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Abstract
In this work, two new adaptations for the trigonometric and hyperbolic trigonometric func-
tion approaches have been presented. These two modifications, entitled modified extended 
rational sin–cos function technique and modified extended rational sinh–cosh function 
method, have been applied for the first time to the Fokas system that represents the non-
linear pulse propagation in monomode fiber optics. We intend to produce innovative, 
explicit traveling waves, solitons, and periodic wave solutions. These achieved outcomes 
are presented in the form of exponential functions, trigonometric hyperbolic functions, and 
combination constructions of the exponential functions along with the trigonometric and 
hyperbolic trigonometric functions. The obtained solutions reveal significant features of 
the physical phenomenon and are new. The investigated model incorporates the notions of 
dispersion, transverse diffusion, degree of dispersion, nonlinear pairing, nonlinear immer-
sion, and the force of the nonlinear interaction among the two components of the system. 
For the most accurate visual evaluation of the physical importance and dynamic proper-
ties, we have presented the findings in a variety of plots, which involve two- and three-
dimensional representations. One or more elements in our research that are unique, such as 
newly modified methodologies, is a new observation that leads researchers to invest in new 
solutions.

Keywords  Fokas system · Traveling wave transformation · Modified extended rational sinh
–cosh function method · Monomode fiber optics · Modified extended rational sin–cos

Mathematics Subject Classification  35C07 · 35Dxx · 45Kxx · 65Mxx · 45K05

1  Introduction

In the present day of computer networking and communications, the topic of study in the 
theory of solitons and their utilization in fiber optics is becoming increasingly essential. An 
optical soliton is a flash of light that travels without distortion owing to dispersion or other 
causes. Both temporal and spatial solitons will be addressed, combined with the physical 
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components that make them feasible. In this situation, the optical pulse could begin to cre-
ate a stable nonlinear pulse known as an optical soliton. The dispersion of the fiber mate-
rial restricts the bit rate of transmission. Fiber loss is the sole element that contributes to 
the decline of the pulse quality through expansion in the pulse width.

The complex nonlinear (2 + 1)-dimensional Fokas system that demonstrates nonlinear 
pulse propagation in monomode fiber optics has the following form:

that derived in 1994 by Fokas (1994) employing the inverse spectral method, the non-lin-
ear pulse propagation in monomode fiber optic is represented by the complex functions 
v(x, y,  t) and u(x, y,  t). �1 symbolizes the dispersion coefficient, which characterizes the 
degree of dispersion in the system, �2 denotes the nonlinear pairing parameter, which indi-
cates the intensity of the nonlinear dealing among the two components of the system, u and 
v, �3 symbolizes the transverse diffusion parameter, which specifies the amount of disper-
sion in the transverse direction, �4 illustrates the nonlinear immersion coefficient, which 
represents the amount of a saturated state of the nonlinear participation. Differing versions 
of (1) have been examined using various methodologies, including Riccati expansion and 
Ansatz methods (Khater 2021), the generic Kudryashov’s method, the Sardar sub-equa-
tion approach, and Bernoulli sub-equation function method (Ali et  al. 2023b), the trun-
cated Painlevé approach (Thilakavathy et al. 2023), generalized Riccati equation mapping 
and Kudryashov methods (Kumar and Kumar 2023a), using a modified mapping method 
(Mohammed et  al. 2023), the extended rational versions of sinh–cosh and sin–cos meth-
ods (Wang et al. 2022), the bilinear transformation method (Chen et al. 2019; Rao et al. 
2015), the bilinear Kadomtsev-Petviashvili hierarchy reduction method (Rao et al. 2021), 
the bilinear forms of Hirota’s method (Rao et al. 2019), the exponential function method 
(Wang 2022), the elliptic function expansion forms of the Jacobian method (Tarla et  al. 
2022), the singular manifold, and the expansion forms of G�∕G2 , Sine-Gordon methods 
(Alrebdi et al. 2022), the polynomial method that depends on the complete discrimination 
(Zhang et al. 2023).

Numerous research works examine considerable analytical and semi-analytical tech-
niques for getting the exact solution of NPDEs, including the modified version of the expo-
nential-function method (Muhamad et al. 2023), the extended rational forms of sin–cos and 
sinh–cosh methods (Mahmud et al. 2023a, b), Bernoulli and its improved version (Basko-
nus et al. 2022a, b; Mahmud et al. 2023c, d), The transformation of Laplace has been used 
for solving the fractional system in the form of Caputo fractional derivatives (Tanriverdi 
et al. 2021), it is worth mentioning that the main source of these modifications are (Mah-
mud 2023; Muhamad 2023f), the extended auxiliary equation mapping and extended direct 
algebraic methods (Iqbal et al. 2018a, b, 2019; Seadawy et al. 2019, 2020a, b; Seadawy 
and Iqbal 2021), the extension of the modified rational expansion method (Seadawy et al. 
2021), the modification form of extended auxiliary equation mapping method (Lu et  al. 
2018; Iqbal and Seadawy 2020; Seadawy and Iqbal 2023), the extended modified rational 
expansion method (Seadawy et  al. 2022), the generalized exponential rational function 
method (Ghanbari and Gómez-Aguilar 2019a, b; Ghanbari and Baleanu 2020; Ghanbari 
2019; Ghanbari et al. 2018; Ghanbari and Kuo 2019; Ghanbari and Baleanu 2019), the five 
methods mentioned therein (Khater and Ghanbari 2021), the reproducing kernel method 
(Ghanbari and Akgül 2020), the extended rational sinh-Gordon method and exp(−�(�)) 
expansion function method (Shafqat-ur-Rehman and Ahmad 2023; Rehman and Ahmad 

(1)
iut + �1uxxx + �2uv = 0

�3vy − �4(|u|2)x = 0,
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2023), the modified generalized exponential rational function method, and the modified 
rational sinh–cosh and sin–cos methods (Rehman et al. 2022, 2023a, b; Ahmad et al. 2023; 
Ahmad 2023), the modified Sardar sub-equation method (Ali et  al. 2023a). Considering 
this context, we can notice an array of methodologies used by several academics to express 
their ideas in exploring the mathematical models that describe situations in real life (Gasmi 
et al. 2023; Jafari et al. 2023; Srinivasa and Mundewadi 2023; Bilal et al. 2023; Kumar and 
Kumar 2023b; Nasir et al. 2023). Overall, some shortcomings and adverse characteristics 
in the prior versions of these methods became the motivation for us to come up with these 
two additional enhancements.

