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Abstract

This study introduces a novel truncated Mittage—Leffler (M)- proportional deriva-
tive (TMPD) and examines its impact on the perturbed nonlinear Schrodinger equation
(PNLSE) that includes fourth-order dispersion and cubic-quintic nonlinearity. The TMPD-
PNLSE is used to model light signals in nanofibers. In addition to dispersion and Kerr
nonlinearity, which are characteristics of the NLSE, the PNLSE also exhibits self-steepen-
ing and self-phase modulation effects. The unified method is implemented to derive exact
solutions for the model equation. These solutions provide a variety of phenomena; includ-
ing breathers, geometric chaos, and complex solitons. The solutions also exhibit numer-
ous structures, such as geometric chaos, where undulated M-shaped and M-shaped solitons
are embedded. The modulation instability is analyzed, finding that it is triggered when the
coefficient of the fourth-order dispersion surpasses a critical value.

Keywords A new proportional derivative - Perturbed NLSE - Geometric chaos - Multiple
solitons - Unified method

1 Introduction

The PNLSE describes of soliton propagation in nonlinear optical fibers. It received
a great attention of numerous research works in the literature. Mainly, the studies
were focused on the different techniques used for solving PNLSE. In this area new
exact solutions (ESs) to a PNLSE, among them, breather, multi-waves, periodic -cross
kink, M-shaped, and Lump-two stripe solutions were derived in Ozisik (2022), and
Gilson et al. (2003). The Riccati-Bernoulli Sub-ODE method, infinite series method
and cosine-function method, were used to investigate ESs of the PNLSE in Shehata
(2016), Zai-Yun et al. (2012), and Yusuf et al. (2019). The similarity solutions of
the PNLSE was analyzed and the ESs were obtained via introducing similarity trans-
formations and by using the extended unified method (Abdel-Gawad 2022). Solitons
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in optical fiber Bragg gratings for PNLSE having cubic-quartic dispersive reflectiv-
ity with parabolic-nonlocal combo law of refractive index were investigated (Benoudina
et al. 2023). In Owyed et al. (2020), Mahak and Akram (2020), two algorithms for some
expansion methods were suggested for constructing new optical solitons solutions for the
fractional PNLSE. The generalized traveling wave (TW) method was developed for the
NLSE with general perturbations in order to obtain the equations of motion for collective
coordinates (Quintero et al. 2010; Ghanbari and Raza 2019).

An improved PNLSE with Kerr law non-linearity equation was studied in Jhang-
eer et al. (2021), and Mirzazadeh et al. (2017). In Khalil et al. (2021), and Bisws
et al. (2012), the perturbation of the improved version of the NLSE was studied via
the semi-inverse variational principle. The dynamical behavior of improved PNLSE
was discussed by the extended rational sine-cosine/sinh-cosh techniques,@® -model
expansion method and generalized exponential rational function method (Younas
et al. 2022). New exact TW solutions of the PNLSE were derived by using general-
ized (G//G) -expansion method 17]. In Ray and Das (2022), the space-time fractional
PNLSE) in nanofibers was studied using the improvedran(¢(£)/2) expansion method
to explore new exact solutions. The soliton solutions for the improved PNLSE with
quadratic-cubic law nonlinearity by utilizing the log transformation and symbolic
computation were studied (Rizvi et al. 2022).

In Alharbi et al. (2021), a new stochastic robust solver to solve several classes
of nonlinear stochastic partial differential equations was introduced and applied
to PNLSE. Bright, dark and singular soliton solutions to quadratic-cubic nonlin-
ear media in the presence of perturbation were derived (Biswas et al. 2018; Rizvi
et al. 2021). The dynamics of soliton propagation through optical fibers with non-
Kerr law nonlinearities NLSE was integrated in the presence of perturbation terms
(Biswas et al. 2012; Osman et al. 2022; Zhang and Z. -H. Liu X. -J. Miao, Y. -Z.
Chen, 2010). Hyperbolic, periodic, singular, domain walls, dark-like dromions (sol-
itons) for perturbed fractional NLSE were retrieved (Kodama 1985).The TW solu-
tions to the PNLSE with Kerr law nonlinearity were constructed by using the modi-
fied (G'/G)-expansion method and Jacobi elliptic ansatz method (Miao and Zhang
2011; Aslan and Inc 2019). The sub-equation method was implemented to construct
exact solutions for the conformable PNLSE, where three different types of nonlin-
ear perturbations were considered (Martinez et al. 2022). The exact two-soliton solu-
tion to the unperturbed NLSE and prediction of strongly inelastic collisions (Dmit-
riev et al. 2002). Further relevant works were presented in Kodama (1985), Wazwaz
et al. (2023), Wazwaz (2021), Guan et al. (2023), Qiu and Zhang (2023), and Xu and
Wazwaz (2023)

In the present work, we introduce a novel definition for MTPD and study the PNLSE
with fourth order dispersion and cubic-quintic nonlinearity. The exact solutions are derived
by implementing the unified method (UM) (Abdel-Gawad 2023; Abdel-Gawad et al. 2023;
Abdel-Gawad 2023, 2023, 2012).

