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Abstract
This manuscript delves into the examination of the stochastic fractional derivative of 
Drinfel’d-Sokolov-Wilson equation, a mathematical model applicable in the fields of elec-
tromagnetism and fluid mechanics. In our study, the proposed equation is through exam-
ined through various viewpoints, encompassing soliton dynamics, bifurcation analysis, 
chaotic behaviors, and sensitivity analysis. A few dark and bright shaped soliton solutions, 
including the unperturbed term, are also examined, and the various 2D and 3D solitonic 
structures are computed using the Tanh-method. It is found that a saddle point bifurca-
tion causes the transition from periodic behavior to quasi-periodic behavior in a sensitive 
area. Further analysis reveals favorable conditions for the multidimensional bifurcation of 
dynamic behavioral solutions. Different types of wave solutions are identified in certain 
solutions by entering numerous values for the parameters, demonstrating the effectiveness 
and precision of Tanh-methods. A planar dynamical system is then created using the Gali-
lean transformation, with the actual model serving as a starting point. It is observed that 
a few physical criteria in the discussed equation exhibit more multi-stable properties, as 
many multi-stability structures are employed by some individuals. Moreover, sensitivity 
behavior is employed to examine perturbed dynamical systems across diverse initial condi-
tions. The techniques and findings presented in this paper can be extended to investigate a 
broader spectrum of nonlinear wave phenomena.

Keywords Stochastic fractional derivatives · Soliton solutions · Nonlinear dynamical 
system · Multidimensional bifurcation · Multi-stability

1 Introduction

The majority of dynamical phenomena in nature are intrinsically nonlinear and are char-
acterized by nonlinear partial differential equations (NLPDEs), which can be either con-
tinuous or discontinuous. Knowing their accurate or reasonable results is critical for com-
prehending most natural events. They are generally divided into two types: integrable and 
non integrable structures. While integrable problems can be easily analyzed analytically 
using well-known approaches such as the Inverse Scattering Transform (Ablowitz et  al. 
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1974), the Hirota method (Hirota 2004), and the Darboux transformation method (Mat-
veev and Salle 1991), non integrable systems can only be examined in general situations 
through numerical simulations (Hoffman and Frankel 2018; Imkeller and Monahan 2002). 
The NLPDEs have traveling wave solutions, which have become a fundamental aspect of 
research in nonlinear wave dynamics and have been explored in various disciplines such 
as optical fibers, plasma, fluid dynamics, elastic media, and so on. Numerous strategies 
for obtaining various soliton solutions to these NLPDEs have been discovered in the lit-
erature. Among these are the square operator approach (Wang et  al. 2022), the unified 
technique (Vivas-Cortez et al. 2023), Hirota’s bilinear approach (Geng et al. 2023, Geng 
et  al. 2023), the neural network approach (Xu et  al. 2023), the extended tanh-function 
approach (Zaman et al. 2023a, b), and many others (Arefin et al. 2022; Zaman et al. 2023). 
They have enhanced the dynamic approach by employing various methods, such as the 
generalized Kudryashov method (Akbar et al. 2022), the sinh-Gordon equation expansion 
method (Akbar et al. 2021), the (G�

∕G)-expansion (Islam et al. 2022), the tanh technique 
(Almusawa et al. 2022), the rational (1∕Φ�

)-expansion approach (Islam et al. 2022).
Considerable investigation has previously been carried out to explore the dynamics 

of solitons, utilizing various nonlinear models, including Schrödinger model (Bo et  al. 
2023; Wen et  al. 2023), Fractional foam drainage model (Yokuş et  al. 2022), Bogoyav-
lenskii equation (Islam et  al. 2023), shallow water equation (Akbar et  al. 2023), and 
Modified equal-width equation (Khatun et al. 2022). One or more stochastic processes are 
used as terms in a stochastic differential equation (SDE), and another stochastic process 
is employed as the solution. SDEs are utilized to replicate a wide variety of phenomena, 
including stock prices and physically based models susceptible to thermal changes. Con-
sequently, SDEs have become crucial for simulating phenomena in various fields such 
as biology, chemistry, physics, marine biology, and fluid dynamics (Prévôt and Röckner 
2007).

