco-Redondo et  al. 2016). Such 
studies are generally referred to as pure quartic solitons in the literature. At the same 
time, pure cubic soliton studies containing third-order nonlinear terms have become 
the focus of attention of many researchers, especially recently. In this respect, the 
problem examined in the study includes the analysis of the power-law form of the pure 
cubic form, and many possible studies on the interaction of the cubic form with self-
phase modulation are still waiting for researchers to focus on.

The study of solitons with power law media is crucial in understanding the behav-
ior of optical pulses in nonlinear media. It has implementations in the optimization 
and envisagement of optical communication systems, where solitons can be employed 
for long-distance transmission of information. Researchers use mathematical methods, 
such as the inverse scattering transform and numerical simulations, to analyze and pre-
dict soliton behavior in systems with power law nonlinearity. Some examples of these 
studies such as the Biswas-Milovic equation (BME) with Kerr, parabolic and power 
laws (Altun et al. 2022), the perturbed NLSE including triple power and cubic-quintic-
septic laws (Cinar et al. 2023a), the BME with dual-power and power laws (Eslami and 
Mirzazadeh 2016), the Korteweg-de Vries equation (KDV) (Biswas 2009), the non-
linear Zakharov-Kuznetsov equation (Baskonus et al. 2016), the Boussinesq equation 
(Ekici et al. 2016) with power law media.

The rest of the work is structured as: The NODE (nonlinear ordinary differential 
equation) form is acquired by making use of a complex transformation in Sect. 2. We 
sum up the new Kudryashov method (nKM) and give their implementations in Sect. 3. 
We tackle with the modulation instability analysis in Sect. 4. The acquired results are 
explicated in Sect. 5. The conclusion is given in Sect. 6.
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2 � Obtaining the NODE form of Eq. (1)

In order to acquire the NODE structure of Eq. (1), we take advantage of the following com-
plex wave transformation:

Herein, a,�,�0, k and v are real numbers. Θ(� ) denotes the soliton pulse profile, �0 is 
the phase constant, and a,� represent the wave number and the frequency, respectively. 
Besides, k refers to the width of the inverse pulse and v is the velocity. Let’s insert Eq. (2) 
to Eq. (1), then we derive the imaginary and real parts of the obtained equation in the fol-
lowing form, respectively:

where Θ = Θ(� ) , �, k ≠ 0 , 3a� k2 − �kv ≠ 0.
If we integrate Eq. (3) and assume the integration constant as zero, then we acquire:

Performing the homogeneous balance between the Eqs. (4), (5), the following ratios are 
ensured:

Solving the Eqs. (6), (7), we get the following constraint conditions:

Paying regard to these constraint conditions, we can take into consideration Eqs. (4) or (5) 
as a ODE form of Eq. (1). Let’s suppose that Eq. (4) is ODE structure and perform the bal-
ance principle between the terms Θ�� , Θ1+2p , then we achieve the balance constant as B =

1

p
 . 

Because the balancing constant is identified as a positive integer, we need to set as follows:

(2)Θ(x, t) = Θ(� ) eiΨ(x,t), Ψ(x, t) = ax + �t + �0, � = kx + vt.

(3)Θ��� +

(
(2�p + �)Θ2p

� k2
+

(
�� − 3a2� − �

)
k + (a� + 1)v

� k3

)
Θ� = 0,

(4)Θ�� +
(a� − �)

3a� k2 − �kv
Θ1+2p −

a3� + (� − ��)a − �

3a� k2 − �kv
Θ = 0,

(5)Θ�� +
(2�p + �)

� k2(1 + 2p)
Θ1+2p +

(
�� − 3a2� − �

)
k + (a� + 1)v

� k3
Θ = 0.

(6)
2�p + �

k2(1 + 2p)�
=

a� − �

k(3a�k − �v)
,

(7)
(
�� − 3a2� − �

)
k + (a� + 1)v

� k3
=

� − a3� + (�� − �)a

3a� k2 − �kv
.

(8)� =
2a�k�p − 6a�k�p − 2a�k� + 2��pv + ��v

�k(1 + 2p)
,

(9)� = −
8a3�2k2 − 6a2��kv + 2a� k2� + a �2v2 − 3a�kv − �k�v + � v2

k
(
−2a��k + �2v + �k

) .