This scholarly investigation has been laid out as follows: Sect. 1 is specialized for list-
ing the literature relevant to the approaches and the examined model in a short overview. 
The methodologies of the described approaches are detailed in Sect. 2. The formulation of 
the recommended techniques for constructing specific semi-analytic solutions to Eq. (1) is 
presented in Sect. 3. In Sect. 4, the concluding remarks of the study have been provided 
agreeably. Finally, the last Sect. 5, is dedicated to the analysis and discussion of the results 
that were collected.

2 � Formulation of the modification methods

Always, the configuration of the presented approaches commonly depends on the following 
step:

Step 1 Let the next NPDE be followed.

wherein T = T(x, y, t) . By setting

where �1, �2 and �3 are non-zero arbitrary parameters. If (3) is substituted in (2), then the 
outcome is presented as follows

herein

Step 2 Initially, we created these two modified solution forms: 

1.	 For the first modification, let the solution to (4) take the following forms: 

 or, 

(2)S
(
T,Tx,Tt,Ty,Txt,Txx,Tyt,Txyt,…

)
= 0,

(3)T(x, y, t) = R(P), P = �1x + �2y − �3t,

(4)I(R,R�,R��,…) = 0,

R = R(P), R� =
dR

dP
, R�� =

d2R

dP2
,…

(5)T(P) =
�0 + �1 sinh(�P)

�2 sinh(�P) ± �3 cosh(�P)
, �2 sinh(�P) ± �3 cosh(�P) ≠ 0,

(6)T(P) =
�0 + �1 cosh(�P)

�2 sinh(�P) ± �3 cosh(�P)
, �2 sinh(�P) ± �3 cosh(�P) ≠ 0,
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2.	 For the second modification, suppose that the solutions to (4) take the following forms: 

 or, 

where in (5–8), the �, �i, for i = 0, 1, 2, 3 are intended coefficients that will be identified later 
such that

and a wave number � ≠ 0.
Step 3 Anonymous, also known as parameters, might be found by substituting one of (5–8) 

into (4), putting together all the terms that have the same powers as and equating to zero all 
the coefficients for the same power terms, this process produces a set of algebraic equations. 
Identifying the solutions to the obtained algebraic system using different symbolic computing 
tools is possible.

Step 4 By re-installing the obtained results of �0, �1, �2, �3 and � into one of (5–8), the solu-
tion to (4) will be derived, and thereafter, the solution to (2) is obtained.

3 � Implementations of the recommended methods

Implementing waveform transformation

to (1), then one gets the following:

directly from the second part of (10), one obtains:

By substituting (11) into the first part of (10), the following is the outcome:

By splitting the real and imagined components of (12), the operators end up with:

(7)T(P) =
�0 + �1 sin(�P)

�2 sin(�P) ± �3 cos(�P)
, �2 sin(�P) ± �3 cos(�P) ≠ 0,

(8)T(P) =
�0 + �1 cos(�P)

�2 sin(�P) ± �3 cos(�P)
, �2 sin(�P) ± �3 cos(�P) ≠ 0,

�2
0
+ �2

1
≠ 0, �2

2
+ �2

3
≠ 0,

(9)u(x, y, t) = U(�)ei�� , v(x, y, t) = V(�), � = �1x + �2y − �3t,

(10)
��3U − i(�3 − 2�1��

2
1
)U� − �1�

2�2
1
U + �1�

2
1
U�� + �2UV = 0

�3�2V
� − 2�4�1UU

� = 0.

(11)V =
�4�1

�3�2
U2

⋅

(12)��3U − i(�3 − 2�1��
2
1
)U� − �1�

2�2
1
U + �1�

2
1
U�� +

�2�4�1

�3�2
U3 = 0.

(13)
��3U − �1�

2�2
1
U + �1�

2
1
U�� +

�2�4�1

�3�2
U3 = 0

− i(�3 − 2�1��
2
1
)U� = 0.
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From the imaginary part of (13), one immediately obtains:

By substituting (14) into the real part of (13) after simplifications, the following is the 
result:

A recommended equation to suppose the trial solution is the ordinary differential equation 
(15).

3.1 � Implementation of MER sinh–cosh M to the examined model

To solve (1) by employing the MER sinh-cosh M, suppose that (15) has a solution with the 
following form:

In (16), �, �0, �1, �2, and �3 are unknown purposeful parameters that must be demonstrated 
later by taking into account that

and � is a wave number. Moreover, the derivatives of (16) with respect to � are taking the 
following forms:

and

Subbing (16)–(18) into (15), one gets the following:

(14)� =
�3

2�1�
2
1

⋅

(15)
�2
3

4�1�
2
1

U + �1�
2
1
U�� +

�2�4�1

�3�2
U3 = 0.

(16)
�1 sinh(��) + �0

�2 sinh(��) + �3 cosh(��)
.