The organization of this paper is as follows. In Sect. 2, The MTPD is introduced, for-
mulation of the problem is presented and description of the UM is outlined. Section 3 is
devoted to distinguish different kinds of chaos solitons. Non chaotic solitons are presented
in Sect. 4. In (5) and (6) analysis of modulation instability and investigation of global bifur-
cation are done. Section 5 is devoted to conclusions
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2 Mathematical formulation
2.1 The novel TMPD

Proportional derivatives such as conformable derivative (Khalil et al. 2014; Abdelhakim
and Machado 2019) and f-derivative (Hussain et al. 2020) were introduced in the litera-
ture. A truncated M derivative is, also, presented.

Definition 1 Letf: R — R, 0 < p, y < 1. The M-truncated derivative is defined (Hussain
et al. 2020),

FGE(e(@™) = £(1) o g
MT pypoy ; i~
i D f([):leeﬁ ’0<p’y<1’iE (t): ~ - N 1
t 0 € 4 ~ F(pj-l- 1) ( )
where;E ,(7) is the truncated Mittage-Leffler function.
Let f : RY — R be a continuous function, we define MTPD,
Ft+ 525 = F0) o
MPDPF(t) = Lim, E ,0<p< 1.
Definition 2
If f eC'(R*), the (2) reduces to,
TMP 1P _EOpen _ _dfO  _ df®@)
PIDIfW) = Gaf ) = gt = 42 )

[ =f(2),7 = Log(E,(1)

Basic theorems

@ iTMP Df(f(t) +e(1) =iTMP fo( 0+ iTMP Df g().
(b) PDI(f(@).g(1) = f O Dg(@) + g0 DIf ().

n=2
——
© MPDIMPDLf(1) = HH"+ H'f'), H = 2.
n=3 ’
r N ) .
@ PPDIMTDIDI(f (1) = HUH" + 3HH'f" + f'(H” + HH"), H = 2.

© 16D = 1= f(t) = Log(iE (1)
) MDY@ = f(t)=> f(1) =; E,1).

Generalizations of (2).

E,(17)
f(t +e (d,Ep,,(,ﬂ)) ) _f(t) (4)
dt
MEDYF(t) = Lim, - ,0<p<l.

Definition 3
In (1), wheni — oo,
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E, (")
f<t+ 8m> —f(t)

MEDPF(t) = Lim,_, f’g ,0<p< 1. ®)
Definition 4
2.2 The PNLSE and TMPD-PNLSE
The PNLSE equation read (Yusuf et al. 2019),
iw, ++aw,  + | w|*w ©)

—l(\/ Wy + ”(' w |2 W)x + 6(' w |2)xw = 0,

where w = w(x, ) is the complex field envelope, a is the group dispersion velocity, # and
is the Kerr nonlinearity coefficient, 4 and o are the coefficients of self-steepening and self-
phase modulation respectively.

The PNLSE with fourth order dispersion and quintic nonlinearity is,

iw, +4aw  +ow  +BIwPPwry |wltw
—ivw,+pu(w P w), +o(wH)w=0,

)

where 6 is the coefficients of forth order dispersion and y is quintic nonlinearity coefficient.
The MTPD-PNLSE takes the form,

(" DIw) + aw,, + 6w + B Iw P wy [w|tw

—i(vw, + u(l w [2 w), +o(lw |2)xw =0. ®)

In (8), by using (e) in the above, we introduce the transformation, w(x,t) = w(x, 7), T =
Log(E (1)), and it reduces to,

W, +taw, + 6w+ B WPy Wt W

—i(viv, + u( W P W), + o W P)w = 0. ©)
In (9), we use the transformation,
w(x, 7) = (u(x, 7) + iv(x, 7))e"® ), (10)
and the equations for the real and imaginary parts, are given respectively by,
48K3v,(x, 1) — 66k U, (x, 1) — 2akv, — 46kv ., + au,, + vy,
—v, + 8k u(x, 1) — ak®u + kvu + 481, + pu?v, + fu (+owu an

thkpu? + 2puuv + 2ouuv + yud + 3puv, v + 20v,0°
kpuw? + +puv? + yuwv* + 2yuv? = 0,

—46k3u, — 68k>v,, + 2aku, — v, + u, + av,, + 4ku,, + 6V,
Sk*v — ak®v + kww) — 3uuPu, — 2ou,u’ + wv — 2uuvy, — 2cuvy, (12)

+huu? + kuvd — pu v + +putv + 2yuvd + yutv + 3 + yv3 = 0.

For traveling wave solution, we write u(x, 7) = U(z), v(x,7) = V(z) and z = px + gr,s0 (11)
and (12) reduce to,
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YU + U (B +kp + 2y V?) + U(8k* — ak® + kv + V(B + k)
+02p(pu + o)VU' ++yV*) + upU* (V' + (p(46k> = 2ak +v) — g (13)
+pBu+20)V)V' + p*((a — 66k*)U" + 5p(pU™ — 4kv¥)) =0,

V(B +ku+2yU?) + 7V + (q — p(46k> = 2ak +v)
—pBu+20)U*) U — upV?U' + V(6k* — ak® + kv
+ UX(B+ku) + o+yU* = 2p(u + 0)UV')
+p*((a = 66k*) V" + 6p(4kUP + pV¥)) = 0.