(10)Θ(� ) = V1∕p(� ).
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If we reconstitute Eq. (4) taking into consideration Eq. (10), we get the following 
expression:

in which V = V(� ) , Υ1 =
k(2a�−1)�−�2v

2
 and Υ2 = p2

(
a2k(2a� + 3)� + k� − v(a� + 1)2

)
.

As a result, performing the balance principle between VV ′′ and V4 , then we figure out 
the balance constant as B = 1.

3 � Application

3.1 � The nKM and its utilization

The nKM (Kudryashov 2020; Ozisik et al. 2022) suggests that Eq. (11) has a solution as 
the following truncated series form:

where ΛJ are real constants, B is the balance constant which was determined as 1 in Sect. 2 
and the function Ω(� ) expresses the solution of the following equation:

in which � , and � are nonzero real numbers to be specified later. One of the solutions for 
Eq. (13) is expressed with the following structure:

Equation (14) contributes to the bright soliton and singular soliton for � = ∓4Γ2 , respec-
tively and also can be presented in the following hyperbolic forms:

and

in which Γ is a real constant.
Owing to B = 1 , Eq. (12) transforms the following structure:

Combination of the Eqs. (17), (13), (11) produces the following algebraic system:
Ω0 coefficient:

(11)
(1 + 2p)

(
2k2pΥ1VV

�� − 2k2(p − 1)Υ1(V
�)2 + Υ2V

2
)
� + 2p2(2�p + �)Υ1V

4 = 0,

(12)V(� ) =

B∑
J=0

ΛJΩ
J(� ), ΛB ≠ 0,

(13)(Ω�(� ))2 = �2Ω2(� )
(
1 − �Ω2(� )

)
,

(14)Ω(� ) =
4Γ

4Γ2e�� + �e−��
.

(15)Ω(� ) =
1

2Γ
sech (�� ),

(16)Ω(� ) =
1

2Γ
coth(�� ),

(17)V(� ) = Λ0 + Λ1Ω(� ), Λ1 ≠ 0.



	 S. A. Durmus et al.

1 3

794  Page 6 of 17

Ω1 coefficient:

Ω2 coefficient:

Ω3 coefficient:

Ω4 coefficient:

Herein, Ξ1 = 2a� − 1 and Ξ2 = (a� + 1)2.
The solution of the above system derives the following set:
Set 1:

where (2p� + �)p ≠ 0 , (a� + 1)2p2 + �2�2k2 ≠ 0.
Regarding Eq. (17) with Eqs. (2), (10), (14), the following solution is derived:

For � = ∓4Γ2 , Eq. (19) permits us to reach bright and singular soliton solutions:

Besides, Eq. (19) can be given in the following hyperbolic forms by benefiting from Eqs. 
(15) and (16):

Λ2

0
p2
(
(2a� + 3)(2p + 1)a2k �2 − Λ2

0
v �2(2p� + �) − �v(2p + 1)

(
a2�2 + 1

))
+Λ2

0
p2
((
2Λ2

0
(2p� + �)k − 2v(2p + 1)

)
a� +

(
2
(
−Λ2

0
� + �

)
p − Λ2

0
� + �

)
k
)
� = 0.

pΛ0Λ1

((
2
(
2a3� + 3a2

)
p + Ξ1k

2�2
)
(2p + 1)k �2 − 4Λ2

0
pv �2(2p� + �) − k2v �2�2�

)
+pΛ0Λ1

((
4
(
2Λ2

0
�Ξ1 + �

)
k − 4vΞ2

)
p2 +

(
−2k2v �2�2 + 2

(
2�Λ2

0
Ξ1 + �

)
k − 2vΞ2

)
p
)
� = 0.

Λ2

1

(
(2p + 1)

((
2a3� + 3a2

)
p2 + Ξ1k

2�2
)
k �2 − 6Λ2

0
p2v �2(2p� + �)

)
+Λ2

1

((
2
(
6Λ2

0
�Ξ1 + �

)
k − 2vΞ2

)
p3 +

((
6�Λ2

0
Ξ1 + �

)
k − vΞ2

)
p2 − k2v �2�2(2p + 1)

)
� = 0.

Λ0

(
kΞ1� − �2v

)(
−�(2p + 1)k2�2� + 2Λ2

1
p(2p� + �)

)
pΛ1 = 0.

Λ2

1

(
−�(2p + 1)k2(p + 1)�2� + Λ2

1
p2(2p� + �)

)(
kΞ1� − �2v

)
= 0.