� ≠ 0, �2
0
+ �2

1
≠ 0, �2

2
+ �2

3
≠ 0,

(17)U� =
�1�3� − �0�

(
�3 sinh(��) + �2 cosh(��)

)
(
�2 sinh(��) + �3 cosh(��)

)
2

,

(18)

U�� = −
2
(
�3� sinh(��) + �2� cosh(��)

)(
�1�3� − �0�

(
�3 sinh(��) + �2 cosh(��)

))
(
�2 sinh(��) + �3 cosh(��)

)3

−
�0�

(
�2� sinh(��) + �3� cosh(��)

)
(
�2 sinh(��) + �3 cosh(��)

)2 .
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In (19) collecting all the coefficients with the same powers of cosh�1 (�P) sinh�2 (�P) 
where �1, �2 = 0, 1, 2, 3 and equating them to zero. From the coefficients of 
cosh�1 (�P) sinh�2 (�P) , one creates a system as given below:

One creates the following cases by solving (20).
Case 1 The following are the parameters that were obtained from solving (20):

The following set of solutions to (1) has been identified by replacing (21) gathering with 
(16) into (15).

and

(19)

− 4�2
1
�3�0�

2
2
�2�

4
1
�2 sinh2(��) − 4�2

1
�3�0�

2
3
�2�

4
1
�2 sinh2(��) − 4�1�2�4�

3
0
�3
1

+ 8�2
1
�3�1�

2
3
�2�

4
1
�2 sinh(��) + 8�2

1
�3�1�2�3�2�

4
1
�2 cosh(��) − �3�0�

2
3
�2�

2
3

+ 4�2
1
�3�0�

2
3
�2�

4
1
�2 − 4�1�2�4�

3
1
�3
1
sinh3(��) − �3�1�

2
2
�2�

2
3
sinh3(��)

− �3�1�
2
3
�2�

2
3
sinh3(��) − 12�1�2�4�0�

2
1
�3
1
sinh2(��) − �3�0�

2
2
�2�

2
3
sinh2(��)

− �3�0�
2
3
�2�

2
3
sinh2(��) − 12�1�2�4�

2
0
�1�

3
1
sinh(��) − �3�1�

2
3
�2�

2
3
sinh(��)

− 2�3�1�2�3�2�
2
3
sinh2(��) cosh(��) − 2�3�0�2�3�2�

2
3
sinh(��) cosh(��)

− 8�2
1
�3�0�2�3�2�

4
1
�2 sinh(��) cosh(��) − 8�2

1
�3�0�

2
2
�2�

4
1
�2 = 0.

⎫
⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(20)

− 8�2
1
�3�0�

2
2
�2�

4
1
�2 + 4�2

1
�3�0�

2
3
�2�

4
1
�2 − 4�1�2�4�

3
0
�3
1
− �3�0�

2
3
�2�

2
3
= 0,

8�2
1
�3�1�2�3�

4
1
�2�

2 = 0,

8�2
1
�3�1�

2
3
�2�

4
1
�2 − 12�1�2�4�

2
0
�1�

3
1
− �3�1�

2
3
�2�

2
3
= 0,

− 8�2
1
�3�0�2�3�2�

4
1
�2 − 2�3�0�2�3�2�

2
3
= 0,

− 4�2
1
�3�0�

2
2
�2�

4
1
�2 − 4�2

1
�3�0�

2
3
�2�

4
1
�2 − 12�1�2�4�0�

2
1
�3
1
− �3�0�

2
2
�2�

2
3

− �3�0�
2
3
�2�

2
3
= 0,

− 2�3�1�2�3�2�
2
3
= 0,

− 4�1�2�4�
3
1
�3
1
− �3�1�

2
2
�2�

2
3
− �3�1�

2
3
�2�

2
3
= 0.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

(21)
�2 = −

�
2�1�3�

2
3
�1�2�

2 − �2�4�
2
0√

2
√
�1

√
�3

√
�1

√
�2�

;

�1 =0;�3 = −2i�1�
2
1
�.

(22)

u1 =
�0e

�2�y+�1�(x+2i�1�1�t)

�3 cosh
�
�2�y + �1�

�
x + 2i�1�1�t

��
−

√
2�1�3�

2
3
�1�2�

2−�2�4�
2
0
sinh (�2�y+�1�(x+2i�1�1�t))√

2
√
�1

√
�3

√
�1

√
�2�

,

(23)

v1 =
�4�

2
0
�1

�3�2

�
�3 cosh

�
�
�
2i�1�

2
1
�t + �1x + �2y

��
−

√
2�1�3�

2
3
�1�2�

2−�2�4�
2
0
sinh (�(2i�1�21�t+�1x+�2y))√

2
√
�1

√
�3

√
�1

√
�2�

�2
.
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Graphs of (22) and (23) where 
�1 = −

8

3
;�2 =

1

2
;�3 =

9

4
;�4 =

2

3
;� = −

2

3
;�1 =

2

5
;�2 = −

1

2
;y = −

3

2
;�0 =

5

2
;�3 =

1

2
, and 

−20 ≤ x ≤ 20, −20 ≤ t ≤ 20 are given in the following:
For the values of t that are mentioned below, one reaches:
The values of t are mentioned in the legend below.
Case 2 The following are the parameters that were obtained from solving (20):

The following set of solutions to (1) has been determined by re-installing (24) with (16) 
into (15).

and

Profile of the solutions in (25) and (26) where 
�1 =

8

3
;�2 =

1

2
;�3 =

5

4
;�4 =

2

5
;� = −

3

4
;�1 =

5

2
;�2 =

3

2
;y = −

3

2
;�0 =

5

2
;�3 =

1

2
; and 

−20 ≤ x ≤ 20, are given bellow for the different values of t that mentioned in the legend
Case 3 The following are the parameters that were reached from solving (20):

By inserting (27) and (16) into (15), the following set of solutions to (1) have been gained:

and

(24)

�0 = −

√
�1

√
�3�3

√
�1

√
�2�√

2
√
�2

√
�4

;

�1 = −
i
√
�1

√
�3�3

√
�1

√
�2�√

2
√
�2

√
�4

;�2 = 0;�3 = −
√
2�1�

2
1
�.