(14)

2.3 The unified method

The UM asserts that the solutions of a nonlinear evolution equation are expressed in poly-
nomial form and rational form in an auxiliary function that satisfies an adequate auxiliary
equation (Qiu and Zhang 2023).

2.3.1 Polynomial solutions

With relevance to (13) and (14), the solutions are written,

J=ny Jj=n, j=rs
U@ =Y apiy, V@ =Y bk, @@ =) ¢pl.r=12 (15
j=0 j=0 j=0

where ¢(2)is the auxiliary function and the last equation in (15) is the auxiliary equation
(AE).

The Painlevé analysis can be used to test the integrability of (13) and (14) but it is too
lengthy.In view of (15), integrability is tested in the sense of existence of integers n;, n,,
and s. To this issue, two conditions are examined, the balance condition and the consist-
ency condition. We consider the case when r = 1.

The balance condition is found by writing U~ ¢@"h, U ~¢nl¢
= U~ ¢hteD U ~ ¢mt26-D ] etc. We get n; = n, = s — 1. To determine s, we use
the consistency condition (CC). We need to calculate the following;

(i) The number of equations that results when inserting (8) in (6) (or (7)) and by setting
the coefficients of ¢'(z),i = 0, 1,2, ...etc. equal to zero (which is (55 — 4)).
(i) The number of arbitrary parameters in (8), (which is (2s + 1)).The CC reads

55 —4 — (25 + 1) < m, where m is the highest order derivative (m = 3). Finally, we
get0 < s < 3.

2.3.2 Rational solutions

In this case, the solutions of (13) and (14) are written,
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ijm a'¢(Z)j Z]zm b(f)(z)’ J=rs A
Uz) = ]Z(:n—/’ V(z) = J<=(:n J A’(d)/(z))r — 2 Cjcb(z)’,r =1.2 (16)
j‘:() Sj(’b(z)] j‘z() Sj(»b(z)] j=0

The balance conditionis;m =s—1,s > 2and m = 1 when s = 1.

It was found that a necessary condition for a complex field equation (cf.(9)) to be inte-
grable is that the real and imaginary parts are linearly dependent. But this condition is not,
in general, sufficient (Kodama 1985; Wazwaz et al. 2023).

2.4 Breathers, dromian shape and complex chirped soliton
2.4.1 Breathers

Here, we consider (15), when r = 2 and s = 2.the solutions in (15) reduce to,

agb,
UG = Q) +ay, V@) = bih@) + by, by = 22, a7
1
and the AE is,
¢ = \Je0(02 +€(0) + o (my b() + mp). (18)

By plugging (17) and (18) into (13) and (14), and by setting the coefficients of
$'(2),i =0, 1,2, ...etc, equal to zero gives rise to,

k= (a%+b%)(3u+2cr) 1a1 (c] + %) ml=2¢,‘2m0

2c,5mpr 0 0T 4
1
qg= —Wp@b%c%cgy(&ﬁu +2fo —yv)
+72Gu + 20')b‘1‘c%(c% - 4cocz) + 2ya%0262(3(3ﬁﬂ +2pc —yv)

- 9
C my €

15
+yBu +20) b3 (c} — 4cocy) ) + 166,mip* o Bu + 20)?),
= 1 4,2.2(.2 2. 22
* = T oy (Saty?ci(c] = degey) +24pbycics

+5b‘l‘y2c% (cf - 4c002) +486§m(%p2(3/42 + 8uoc + 4‘72))
+2a%yc%(5b%y(c% - 40062) + 12/305),

e (Pair* (& = degcs) el + 2704 s

(63 = deyea)? = 323+ 2063 (6V/6 /=73 V/o(-3p -

2p0 +2yv) czm?) +@Bu+20)20Cu+ 106)) + Sb%yc%c%

(C% _ 40062) \/5(18,33/6‘% S+ \/61 /—)/(27,142 + 48uoc + 2002)
cym3) +2r\V6a3cic} — deye <27b%7zc%(c% ~4cy) Vs
+4c§<l8ﬁycf 5+ \/8, /—yc2m(2) (27;42 +48uc + 2062) ) ) ),

+b7

23/4c, %
The solutions of (1) and (12) are,

w =

19)
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NERVE) ﬂ% (moz+cyep)
a 4¢ocy—crsech) ——nr—
1 0¢27% P

ulx,7) =

il

2¢,
_r 24 p2
v(x, 7) = 2D _"(V Vi) s
T T T s raa@) : (20)

(a‘l‘yzc% (c2 - 4c062)(3/4 +20) + 6b%yc%c§(3ﬂ,u +2p0 —yv)

b} +7y%c; (cf — 4cocy ) B+ 20) + 2yaic? (3c3(3Bu + 2P0 — yv)
bf + y(c% - 4coc2)(3ﬂ + 20')) + 16c§m(2)p20'(3;4 + 20')2),

t=Log(,E, (1)), i = 10.