(18)

⎧⎪⎨⎪⎩

� = �, v =
k((� a2(2a�+3)+�)p2+k2� �2(2a�−1))

(a�+1)2p2+�2�2k2

k = k,Λ0 = 0,Λ1 =

√
(2p�+�)��(2p2+3p+1) �k

(2p�+�)p

⎫⎪⎬⎪⎭
.

(19)Θ1(x, t) =

(
4Λ1Γ

4Γ2e�(kx+vt) + � e−�(kx+vt)

) 1

p

ei(ax+�t+�0),

(20)Θ2,3(x, t) =

(
Λ1

Γ
(
e�(kx+vt) ∓ e−�(kx+vt)

)
) 1

p

ei(ax+�t+�0),

(21)Θ4(x, t) =

(
Λ1sech(�(kx + vt))

2Γ

) 1

p

ei(ax+�t+�0),

(22)Θ5(x, t) =

(
Λ1coth(�(kx + vt))

2Γ

) 1

p

ei(ax+�t+�0),
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in which, Λ1, �, k, v,� are figured out in Eqs. (9), (18).

4 � Modulation instability analysis

In this part, the modulation instability Eq. (1) with the help of the standard linear stability 
analysis (Zakharov and Ostrovsky 2009; Guo et al. 2018; Yue and Huang 2022) is contem-
plated to be examined in detail. So, we assume that the Eq. (1) has the next steady-state (SS) 
solution:

in which � is defined as the normalized optical power. �(x, t) is also a small perturbation 
which satifies the expression 𝜚(x, t) ≪

√
𝜅 . In this part, we regard the various values of p 

as p = 1, 2, 3.
Case 1: (p=1)
Unifiying Eq. (23) with Eq. (1) and selecting linear terms with respect to the �(x, t) , we get,

in which (   ) expresses the complex conjugate of � = �(x, t) . Consider that the solution of 
Eq. (24) is stated as:

where A1,A2 are real-valued coefficients, � and Δ are defined as the frequency of perturba-
tion and wave number. Combining Eq. (25) with Eq. (24), considering separately the coef-
ficients of ei(Δx−�t) and e−i(Δx−�t) , we acquire a coefficient matrix which constitutes of the 
coefficients of A1,A2 . Then, the determinant of the resulted matrix for � gives the following 
relation:

in which

The modulation instability arises when 𝜂12 + 𝜂13 + 𝜂14 < 0.
Case 2: (p=2)
Combining Eq. (23) with Eq. (1) and selecting linear terms with respect to the �(x, t) , we 

get,

(23)Θ(x, t) =
�√

� + �(x, t)
�
ei�t,

(24)i��xxx + ��xt + i((� + � + �)� − �)�x + i���∗
x
+ i�t + (2� − 1)�� + ���∗ = 0,

(25)�(x, t) = A1e
i(Δx−�t) + A2e

−i(Δx−�t),

(26)� =
�11 −

√
�12 + �13 + �14

Δ2�2 − 1
, Δ2�2 ≠ 1,

�11 = �Δ3 − ((2�� + � + �)� − �)Δ,

�12 = Δ4�4�2 + 2�
(
(� + �)� − Δ2� − �

)
Δ4�3,

�13 =
((

4� + �2 + 2�Δ2� + Δ2�2 − 2
)
�2 − 2Δ2

(
Δ2� + �

)
(� + �)� + Δ2

(
Δ2� + �

)2)
Δ2�2,

�14 = 4�
(
(� + �)� − Δ2� − �

)(
� −

1

2

)
Δ2� + �2

(
Δ2�2 + 3�2 − 4� + 1

)
.

(27)
i��xxx + ��xt + i((2� + �)�2 + �� − �)�x + i2��2�∗

x
+ i�t + (3�� − 1)�� + 2��2�∗ = 0.