(25)

u2 = −

√
�1

√
�3

√
�1

√
�2� exp

�
−

i�

�√
2�1�

2
1
�t+�1x+�2y

�
√
2

�
sech

�
�

�√
2�1�

2
1
�t + �1x + �2y

��

√
2
√
�2

√
�4

−

√
�1

√
�3

√
�1

√
�2� exp

�
−

i�

�√
2�1�

2
1
�t+�1x+�2y

�
√
2

��
i tanh

�
�

�√
2�1�

2
1
�t + �1x + �2y

���

√
2
√
�2

√
�4

,

(26)

v2 =
�1�

2
1
�2

�
sech

�
�

�√
2�1�

2
1
�t + �1x + �2y

��
+ i tanh

�
�

�√
2�1�

2
1
�t + �1x + �2y

���
2

2�2
.

(27)�0 = −
i
√
�3�3

√
�2�3√

2
√
�1

√
�2

√
�4�

3∕2

1

;�1 = 0;�2 = 0;� =
i�3

2�1�
2
1

.

(28)u3 = −

i
√
�3

√
�2�3 exp

�
i�3(−�3t+�1x+�2y)

2�1�
2
1

�
sec

�
�3(−�3t+�1x+�2y)

2�1�
2
1

�

√
2
√
�1

√
�2

√
�4�

3∕2

1

,
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Remark 1  Similarly, by assuming that (6) is the trial solution to (15), some other set solu-
tions to (1) may be obtained using the same prior process.

3.2 � Implementation of MER sin–cos M to the examined model

To solve (1) by employing the MER sin–cos M, suppose that (15) has a solution with the 
following structure:

In (16), �, �0, �1, �2, and �3 are unknown purposeful parameters that must be demonstrated 
later by taking into account that

and � is a wave number. Moreover, the successive derivatives of (16) according to � are 
taking the forms below.

and

Subbing (30)–(32) into (15), one gets the following:

(29)v3 = −

�2
3
sec2

(
�3(−�3t+�1x+�2y)

2�1�
2
1

)

2�1�2�
2
1

.

(30)
�1 cos(��) + �0

�3 sin(��) + �2 cos(��)
.

� ≠ 0, �2
0
+ �2

1
≠ 0, �2

2
+ �2

3
≠ 0,

(31)U� =
�0�2� sin(��) − �3�

(
�0 cos(��) + �1

)
(
�3 sin(��) + �2 cos(��)

)
2

,

(32)

U�� = −
2
(
�3� cos(��) − �2� sin(��)

)(
�0�2� sin(��) − �3�

(
�0 cos(��) + �1

))
(
�3 sin(��) + �2 cos(��)

)
3

+
�0�3�

2 sin(��) + �0�2�
2 cos(��)

(
�3 sin(��) + �2 cos(��)

)2 .

(33)

4�2
1
�3�2�

4
1
�0�

2
2
�2 sin2(��) − 4�2

1
�3�2�

4
1
�0�

2
3
�2 sin2(��) + 4�1�2�4�

3
1
�3
0

− 8�2
1
�3�2�

4
1
�1�2�3�

2 sin(��) + 8�2
1
�3�2�

4
1
�1�

2
3
�2 cos(��)

− 8�2
1
�3�2�

4
1
�0�2�3�

2 sin(��) cos(��) + 4�2
1
�3�2�

4
1
�0�

2
2
�2

+ 8�2
1
�3�2�

4
1
�0�

2
3
�2 + �3�2�

2
3
�0�

2
3
sin2(��) + 4�1�2�4�

3
1
�3
1
cos3(��)

+ �3�2�
2
3
�1�

2
2
cos3(��) + 12�1�2�4�

3
1
�0�

2
1
cos2(��) + �3�2�

2
3
�0�

2
2
cos2(��)

+ 12�1�2�4�
3
1
�2
0
�1 cos(��) + 2�3�2�

2
3
�1�2�3 sin(��) cos

2(��)

+ �3�2�
2
3
�1�

2
3
sin2(��) cos(��) + 2�3�2�

2
3
�0�2�3 sin(��) cos(��) = 0.

⎫
⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
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In (33), by collecting all the coefficients with the same powers of cos�1 (�P) sin�2 (�P) 
where �1, �2 = 0, 1, 2, 3 and equating them to zero. From the coefficients of 
cos�1 (�P) sin�2 (�P) , one creates a system as given below:

By solving (34), the following cases are created:
Case 1 The following are the parameters that were obtained from solving (34):

The following set of solutions to (1) has been identified by replacing (35) gathering with 
(30) into (15).

and

Graphs of (36) and (37) where �2 =
1

4
;�3 =

7

2
;�4 =

5

3
;� =

1

2
;�1 =

2

5
;�2 =

3

2
;�3 =

3

4
;y =

3

2
, 

and −10 ≤ x ≤ 10, −10 ≤ t ≤ 10 are given in the following:
Where the values of t are mentioned in the legend, one gets:
Case 2 The following are the parameters that were obtained from solving (34):

The following set of solutions to (1) has been determined by re-installing (38) with (30) 
into (15).

(34)

4�2
1
�3�2�

4
1
�0�

2
2
�2 + 8�2

1
�3�2�

4
1
�0�

2
3
�2 + 4�1�2�4�

3
1
�3
0
= 0,

− 8�2
1
�3�

4
1
�2�1�2�3�

2 = 0,

4�2
1
�3�2�

4
1
�0�

2
2
�2 − 4�2

1
�3�2�

4
1
�0�

2
3
�2 + �3�2�

2
3
�0�

2
3
= 0,

8�2
1
�3�2�

4
1
�1�

2
3
�2 + 12�1�2�4�

3
1
�2
0
�1 = 0,

2�3�2�
2
3
�0�2�3 − 8�2

1
�3�

4
1
�2�0�2�3�

2 = 0,

�3�2�
2
3
�1�

2
3
= 0,

12�1�2�4�
3
1
�0�

2
1
+ �3�2�

2
3
�0�

2
2
= 0,

2�3�2�
2
3
�1�2�3 = 0,

4�1�2�4�
3
1
�3
1
+ �3�2�

2
3
�2
2
�1 = 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

(35)�1 =
�3

2�2
1
�
;�1 = 0;�2 = 0;�0 =

i
√
�3

√
�2

√
�3�3

√
�

√
�2

√
�4

√
�1

.