By using (20), Rew(x, 1)
b
Rew(x, 1) = u(x, 1)(cos(kx — wLog(,oE,(1))) — a—lsin(kx — wLog(,oE (1)), @2n
1

is displayed in Fig. 1(i)—(iv). We mention that in all the figures shown the following param-
eters are fixed, u = 0.8,06 =04,y =-03,6 =0.8,v=03,A=2,a =04, =1.2.
Figure 1(i) shows complex rhombus shaped soliton, Fig. 1(ii)—(iv) exhibit hyper
chaos.
Figure 1(iii) show fractals that occurs intermediately, when ¢t = 0.3.

2.4.2 Complex chirped soliton

Here, we consider (16), whenr=2,s=2andm = 1.
Here, (16) is reduced to,

UQ) = a; ¢(2)+a, () = by p(2)+b, b = agby

s19@)+sy T osid@ts,” 0T a0 (22)
and the auxiliary equation (AE) is,
¢ = \Jeud(@* + esb@ + 2P + 1) + (23)

By inserting (22) and (23) into (13) and (14) leads to,

0.p=06

Fig.1 (i)-(iv), the 3D plot and contour plot for Rew(x, ) respectively when
a; =05,b, =0.7,my=02,¢;, =09,¢) =0.5,¢, =0.8.
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63 \/5&3 (03 Sp+CaS) )(45/{3 —2ak+v)

g= 1{/5\7_7(32\/5\/—795@ 64—

+61/21/=7 6k /1625 7m2>

2
— 3/453/4 /2 c3%tcasi \3/2 — _ WS 57(cas9=2¢c151)
0 = 189 33/45%/4] ot 1 g, = w ¢ = o),

0
=% (—486b?\/gks‘l‘(c3s0 + c2s1)2(6k3 —ak + v) - 4a?y\/g
—4b6y \/_(30 + 6c2c3sls0 o 1) (3c + 6c,C35(5g — cgs%)
+9\/_\/ b4 2(36 + 10c,c58,5y + 7czs1)(a - 66k2)

—6a1 (c3s0 + czsl) (—3 \/gb%\ /—yczsf(a — 65k%)
24y V6 (3ess0 — ¢81) + (247e3b50 + Ty ) + 811/6k(5Kk3 — ak + v)
s‘lt (c3s0 + czsl)) - 3a‘1‘c3s0 +0y8) (4b2y\/_(3c3s0 - czsl)

-3 \/6\ /—;/s%(3c3s0 +7cys, ) (@ — 65k%) ) ),
P= 486\/_s (a + bz) (c3s0 + czsl) ,
Sazy(3crs +7¢c,s )
p= (\/_\/_\/_k + ) 2175'f(c;sz+czjl)]
+5b]y(3c3so+7czsl) o = 35y 20,818 %/—%(Zy)\/a?+bf
27s2(c3x0+c2x1) > 0™ c,s% P = 3%\/m’
_ 3\f”+26 50 = V 16c3s1=Tm2~11c,s? <0
Z\ff\[ Tess

The solutions of (11) and (12) are,

(24)

ulx,t) = Q

(A+z) \/(30L s —mz) 16¢,53+Tm+34/ 16¢3s} —7m2>

P, = —Ta;| —2msn ,
2v/14s,

2
14m b
X v(x,7) = Zulx, 1)
16023%+m+3\/ 16c§s‘]‘—7m2 ) ’ ’ a T (25)

=+ 2—(322_ Sks?
T (V2 (2vay et

63\/:‘:53(9 s9+Cy s, ) (46k° —2ak+v) 5 4
+\/3< v +6V2y/=rdky /1635t —Tm? ) ).

v =Log(,E,(1),i=10

The results in (25) are used to display Rew(x, t) in Fig. 2(1)—(iv).

Figure 2 (i) shows complex chirped solitons.

Figure 2(ii) and (iii) show hyper chaos. Figure 2(iii) and (iv) exhibit the behavior in
space for different values of 7 and of the fractional order respectively.

2.4.3 Dromian soliton

We consider (22) when the AE is,
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(ii),p=0.6, Rew(xt)

(i),p=0.6

[2
1
]
fo

]

B
|
]

Re w(x)

-2

(ii)p=06

————— =10 S

=30 &

Rew(x.)

=30

"
Iiyspaeagsd
Wit
"

Fig.2 (i)-(iv) Whena, =2.5.b, = 13,¢c, = —1.5,m= 6,5, =3,a = 0.7.

P'(2) = \/20()? + ¢ (M (2) + my). (26)

From (22) and (26) into (13) and (14) gives rise to,

m = mosl(3czsg+200sf) an = 2a,s, _ _ﬁ _ _Sysg(af+b%)2
1 §E§s3+23c;,sfso ’ 5, 72 2527 3cimyptst
a;(3u+lo
q= p(ls—2 - 4co5km%p2 + 46k = 2ak + v
1
+3b%;4 " 2b%c _ 4025kp2(6mfsg—6mom]s1s0+m(2)sf))
2 2 ) >
1 1 1
__ Safyksg+8bfyksg+3c(,umgp2s‘l‘ o = _ﬁ
2com2p?s} > "2 2527
—_ 1 2 2,224 2 4 48
p= [T gy (12blcokym0p o8| + 3acymp”sy (27)
2,22

o At R
+daysy (2b7y (Scomgp=sy + s5) + 3cokpumyp=sy)),
= ﬁ (SCémgp“sff (acom(z)pQS% + 4ks(2)(ak - v))
0P 5%
+2a;‘yj§ §4c0k2m§p§s%s§-+2- cén;gpjs‘l‘ -: 16k4s3)4
+daibiys, (24cok2m0p2s1s0 + comop“sl + 16k*s?)
+2b‘1‘ysé (24cok2m%p2s%sé + cgmgp“s‘l‘ + 16k4sg )3