	 S. A. Durmus et al.

1 3

794  Page 8 of 17

Combination of Eq. (25) with Eq. (27), considering separately the coefficients of ei(Δx−�t) 
and e−i(Δx−�t) , a coefficient matrix which constitutes of the coefficients of A1,A2 is obtained. 
Computing the determinant of the matrix for � , the following equation is gained:

where

The modulation instability emerges if 𝜂22 + 𝜂23 + 𝜂24 < 0 (Fig. 1).
Case 3: (p=3)
Combining Eq. (23) with Eq. (1) for p = 3 and selecting linear terms with respect to the 

�(x, t) , we get,

(28)� =
�21 −

√
�22 + �23 + �24

Δ2�2 − 1
, Δ2�2 ≠ 1,

�21 = �Δ3 +
(
(−3�� − � − 2�)�2 + �

)
Δ,

�22 = Δ4�4�2 + 2�
(
(2� + �)�2 − Δ2� − �

)
Δ4�3 +

(
4�Δ2� + Δ2�2 + 4�2

)
�4Δ2�2,

�23 =
(
6� �3 − 2

(
Δ2

(
Δ2� + �

)
� + 1 + 2Δ2

(
Δ2� + �

)
�
)
�2 + Δ2

(
Δ2� + �

)2)
Δ2�2,

�24 = 2(3�� − 1)�
(
(2� + �)�2 − Δ2� − �

)
Δ2� +

(
4Δ2�2 + 5�2

)
�4 − 6� �3 + �2.

Fig. 1   Gain spectrum of �1 , �2 and �3 for � = 0.2, � = 0.5, � = 1,� = 0.5, � = 1.6, � = 0.3
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Combination of Eq. (25) with Eq. (29), considering separately the coefficients of ei(Δx−�t) 
and e−i(Δx−�t) , a coefficient matrix which constitutes of the coefficients of A1,A2 is obtained. 
Computing the determinant of the matrix for � , the following equation is gained:

where

The modulation instability emerges if 𝜂32 + 𝜂33 + 𝜂34 < 0.

5 � Results and discussion

In this section, we have supported the bright optical soliton solutions of the third-order 
NLSE with the power law media attained in the relevant sections with graphical presenta-
tions by taking advantage of Maple and Matlab symbolic computing software. The 2D, 
contour, and 3D diagrams of the bright soliton solution have been visualized to demon-
strate the soliton dynamics of the attained solution with Matlab. Figure  2 represents 
the bright soliton solution function attained by Eq. (19) and the graphic is structured 
by choosing the parameters such as �0 = 1.21, � = 2.2, � = 0.56,� = 0.78,Γ = 1.4, k = 0.98, p = 1, a = 1.2,

� = −0.65, � = 1.4, � = 1.6,� = −0.98 . One of the important points is how and on what basis the 
parameters are chosen. The limitations of both the problem and the proposed technique 
are the binding and limiting point here. In Fig. 2a–c, 3D views of |Θ1(x, t)|2 , Im(Θ1(x, t)) , 
Re(Θ1(x, t)) are given, respectively. The contour view of |Θ1(x, t)|2 is depicted in Fig. 2d. 
In addition, the diagrams of |Θ1(x, t)|2 for t = 1, 2, 3, 4, 5 and Im(Θ1(x, t)) , Re(Θ1(x, t)) for 
t = 1, 2, 3 in 2D are shown in Fig. 2e and f, respectively. On the other side, as can be seen 
from the Fig. 2a and f, these graphs stand for the bright soliton character, which has wave 
properties moving towards the right (from blue line to pink line) for |Θ1(x, t)|2.

Now, we show Fig.  3 which is a variety of representations of Eq. (19) to demon-
strate the impact of �, �, p and � . Figure  3a graph is allocated to investigating the 
impact of � . Here, the impact is beholden by deciding on the parameter � as the values 
of −2.5,−1.5,−0.5, 0.5, 1.5, 2.5 , respectively. When the graphic is analyzed carefully, it 
can be clearly stated that the soliton sustains its form, that is to say, there is no deforma-
tion in the overall structure of the bright soliton. As a whole, the soliton reflects a sym-
metrical view with respect to the perpendicular axis for positive and negative values of 
� . Here, � denotes the third-order dispersion term. This term helps to account for how 
the pulse shape changes over time due to variations in the group velocity dispersion 
with frequency. For positive values of � , as � approaches zero, while the perpendicular 
highness of the soliton step-by-step declines and its horizontal amplitude increases, 

(29)
i��xxx + ��xt + i((3� + �)�3 + �� − �)�x + i3��3�∗

x
+ i�t + (4��3 − �)� + 3��3�∗ = 0.