(36)u4 =
i
√
�3

√
�2

√
�3
√
�
�
cot

�
�
�
−�3t + �1x + �2y

��
+ i

�
√
�2

√
�4

√
�1

,

(37)v4 = −
�3�

�2
csc2

(
�
(
−�3t + �1x + �2y

))
.

(38)�1 =
i
√
�3√

2
√
�1
√
�

;�1 = 0;�2 = 0;�0 =
i

4
√
−2 4

√
�1

√
�3

√
�2

4
√
�3�3�

3∕4

√
�2

√
�4

.



	 A. A. Mahmud et al.

1 3

717  Page 10 of 20

and

Profile of the solutions in (39) and (40) where 
�1 =

8

3
;�2 =

1

8
;�3 = −

1

4
;�4 =

2

5
;� =

1

2
;�1 =

5

2
;�2 = −

1

2
;�3 =

5

2
;y = −

3

2
 and 

−20 ≤ x ≤ 20, −20 ≤ t ≤ 20 are given below:
For the values of t that are mentioned in the legend, one reaches:
For the values of t that are mentioned in the legend, one obtains:

Remark 2  Similarly, by assuming that (7) is the trial solution to (15), some other set solu-
tions to (1) may be obtained using the same prior process.

4 � Conclusion

The present study describes the first implementation of two modified trigonometric analytic 
methods on a complex nonlinear (2 + 1)-dimensional Fokas system. The studied model is 
constructed to explain the nonlinear pulsed transmission in monomode fibers with optical 
features. Our novel modification approaches are the modified extended rational sinh–cosh 
method and the modified extended rational sin–cos method. The outcomes have been illus-
trated by numerous innovative and unique solutions that have been stated by traveling waves, 
oscillating, soliton types, and exponential rational functions blended with trigonometric and 
hyperbolic trigonometric functions. The updated approaches are trustworthy, influential, and 
straightforward in discovering semi-analytic solutions to mathematical models in numer-
ous domains, such as mathematics, physics, biology, and engineering. The detected results 
have been detailed in three dimensions, contour surfaces, and two-dimensional graphs that 
represent the impact of temporal progression. The two- and three-dimensional displays help 
us better appreciate the qualities of the acquired outcomes. The obtained outcomes have all 
been properly validated by putting the created findings back into their linked equations. The 
functioning and behavior of the graphs mostly rely on the specified numerical values that are 
supplied for the optional coefficients. For the future scope of the work, we recommend that the 
authors use these two modifications, which we believe are useful, practical, and effective. It 
will play a significant role in forthcoming research related to applied science.

5 � Results and discussion

The following statements have been added to clarify the distinguishing characteristics of 
our updating methods: We have acquired a collection of solutions that are difficult to get 
through the utilization of prior iterations of these techniques. The adjustments we have 

(39)
u5 =

2
4
√
−2 4

√
�1

√
�3

√
�2

4
√
�3�

3∕4e

√
2
√
�3

√
�x√

�1
+2i�3�t

√
�2

√
�4

�
e

√
2
√
�3

√
�x√

�1
+2i�3�t

− e2i�2�y

� ,

(40)v5 =
�3�

�2
csc2

⎛⎜⎜⎝
�

⎛⎜⎜⎝
−�3t +

i
√
�3x√

2
√
�1
√
�

+ �2y

⎞⎟⎟⎠

⎞⎟⎟⎠
.
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made are dependable, efficient, and swiftly adaptable to many mathematical models. Some 
shortcomings and unfavorable variables in the past versions of these procedures supplied 
the impetus for us to arrive at these two further enhancements. Although no analytical 
technique is devoid of drawbacks, positively, there are major benefits to our modifications 
for portraying the formulated solution in (22) and in (23) that are unreachable to acquire by 
employing the prior old versions. The singular breather solitons in both x and t are shown 
in Figs. 1, 2, 3, 4 and 5. Figure 6 represents a solitary wave on the left and a bright soliton 
on the right-hand side. Figures 7, 8, 9, 10 and 11 represent periodic and traveling wave 
solutions. The two interacting breather solitons are illustrated in Figs. 12, 13 and 14. The 
dark soliton on the right-hand side and the solitary waveform on the left-hand side can be 
observed in Figs. 15, 16 and 17.

Fig. 1   3D figures of (22)

Fig. 2   Contour surfaces of (22)
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Fig. 3   2D graphs of (22)

Fig. 4   3D figures of (23)

Fig. 5   Contour surfaces of (23)
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Fig. 6   2D graphs of (23)

Fig. 7   2D graphs to (25)

Fig. 8   2D graphs to (26)
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Fig. 9   3D figures represent the imaginary part of (36) and the real part of (37)

Fig. 10   Contour surfaces represent the imaginary part of (36) and the real part of (37)

Fig. 11   2D graphs represent the imaginary part of (36) and the real part of (37)
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Fig. 12   3D figures of (39)

Fig. 13   Contour surfaces of (39)

Fig. 14   2D graphs of (39)
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Fig. 15   3D figures of (40)

Fig. 16   Contour surfaces of (40)

Fig. 17   2D graphs of (40)



An investigation of Fokas system using two new modifications…

1 3

Page 17 of 20  717

Acknowledgements  All the authors are appreciative of the respective editor and all reviewers for their valu-
able comments and the conducive research environment that greatly facilitated the completion of this work.