The solutions of (11) and (12) are,
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u,n) =2, P= (al(—2s0slsech2(% -,

52 2,A \/—_cozmsl 2, A \/—_cozmsl
+\/5\/S0s1 tanh (E - T)(l — tanh (5 - T)) 5

A \/—cozms A e ams
0 = s;| sos; tanh’(§ — #) +124/825 tanh®(5 — ¥=— 220 ) (28)
- 204 _ ¥TOIm b _ oz
: 2 tinl: (82 o ’2V(; ’ T)z_ “ ”(j’ T),z N pzx 2 23Cgmép3;fz
(—3com s\(v = 2ak)16a b yks; + +8a|yvks (Com()p s+ 4k so)

Sb‘l‘yks(z) (comépZS% + 4k2s(2)) + (comgpzs% + 4k2s§)).
Rew(x, 1) is displayed in Fig. 3(1)—(iv), by using (28).
Figure 3(i) shows complex dromian pattern soliton, while Fig. 3(ii)—(iv) show oscillatory

behavior.
2.5 Geometric chaos

2.5.1 Complex chirped soliton

Here, we employ (22), together with the AE.,.

’ _ 2 2
#(@) = Ve +16(2) + e mad@P + my (@) + my. (29)
(ii),0=0.6, Rew(x,t)
0.0030 z >
3 et L2 %
(i),p=0.6 SRR RN SN X
00025 ST £
DN e »rok 5
< 3 :
¢ 0.0020 | ESEERERURE S o E :
b el g ST 3
001§ ot L SR ¥
f ~ 00015 o % 3
Re w(xy % \ W R o3 X
-0.01 e : X =
A 000015 0.0010 - SRS % o X
D /ﬁiw A :' : &
N g s SR .
Ry 0.00005
x 0
%0000 0.0000
20
X
- (i) )
o010
0.01 0.005
z t=0 & p=025
% 000 L | - Xl < o ) S I 1 O 8 W L VY 4 VO G 05
& =002 & =075
o

-001 -0.005

-0010
000000 000005 000010
t

=0.02
000015 000020

Fig.3 (i)~(iv), when a, = 0.05,b, = 0.03,¢, = —1.5,m, = 0.6,m, = 1.5,5, = 1.3,5, = 1.8,k = 15, p = 0.007.
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From (22) and (29) into (13) and (14) gives rise to,

a2+b2)(3u+2o‘) 1 c m cym com
k= ( 1 an =g (L 4™ c, = =2 4y = QM
24c,6myp? 0= 3% + >l my >0 ¢

g= é,/af+b§(-((6\/'\/—y\fv—6\fﬁ\/_\/'(3u+2a)
+\/§a(3u+2a)2>m2>+4\/_a%\/—_yy\/_(3ﬂ+20')(2m2n +m%)
+4\/§b% \/—_yy \/5(3;4 + 20)(2m§n2 + m%) >,

— 6 @35/ P g = — 1
0 =066""(~y) \/65 my & 4\/5(_y)3/2m§(

m§<24ﬂy\/5 +V61/=7 (312 + 8uc + 462))
+20a2y2\/_(2m2n + m2) + 20b2 2\/_(2m2n + mz)
T ( (3;; + 20(48\/_y\/_\/_v + 2743 + 126420
+4003 —24\/_ﬁ\/—_y\/_(3/4+26)>m2>
+4y\/5(72ﬁy\/5 +V6y/=7 (2747 + 480 + 2052)) +72a%y%6
(8m3n4 + lZm%mfn2 + 3m‘l‘) + 72b‘1‘y36 + b?m§(2m§n2 + m%)
Sm‘z‘n4 + 12m§m§n2 + 3m‘11 + 4a%<y\/g(72ﬁy\/g + \/6\/—)/(27;42
+48uoc + 200'2) )m%2m§n2 + m% + 36b%y35(8m‘2‘n4 + 12m§m?n2 + 3m‘1‘) ) ),

Co= ey P= e
(30)
The solutions of (11) and (12) are,
m2n 4m2mznz+m4+m2
ulx,t sn n2A+z\/cm3K e
( ) ( (\/_ ( ) 2 2m2n’ \/4m§m%n2+m +m
a, (2m§n4 + m? < 4m2m ) 2m%n2 + m‘l‘
+4m§n2 + m‘l‘), 0= K(Zm%n2 - \/4m2m1n2 + m1 + m%)z
2
> b
K= i , v(x, 7) = iu(X, ), @31

22— [t
V_W) 2 12
=t <, Ja? +62(=((6v3y=rrVov - 6v/3p/=7)
\/5(3/4 +20) +\/_0'(3ﬂ + 20)2>m§) + 4\/5(1% \/—_yy\/5(3/4 +20)
(2m§n2 + m?) +4\/§bf \/—_j/}/\/g(?)ﬂ + 26)(2m§n2 + m%) ) >,
0 =6 6¥/4(=y)/*\Je6¥*m* = = Log(;E,(1)).
We use (31) to display Rew(x, ) in Fig. 4(i) and (ii).
Figure 4(i) shows complex chirped solitons, while Fig. 4(ii) shows geometric chaos.