(30)� =
�31 −

√
�32 + �33 + �34

Δ2�2 − 1
, Δ2�2 ≠ 1,

�31 = �Δ3 +
(

(−4�� − � − 3�)�3 + �
)

Δ,

�32 = Δ4�4�2 + 2Δ4((� + �)�3 − Δ2� − �
)

� �3,

�33 = Δ2
(

(

6�Δ2� + Δ2�2 + 9�2
)

�6 + 8� �4 + 2(3� + �)
(

Δ2� + �
)

Δ2�3 + 2�2 + Δ2(Δ2� + �
)2)�2,

�34 = 2Δ2(4� �2 − 1
)(

(� + �)�3 − Δ2� − �
)

�� +
(

9Δ2�2 + 7�2
)

�6 − 8� �4 + �2.
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the horizontal distance between the soliton skirts widens outward. Similarly, for nega-
tive values of � , it gives a similar result as � approaches zero. Therefore, the soliton 
is exposed to deterioration both perpendicularly and horizontally. This means that it 
is very difficult to ensure the effect and control of the refractive index terms added to 
the problem. Third-order dispersion becomes important in the design and optimiza-
tion of optical communication systems, especially when dealing with ultrashort pulses 
or broadband signals. Understanding and managing dispersion effects are crucial for 
minimizing pulse distortion and maintaining signal integrity over long-distance optical 

Fig. 2   Some schematics of Θ1(x, t) when �0 = 1.21, � = 2.2, � = 0.56,� = 0.78,Γ = 1.4, k = 0.98,

p = 1, a = 1.2, � = −0.65, � = 1.4, � = 1.6,� = −0.98
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fiber communication links. Fig.  3b and c graphs are allocated to perusing the influ-
ence of �,� . Herein, this impact is beholden by choosing the parameter � as the val-
ues of 0.25,  0.5,  0.75,  1.25,  1.5, � as the values of −2.75,−2.25,−1.75,−1.25,−1 , 
respectively. When Fig. 3b is examined, it can be seen that as the positive values of � 
increase, the perpendicular height of the soliton increases, while its horizontal ampli-
tude decreases and is subject to contraction. When Fig.  3c is investigated, a similar 
result is seen for increasing negative values of � . Figure 3d shows us that as p param-
eter values increase, soliton sustains its bright soliton character, but the peaks of the 
soliton slide down perpendicularly. This means that while the horizontal amplitude of 
the soliton increases, its perpendicular height decreases. While it is observed that the 
alteration in perpendicular amplitude is extremely sharp in the transition from p = 1 
to p = 2 , this alteration does not proceed in the same line after p changes by the same 
increasing amount. The exponent p stands for the type of power law media. The power-
law dependence on the intensity provides a more generalized description of how the 
pulse intensity influences the refractive index of the medium. Different values of p can 
represent various nonlinear effects, and the specific choice of p depends on the charac-
teristics of the medium.

Fig. 3   2D plots of Θ1(x, t) when �0 = 1.21, � = 2.2, � = 0.56,� = 0.78,Γ = 1.4, k = 0.98, a = 1.2, � = 1.4
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6 � Conclusion

In this article, the bright optical soliton solutions were acquired by analyzing the thirdorder 
(1+1)-NLSE including power law nonlinearity with inter-modal and spatio-temporal dis-
persions in the absence of chromatic dispersion via the nKM. This equation describes the 
interplay between the effects of dispersion, nonlinearity, and power-law nonlinearity on the 
propagation of optical pulses in a medium. Solutions to this equation can provide insights 
into the behavior of optical pulses under these conditions. The proposed algorithm is easy 
to use and highly effective and produce efficient outcomes. Acquiring the bright solitons 
is one of the targets of the study, and the second objective is to peruse the influences of 
the parameters of power law nonlinearity, nonlinear dispersion and third-order dispersion 
terms on soliton attitude. The equation has not been studied with the power law nonlinear-
ity in the absence of chromatic dispersion and for the first time, the modulation instabil-
ity analysis has been examined for this form of the equation in this article. Furthermore, 
the parameter values stated in the graphical presentations were specified in consequence 
of long efforts, and one of the most important examination points was whether the bright 
soliton maintained its shape under the effect of these parameter values. In this respect, we 
believe that the attained results will contribute to the researches to be made for the solu-
tion of this and similar nonlinear problems. Moreover, considering the different self-phase 
modulation forms and their interactions with the third-order nonlinear term, there are many 
problems that can be studied in this field. Considering the fields of study such as multi 
soliton solution, fractional, stochastic, bifurcation analysis, it can be seen how wide this 
range can be spread.
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