Author contributions  The authors investigated the research model, developed applications, and performed 
calculations. All authors contributed equally to the writing of the paper and equally to the assessment of the 
results.

Funding  Open access funding provided by the Scientific and Technological Research Council of Türkiye 
(TÜBİTAK). No funding is available for this work presented in this manuscript.

Data availability  There are no related data with this paper, or the data will not be deposited. For ethical and 
legal reasons, the data produced and/or evaluated during the present investigations are not publicly acces-
sible, but they are available from the relevant author upon justifiable request.

Declarations 

Ethical approval  The authors confirm their adherence to ethical standards.

Conflict of interest  The authors indicate that there is no conflict between their interests in publishing this 
work.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Ahmad, J.: Dynamics of optical and other soliton solutions in fiber Bragg gratings with Kerr law and stabil-
ity analysis. Arab. J. Sci. Eng. 48(1), 803–819 (2023)

Ahmad, J., Mustafa, Z., Turki, N.B., Shah, N.A., et al.: Solitary wave structures for the stochastic Nizh-
nik–Novikov–Veselov system via modified generalized rational exponential function method. 
Results Phys. 52, 106776–106786 (2023)

Ali, A., Ahmad, J., Javed, S., Rehman, S.-U.: Analysis of chaotic structures, bifurcation and soliton solu-
tions to fractional Boussinesq model. Phys. Scr. 98, 075217–075236 (2023a)

Ali, K.K., AlQahtani, S.A., Mehanna, M., Bekir, A.: New optical soliton solutions for the (2+ 1) Fokas 
system via three techniques. Opt. Quantum Electron. 55(7), 638–656 (2023b)

Alrebdi, T.A., Raza, N., Arshed, S., Abdel-Aty, A.-H.: New solitary wave patterns of Fokas-system aris-
ing in monomode fiber communication systems. Opt. Quantum Electron. 54(11), 712–731 (2022)

Baskonus, H.M., Mahmud, A.A., Muhamad, K.A., Tanriverdi, T.: A study on Caudrey–Dodd–Gibbon–
Sawada–Kotera partial differential equation. Math. Methods Appl. Sci. 45(14), 8737–8753 (2022a)

Baskonus, H.M., Mahmud, A.A., Muhamad, K.A., Tanriverdi, T., Gao, W.: Studying on Kudryashov–
Sinelshchikov dynamical equation arising in mixtures liquid and gas bubbles. Therm. Sci. 26(2B), 
1229–1244 (2022b)

Bilal, M., Haris, H., Waheed, A., Faheem, M.: The analysis of exact solitons solutions in monomode 
optical fibers to the generalized nonlinear Schrödinger system by the compatible techniques. Int. J. 
Math. Comput. Eng. 1(2), 149–170 (2023). https://​doi.​org/​10.​2478/​ijmce-​2023-​0012

Chen, T.-T., Hu, P.-Y., He, J.-S.: General higher-order breather and hybrid solutions of the Fokas system. 
Commun. Theor. Phys. 71(5), 496–508 (2019)

Fokas, A.: On the simplest integrable equation in 2+ 1. Inverse Probl. 10(2), 19–22 (1994)
Gasmi, B., Ciancio, A., Moussa, A., Alhakim, L., Mati, Y.: New analytical solutions and modulation 

instability analysis for the nonlinear (1+1)-dimensional phi-four model. Int. J. Math. Comput. Eng. 
1(1), 79–90 (2023). https://​doi.​org/​10.​2478/​ijmce-​2023-​0006

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2478/ijmce-2023-0012
https://doi.org/10.2478/ijmce-2023-0006


	 A. A. Mahmud et al.

1 3

717  Page 18 of 20

Ghanbari, B.: Abundant soliton solutions for the Hirota–Maccari equation via the generalized exponen-
tial rational function method. Mod. Phys. Lett. B 33(09), 1950106–1950127 (2019)

Ghanbari, B., Akgül, A.: Abundant new analytical and approximate solutions to the generalized Schamel 
equation. Phys. Scr. 95(7), 075201–075221 (2020)

Ghanbari, B., Baleanu, D.: New solutions of Gardner’s equation using two analytical methods. Front. 
Phys. 7, 202–215 (2019)

Ghanbari, B., Baleanu, D.: New optical solutions of the fractional Gerdjikov–Ivanov equation with con-
formable derivative. Front. Phys. 8, 167–178 (2020)

Ghanbari, B., Gómez-Aguilar, J.: Optical soliton solutions for the nonlinear Radhakrishnan–Kundu–
Lakshmanan equation. Mod. Phys. Lett. B 33(32), 1950402–1950417 (2019a)

Ghanbari, B., Gómez-Aguilar, J.: New exact optical soliton solutions for nonlinear Schrödinger equation 
with second-order spatio-temporal dispersion involving m-derivative. Mod. Phys. Lett. B 33(20), 
1950235–1950254 (2019b)

Ghanbari, B., Kuo, C.-K.: New exact wave solutions of the variable-coefficient (1+ 1)-dimensional Ben-
jamin–Bona–Mahony and (2+ 1)-dimensional asymmetric Nizhnik–Novikov–Veselov equations 
via the generalized exponential rational function method. Eur. Phys. J. Plus 134(7), 334–347 (2019)

Ghanbari, B., Baleanu, D., Al Qurashi, M.: New exact solutions of the generalized Benjamin–Bona–
Mahony equation. Symmetry 11(1), 20–31 (2018)

Iqbal, M., Seadawy, A.R.: Instability of modulation wave train and disturbance of time period in 
slightly stable media for unstable nonlinear Schrödinger dynamical equation. Mod. Phys. Lett. B 
34(supp01), 2150010–2150024(2020)

Iqbal, M., Seadawy, A.R., Lu, D.: Construction of solitary wave solutions to the nonlinear modified 
Kortewege-de Vries dynamical equation in unmagnetized plasma via mathematical methods. Mod. 
Phys. Lett. A 33(32), 1850183–1850195 (2018a)