Case (b). Complex M-shaped soliton
In this case, we write,
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(i).p=0.6, Rew(x,t)

0.0030 [}

(i),0=0.6

0.0025 -
0.0020 -§

-~ 0.0015 &

0.0010 |-1§

0.00Re w(xt)  0.0005 | (SRS

j—0.05 0.0000
0

-50 -40 -30 -20 -10 0 10 20

- .
-50 0 5

Fig.4 (i) and (ii), when a, = 0.5,b, = 0.7,m, = 0.7,m, = 0.5,n = 03,c, = 0.8

U@) = a;(2)* + a;0(2) + ag, V(@) = byp(2)* + by $(2) + by,

b= 42, by = 1, §(0) = 90 + R + ) + 6o G2

By using (32) into (13) and (14), we get,
2a,c, 3u+2o 9510203_262 _ _‘12(65_95153)
3¢; 7 2\/—\/—{,2\/— - 272 7 U 182 >
4
—36\/_( e ( (\/_\/ (3;4 + 8uc + 4o )+24ﬁycz\/_) o

~10a2y%¢, (2 = 3¢y¢3)2V/6 — 10027%¢, (2 — 36163)2\/5)’

—_ _ 1 ) 2 [~ 2
q= 108 23/4 %(—7)7/4ci/zc§53/4 < 612 + b2(3(\/g y6(3ll + 20')

+18yc2\/3(3ﬂ/4 +2pf0 — yv))cg + 2a§y202\/3(3/4 + 20)

+(2a§y2c2 V6@ +20) + 26272, \/6 (3 + 20’)) ) )

1
© = ~Spiam (=931 + 26 (G +20)*(3u + 100)

+24/61/=7,V/6(=3pp - 2p0 + 2yv))c§ +27/5b2c,
(\/_\/—_(mﬂ + 480 + 2002)+72ﬁyc2\/5)cg(c§ —3¢,c3)?
+4a‘2‘)/3c2 (c% - 36‘163)45 + 4b‘2‘y302 (cg - 301c3)46
+2a2(y\/_c2<\/6\/—_ 72ﬁycz\/g + (27/42 +48uc + 200'2)>
cg (c - 3clc3) +4b§y302(c§ - 30103)46)),

{/j\/a2+bz

2 23/4 fezes \/'

a =

(33)

p=

The solutions of (11) and (12) are,
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23 (4+2)
ay(3-3¢,c5)| Z1UHI—e 33

b
u(x,7) = P V(x, T) = ju(x, 7),
6c§[ ]

k1A 4o 33

e (VEvER) {/E Vet (34)
2 294, /e V/om, (22974 /& fom, ) 27724 (3 +12))
(276%yc33Pu + 2P0 — yv) + 72¢5p* 6 B + 26)* + dyy?
(cg - 30103)2(3/4 +20) + b‘éy2 (c% - 3c1c3)2(3/1 + 20)
a% + y(Zbgy(cg — 30163)2(3/4 +20) + 27c§(3ﬁ/4 +2f0 — yv))),
T= Log(l-Ep(t)).

In Fig. 5@1) and (ii), Rew(x, ?) is displayed, by using (34).
Figure 5(i) shows complex undulated M-shaped solitons, while Fig. 4(ii) exhibits
geometric chaos.

2.5.2 Breathers-line

Here, we use consider (22) and the AE is taken,

¢ @) = \/ 2P + 1) + ey mab(a? +myd(@) + m. (35)

From (22) and (35) into (13) and (14) results,

(it).p=0.6 Rew(x.t)

(i),p=0.6

Rew(xy)_

-04

50 x

Fig.5 (i) and (i), when a, = 2.5,b, = 1.7.¢, = 0.7,¢, = 1.5.¢; = 0.3,m, = c5.
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ayso((c150=2¢p51) m So S 1E0] myrsy
A= T ol ea. oy Mo = » € = , My =
4czs6+sl(26051—3cls0) 25, 59 S

_ Vv /an > )
g=- </35(r_2>zso.;§\/6272 (—2\/&11 VT Vok(22 = 4r+ 1)

30— 2053 (48K = 2k + v) = 2V/60 /Ty Vok(2 — 4r 1) ),

— 1 4
= m(192a1(—y)5/2y5(2r4 -8 +13r7 = 16r + 11)

+1926%y(—y)7/?6(2r* — 813 + 1377 — 16r + 11) +241/6y24/5

(27 = 8r% + 9r = 2)b2s3 (4ay + (r — 2)*Bu + 20)*) -

(r=2PGu +20)(27\/=r i (r = 2 + 541 /=y u*(r — 2)°c (36)
+36+4/—yu(r — 2)%62 4+ 24a+/—yy(r — 2)Bu + 20)—

8(6\/8y2 Vév /=1 (=(r = 2)*)6%))st + 243 (—16b%(~y) /621"

—87 + 1372 = 167 + 11) + V/62° — 82 + 9r — 2y \/5(day + (r — 2)?
Gu+200)52)), = —L——(Vor—2(day + (- =27