Iqbal, M., Seadawy, A.R., Lu, D.: Dispersive solitary wave solutions of nonlinear further modified 
Korteweg-de Vries dynamical equation in an unmagnetized dusty plasma. Mod. Phys. Lett. A 
33(37), 1850217–1850236 (2018b)

Iqbal, M., Seadawy, A.R., Lu, D.: Applications of nonlinear longitudinal wave equation in a magneto-
electro-elastic circular rod and new solitary wave solutions. Mod. Phys. Lett. B 33(18), 1950210–
1950226 (2019)

Jafari, H., Goswami, P., Dubey, R.S., Sharma, S., Chaudhary, A.: Fractional SZIR model of zombie 
infection. Int. J. Math. Comput. Eng. 1(1), 91–104 (2023). https://​doi.​org/​10.​2478/​ijmce-​2023-​0007

Khater, M.M.: Analytical simulations of the Fokas system; extension (2+ 1)-dimensional nonlinear 
Schrödinger equation. Int. J. Mod. Phys. B 35(28), 2150286–2150301 (2021)

Khater, M., Ghanbari, B.: On the solitary wave solutions and physical characterization of gas diffusion 
in a homogeneous medium via some efficient techniques. Eur. Phys. J. Plus 136(4), 1–28 (2021)

Kumar, S., Kumar, A.: Newly generated optical wave solutions and dynamical behaviors of the highly 
nonlinear coupled Davey–Stewartson Fokas system in monomode optical fibers. Opt. Quantum 
Electron. 55(6), 566–598 (2023a)

Kumar, A., Kumar, S.: Dynamic nature of analytical soliton solutions of the (1+1)-dimensional 
Mikhailov–Novikov–Wang equation using the unified approach. Int. J. Math. Comput. Eng. 1(2), 
217–228 (2023b). https://​doi.​org/​10.​2478/​ijmce-​2023-​0018

Lu, D., Seadawy, A.R., Iqbal, M.: Mathematical methods via construction of traveling and solitary wave 
solutions of three coupled system of nonlinear partial differential equations and their applications. 
Results Phys. 11, 1161–1171 (2018)

Mahmud, A.A.: Application of three different methods to several nonlinear partial differential equations 
modeling certain scientific phenomena. Ph.D. thesis (2023, Harran University, Faculty of Arts and 
Sciences, Department of Mathematics)

Mahmud, A.A., Tanriverdi, T., Muhamad, K.A., Baskonus, H.M.: Characteristic of ion-acoustic waves 
described in the solutions of the (3+ 1)-dimensional generalized Korteweg-de Vries–Zakharov–
Kuznetsov equation. J. Appl. Math. Comput. Mech. 22(2), 36–48 (2023a)

Mahmud, A.A., Tanriverdi, T., Muhamad, K.A.: Exact traveling wave solutions for (2+1)-dimensional 
Konopelchenko–Dubrovsky equation by using the hyperbolic trigonometric functions methods. Int. 
J. Math. Comput. Eng. 1(1), 11–24 (2023b). https://​doi.​org/​10.​2478/​ijmce-​2023-​0002

Mahmud, A.A., Tanriverdi, T., Muhamad, K.A., Baskonus, H.M.: Structure of the analytic solutions 
for the complex non-linear (2+ 1)-dimensional conformable time-fractional Schrödinger equation. 
Therm. Sci. 27(Spec. issue 1), 211–225 (2023c)

Mahmud, A.A., Baskonus, H.M., Tanriverdi, T., Muhamad, K.A.: Optical solitary waves and soliton 
solutions of the (3+ 1)-dimensional generalized Kadomtsev–Petviashvili–Benjamin–Bona–Mahony 
equation. Comput. Math. Math. Phys. 63(6), 1085–1102 (2023d)

https://doi.org/10.2478/ijmce-2023-0007
https://doi.org/10.2478/ijmce-2023-0018
https://doi.org/10.2478/ijmce-2023-0002


An investigation of Fokas system using two new modifications…

1 3

Page 19 of 20  717

Mohammed, W.W., Al-Askar, F.M., Cesarano, C.: Solitary solutions for the stochastic Fokas system 
found in monomode optical fibers. Symmetry 15(7), 1433–1447 (2023)

Muhamad, K.A.: A study on some nonstandard partial differential equations. Ph.D. thesis, Harran Uni-
versity, Faculty of Arts and Sciences, Department of Mathematics (2023)

Muhamad, K.A., Tanriverdi, T., Mahmud, A.A., Baskonus, H.M.: Interaction characteristics of the Rie-
mann wave propagation in the (2+ 1)-dimensional generalized breaking soliton system. Int. J. Com-
put. Math. 100(6), 1340–1355 (2023)

Nasir, M., Jabeen, S., Afzal, F., Zafar, A.: Solving the generalized equal width wave equation via sextic-
spline collocation technique. Int. J. Math. Comput. Eng. 1(2), 229–242 (2023). https://​doi.​org/​10.​
2478/​ijmce-​2023-​0019

Rao, J.-G., Wang, L.-H., Zhang, Y., He, J.-S.: Rational solutions for the Fokas system. Commun. Theor. 
Phys. 64(6), 605–618 (2015)

Rao, J., Mihalache, D., Cheng, Y., He, J.: Lump-soliton solutions to the Fokas system. Phys. Lett. A 
383(11), 1138–1142 (2019)

Rao, J., He, J., Mihalache, D.: Doubly localized rogue waves on a background of dark solitons for the 
Fokas system. Appl. Math. Lett. 121, 10743–107441 (2021)

Rehman, S.U., Ahmad, J.: Diverse optical solitons to nonlinear perturbed Schrödinger equation with 
quadratic-cubic nonlinearity via two efficient approaches. Phys. Scr. 98(3), 035216–035232 (2023)