2472 Vo(r-27
8a2(—1)/2V/5(16°—44r+23) 863 (—y)2/5(16r2—44r+23) >
- 2

3M2+8/m'+40'2) — >

S

1 51
(32 —6r+4)s; k=— (r-2)(3u+20) _ K/ —%(2}’)%\/“%+b%

Cy = 5 = =

2rs? 2\/6\/?y\/(§ P V(r=2)sr/crm,

)

The solution of (11) and (12) are,

e (r=23s2 V=Dr(A+0)\[e3 /M350 (r—2)2
al<—\/cz(r—2)so+v - Osn lefr ,('T

sl<\/ ('z(izﬁ‘% sn( m("?]‘/”?m‘“ ,“:722)2>+\/E(r—2)50> ’
(Vo)

V6-2)sy\Jorm; 362025052\ Jey,
(/g\/?ﬁm(—z\/éaf\/—_y\/gk(zﬂ —4r+1)
3= 2053 (48K° = 2k + v) = 2V/603 /Ty Vok(20% = 4r +1) ) 7 = log (E,(0).
(37

ulx,7) =

b
v(x, 1) = iu(x, 7),7=

The results in (34) is used to display Rew(x, ?) is displayed in Fig. 6(i) and (ii).

Figure 6(i) shows rogue waves vector- lumps vector interaction with breathers, while
Fig. 6(ii) shows geometric chaos. Figure 6(iii) consolidate the chaotic behavior for high time
values.

3 Mshaped solitons

Here, consider polynomial solutions.

3.1 Case(a)

Here, we consider (17) and the AE is,

(@) = ¢, + ¢ ¢(2) + ¢ (38)
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__(i),p=0.6, Rew(x,t)

50 f

40

(i),p=0.6

30

20

50 40 -0 <20 00 0 2
Fig.6 (i) and (ii), when (p = 0.6,r = 2.5,a;, = 1.5,b; = 1.3,¢, = 0.05,m, = 0.08,5; = 3,5, = 0.3.

From (17) and (38) into (13) and (14) gives rise to,

acp k= 3u+2o p= \/_g V a%+b%
20 T oy P T T e

co= W(wcﬁyzcﬁ o+ IOb%yzc% 6+ (4\/6(1)/\/—_}/
+24ﬁy\/5 +\/g\/—_y(3/42 + 8uo + 40'2))c§),

4= 15y (341 (=3Pu = 20 + 5yv) + 3y(=3pu

+5yv = 2p0)b? + 2c2p* (B + 20) (12ay + 9 + Yuo + 267) ),
w= m(wazyz +34566%y5 — 72V/65/~7

V8 (334% + 280 + 407) — 24ay(12V/65/=7 V6 + 814
+9640 + 286%) + (3 + 20) + (1200V/67 /=7 Vv + 271+

ayg =

(39

846420 + 900uc? + 23207)).
The solution of (11) and (12) are,

ulr,7) = ————4 \/I_<
2¢,4/ 1072\/3((1%+b?)
n S (4Voar =7 +24py Vo Vo =7 (312 +8uo+402) )
| — G
an

2v/10 ’

K = ~G@/6ay /=7 + 247/ + Vo /7 Gw? 0
buuter) )‘<V¥\/“?Tb?)

2 —
+8uc +406°)),v(x, 7) = ” e Vs
+mp(3a§y(—3ﬁy —2p0 + 5yv) 4+ 3y(=3pu + 5yv
=2p0)b? + 2c2p*(Bu + 20)(12ay + 9u* + uo + 26%)), 7 = Log(;E,(1)).

By using (40), Rew(x, ) is displayed in Fig. 7(i) and (ii).
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(i),0=0.7

Fig.7 (i) and (ii), whena; =2.5,b; = 1.5,v=0.3,¢, = -0.6,A = 2.
Figure 7(i) shows undulated M-shaped solitons.

3.2 Case(b)

In this case, we write,

Uz) = az(ﬁ(z)2 + al} ) + ag. V(2) = byd(2)* + b p(2) + by,
by =42, b, =4l

(,b,(Z) \/Cz¢(Z)2 + C1¢(Z) + ¢y (m2¢(z)2 + m1¢(Z) + mo)
From (41) into (13) and (14) leads to,

(a%+b§)(3u+20’) 1 ¢ 2my cymy
k= "2——0m— a5 =za, —+—,c1=— ,
96¢,6m3p? 3 mz m,
1 5C2m cym 18¢ym
my = —2 2 I LU WL L) +
18 [ 23 &3
_ay(=8c(m; —9ml,m2)+4czm2(7c]ml+9c(,m2) 11cim3)
0~ 1442 m? ’

o= =2 (ETR (it i+ 20
467\ /=705 G+ 20) + 81(3V/6 =77 Vo
3\/_ﬂ\/_\/_(3y+20') +6(3ﬂ+20')2)m§)’

= 19448/23%/4(=y)/* | Jeo8/*mS, ¢, = 4C°Z" ,

—4\fﬂ\ﬁ\f+3,‘ +8uc+4c? %/—f\/ +b3
’ 2 234, fe; /6m,

_ 2::%;(27 3+48\/_\/_y\/_v+126u o
_24\/_ﬂ\/—_y\/_(3ﬂ+26)+132[46 +400’3).

The solutions of (11) and (12) are,

il
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$a, (_1+3e§ V2, (+36cy /n2)>

byu(x,7)
ux,7)=— , VWX, T) = —,
x,7) 9+27e%6\/§\ﬂm2(:+3(w]mz) . 7) a, 3)
x( 3 /—é \/a§+h§)

—W +qr, T = Log(lEp(t)),

and q is given in (42). The results in (43) are used to display Rew(x, f) in Fig. 8(i) and (ii).
Figure 8(i) and (ii) show M-shaped solitons.

4 Modulation instability

The study of modulation instability ( MI) holds for systems governed by complex field
equations, which possess normal mode (plane wave) solutions. Indeed Eq. (9) has the
solution,

Ww(x, 7) = A A > 0, (44)
where,
Q= -A% — A’f — A’Kyu — 6K* + aK?* — Kv. (45)

The study of MI is based on determining the dominant parameter in the system, which is
taken, here, 6. We inspect the critical value of 6, above it MI triggers.
Now we use the perturbation expansion,

Wx, 7) = eV (A + e (6, U(x) + ie, V(x)) + 0(5?)),

W(x, 1) = e KD (A 4 47 (£, U(x) — ie, V() + Oe2)), i = 1,2. (46)

From(46) into (9), calculations give rise to,

. (ii),p=0.6,‘ Rew(x,t) i

(i),0=0.6 30

-40 -20 0 20 40
X

Fig.8 (i) and (i) when a, = 0.5,b, = 0.7,v = 03,A = 2,m, = 0.7,m, = —0.5,¢, = 0.8.
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A<51 ) =0, A= <a“ 012>,
) Ay Ay
ay — 66K*U" + 56U + aU" +4A% U
+2A2K U + 24240,
ay, = AUV +46K3V' — 46KV — 2aK V' (47
V¥V — A4+ vV = AV,
ay; — 3A2uU" = 2A%6U" — 46K3U' + 2aK —vU' + AU’
—vU' + AU,
Ay, = —65K*V" + 5V® + aV".

Equation (47) solves to.detA = 0, which results to the eigenvalue equation,

—AVU' (A’Gu + 20) + 46K> = 2aK +v) + U' () V' (x) (4a’K?

—16a6K* + 85K3 (A*2u + 0) + v) — 4aA’K(2u + 6) + 1662K®

+(A%u+v) (A’Gu+20) +v) —4akvU' V') + U"V" (a - 651(2)2

8(a —65K?) — 46KV U (A*(Bu + 20) + 46K> — 2aK +v) (48)
UGV 4+ 5VOU" (a — 66K?) + 52UDVD + U(x)(4*V(x)

—A(46K3 = 2aK +A%pu + v) V' (x) + 2A%V" (a — 65K?)

(2A%y + B+ Ku) 2A%6VD (2A%y + p+ Kp) + +46AKVO (x)) = 0.

We solve the eigenvalue problem in (48) subjected to the boundary conditions (BCs)
U(+00) = 0 and V(+o0) = 0. Thus, we can take,

_ e
Ut = B, e x<0
_ e x>0,h>0 (49)
V) = B, e x <0

From (49) into (48), we find that,

A =2ahK +261°K — 45hK> — 2A%hyu — hv — A%ho + /A,
A = —1?QaA2f + 4aA*y — 12A286K? — 24A*y6K? + 6°ho—
A p? = 2A% o — A*o? — 12A%6K3 p + 2aA’ Ky + 26h* (a — 86K?) (50)
+h? + daKv(a® 4+ 26(2A% + A2(f — K(u + 20)) + 186K*)
—12a6K?) — 4ah’Kv).

From (50) the MI triggers when 2ahK + 26h°K — 46hK> — 2A%hyu — hv — A%>ho > O,what-
ever the sign of A.Thus, we get,

—2A% —A%6 +2aK —v
2
0<h<V2VKLK <0,6> T, . (51)

Now, we estimate the gain in the modulated wave is given by ~ A(K). It is displayed in
Fig. 9(1)-(@v).
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Fig.9 (i)—(iv), whenh =0.1,a =0.7,A =0.5,v=0.3,7:=0.6,6 = 1.2,y =0.6,0 = 0.4, = 1.2.

5 Conclusions

The study carried here is quite complex and fascinating. It involves the proposal of a novel
Mittage—leffeler- (M) truncated proportional derivative. It is applied to the perturbed non-
linear Schrodinger equation with fourth order dispersion and quintic nonlinearity. The
exact solutions of this equation are derived by implementing the unified method and they
are represented graphically. These solutions exhibit various phenomena such as: geomet-
ric chaos, complex patterns like chirped solitons, breathers, and dromian patterns. In geo-
metric chaos, undulated M-shaped solitons, complex M-shaped solitons, lump vector, and
breathers interaction are visulalized. Also, the modulation instability is studied, and it is
established that it triggers when the coefficient of the fourth order dispersion exceeds a
critical value. The gain in the modulated wave is estimated and represented graphically.
The present work contributes significantly to the understanding the behavior of complex
systems.
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