Rehman, S.U., Bilal, M., Ahmad, J.: The study of solitary wave solutions to the time conformable 
Schrödinger system by a powerful computational technique. Opt. Quantum Electron. 54(4), 228–
245 (2022)

Rehman, S.U., Ahmad, J., Muhammad, T.: Dynamics of novel exact soliton solutions to stochastic chiral 
nonlinear Schrödinger equation. Alex. Eng. J. 79, 568–580 (2023a)

Rehman, S.U., Ahmad, J., Muhammad, T.: Dynamics of novel exact soliton solutions to stochastic chiral 
nonlinear Schrödinger equation. Alex. Eng. J. 79, 568–580 (2023b)

Seadawy, A.R., Iqbal, M.: Propagation of the nonlinear damped Korteweg-de Vries equation in an 
unmagnetized collisional dusty plasma via analytical mathematical methods. Math. Methods Appl. 
Sci. 44(1), 737–748 (2021)

Seadawy, A.R., Iqbal, M.: Dispersive propagation of optical solitions and solitary wave solutions of 
Kundu–Eckhaus dynamical equation via modified mathematical method. Appl. Math.-A J. Chin. 
Univ. 38(1), 16–26 (2023)

Seadawy, A.R., Iqbal, M., Lu, D.: Applications of propagation of long-wave with dissipation and disper-
sion in nonlinear media via solitary wave solutions of generalized Kadomtsev–Petviashvili modi-
fied equal width dynamical equation. Comput. Math. Appl. 78(11), 3620–3632 (2019)

Seadawy, A.R., Iqbal, M., Lu, D.: Construction of soliton solutions of the modify unstable nonlinear 
Schrödinger dynamical equation in fiber optics. Indian J. Phys. 94, 823–832 (2020a)

Seadawy, A.R., Iqbal, M., Lu, D.: Propagation of kink and anti-kink wave solitons for the nonlinear 
damped modified Korteweg-de Vries equation arising in ion-acoustic wave in an unmagnetized col-
lisional dusty plasma. Phys. A Stat. Mech. Appl. 544, 123560–123574 (2020b)

Seadawy, A.R., Iqbal, M., Althobaiti, S., Sayed, S.: Wave propagation for the nonlinear modified Kortewege-
de Vries Zakharov–Kuznetsov and extended Zakharov–Kuznetsov dynamical equations arising in non-
linear wave media. Opt. Quantum Electron. 53, 1–20 (2021)

Seadawy, A.R., Zahed, H., Iqbal, M.: Solitary wave solutions for the higher dimensional Jimo–Miwa 
dynamical equation via new mathematical techniques. Mathematics 10(7), 1011–1025 (2022)

Shafqat-ur-Rehman, Ahmad, J.: Stability analysis and novel optical pulses to Kundu–Mukherjee–Naskar 
model in birefringent fibers. Int. J. Mod. Phys. B 2450192–2450206 (2023)

Srinivasa, K., Mundewadi, R.A.: Wavelets approach for the solution of nonlinear variable delay differential 
equations. Int. J. Math. Comput. Eng. 1(2), 139–148 (2023). https://​doi.​org/​10.​2478/​ijmce-​2023-​0011

Tanriverdi, T., Baskonus, H.M., Mahmud, A.A., Muhamad, K.A.: Explicit solution of fractional order 
atmosphere-soil-land plant carbon cycle system. Ecol. Complex. 48, 100966–100977 (2021)

Tarla, S., Ali, K.K., Sun, T.-C., Yilmazer, R., Osman, M.: Nonlinear pulse propagation for novel optical sol-
itons modeled by Fokas system in monomode optical fibers. Results Phys. 36, 105381–105389 (2022)

Thilakavathy, J., Amrutha, R., Subramanian, K., Sivatharani, B.: Plenteous stationary wave patterns for (2+ 
1) dimensional Fokas system. Phys. Scr. 98(11), 115226–115237 (2023)

Wang, K.-J.: Abundant exact soliton solutions to the Fokas system. Optik 249, 168265–168279 (2022)
Wang, K.-J., Liu, J.-H., Wu, J.: Soliton solutions to the Fokas system arising in monomode optical fibers. 

Optik 251, 168319–168330 (2022)
Zhang, K., Han, T., Li, Z.: New single traveling wave solution of the Fokas system via complete discrimina-

tion system for polynomial method. AIMS Math. 8(1), 1925–1936 (2023)

https://doi.org/10.2478/ijmce-2023-0019
https://doi.org/10.2478/ijmce-2023-0019
https://doi.org/10.2478/ijmce-2023-0011


	 A. A. Mahmud et al.

1 3

717  Page 20 of 20

Authors and Affiliations

Adnan Ahmad Mahmud1 · Kalsum Abdulrahman Muhamad1 · Tanfer Tanriverdi1 · 
Haci Mehmet Baskonus2

 *	 Adnan Ahmad Mahmud 
	 mathematic79@yahoo.com

	 Kalsum Abdulrahman Muhamad 
	 kalsumabdulrahman58@gmail.com

	 Tanfer Tanriverdi 
	 ttanriverdi@harran.edu.tr

	 Haci Mehmet Baskonus 
	 hmbaskonus@gmail.com

1	  Department of Mathematics, Faculty of Arts and Sciences, Harran University, 63290 Şanlıurfa, 
Turkey

2	 Department of Mathematics and Science Education, Faculty of Education, Harran University, 
63190 Şanlıurfa, Turkey

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	An investigation of Fokas system using two new modifications for the trigonometric and hyperbolic trigonometric function methods
	Abstract
	1 Introduction
	2 Formulation of the modification methods
	3 Implementations of the recommended methods
	3.1 Implementation of MER – M to the examined model
	3.2 Implementation of MER – M to the examined model

	4 Conclusion
	5 Results and discussion
	Acknowledgements 
	References