Over the past decade, physicians have been passionately investigating various types of 
nonlinear solitonic systems in plasmas, including single waves, shock waves, and surface 
waves. Due to the presence of different volumes of dust grains in plasma, different types 
of wavelengths have been observed, such as acoustic mode (Akinyemi et  al. 2021), dust 
Bernstein-Green-Kruskal mode (El-Taibany and Sabry 2005), dust acoustic mode (Ander-
son and Ulness 2015), and dust-up mode (low-wave mode) (Yang et al. 2012). In recent 
years, according to a research study, numerous literature works have focused on exploring 
the behavior of new waves (Bains et al. 2010), the imbalance of quantum beams (Ahmed 
et al. 2018), quantum modifications to the Zakharov equations, and quantum ion-acoustic 
waves (Gupta et al. 2015). Recently, the separation of ion-acoustic dust waves into mag-
netic dust plasma using the q-nonextensive velocity circulation, based on the bifurcation 
concept of balanced dynamical structures, has been investigated in several articles (Jansen 
et al. 2009). These articles have examined the differentiation of nonlinear waves in plasma 
physics (Jahan et al. 2019). Therefore, the main objective of our current research is to dis-
cover new systematic solutions for acoustic dust waves and nonlinear LWE (Long-Wave 
Equation), which are clearly defined by the size and dimensions of the 2D and 3D struc-
tures (Ghosh et al. 2012; Baluku and Hellberg 2008).

A fascinating area of study in recent times has been the application of bifurcation anal-
ysis to the study of differential equations (Liu et  al. 2022; Talafha et  al. 2023). Several 
authors have conducted research on the concepts of dynamic system bifurcation within both 
disturbed and unperturbed frameworks (Saha 2017). Samina et al. (2022) derived the bifur-
cation behavior, chaotic dynamics, and multistability analysis of the (2+1)-dimensional 
elliptic nonlinear Schrödinger equation with external perturbation, utilizing bifurcation and 
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chaos theories. Sprott (2011) investigated the prevalence of chaotic systems and identified 
them. The focus of the present study is to explore the temporal, quasi-periodic, sensitivity, 
and solitonic behavior of dust acoustic waves in three distinct plasma volumes with inertial 
ion-negative components. By considering the external influences of disturbances, we aim 
to understand the quasi-periodic behavior and the sensitivity of the disturbance scheme in 
non-magnetic plasma based on our expertise.

The mathematical modeling of exact processes that require accurate damping mod-
eling is accomplished using fractional derivative approaches. Fractional derivatives offer 
advantages such as adaptability and non-locality. Unlike ordinary derivatives, these deriv-
atives possess fractional order, which grants them greater flexibility in approximating 
actual information. Additionally, they incorporate non-locality, a feature lacking in ordi-
nary derivatives. Fractional derivatives find application in various significant phenomena, 
including anomalous diffusion, electro-chemistry, acoustics, computational imaging, and 
magnetic fields. Fractional models tend to provide higher accuracy compared to integer 
models. However, solving fractional derivative stochastic differential equations (SDEs) 
is generally more challenging than solving conventional ones. In light of this, we have 
focused on examining the SFDSW equations as presented in Al-Askar et al. (2022).

Here w = w(�, � ) , y = y(�, � ) . � , mj , j = 1, 2, 3 are non-zero parameters. The conform-
able derivative (CD) is denoted as D� , 0 < 𝜙 ≤ 1 . The function � = �(� ) corresponds to a 
standard Brownian motion (SBM), and � represents the noise strength.

Equation (1) and (2) are an expanded version of the standard DSW. When � = 1 , and 
� = 0 , then the above system transforms into the standard DSW equation, initially proposed 
by Drinfeld and Sokolov (1981); Sokolov (1984), and later refined by Wilson (1982). Fur-
thermore, this model finds applications in plasma physics, various applied sciences, fluid 
and population dynamics, and electromagnetism. Given the significance of DSW model, 
numerous scholars have developed diverse methodologies to investigate exact solutions of 
the system, including Hirota’s bilinear (Alsallami et  al. 2023), Jacobi elliptical function 
(Sahoo and Ray 2017), (G�∕G)-Expansion method (Al-Askar et  al. 2022), complete dis-
crimination for polynomial (Zhang and Han 2023), He’s variational approach (Wang and 
Wang 2023), truncated Painlevé (Ren et al. 2016), and mapping approach (Al-Askar et al. 
2022).

This investigation will primarily focus on achieving its objectives from three distinct 
perspectives. Firstly, it aims to establish various soliton profiles through the application of 
a tanh method. Secondly, a pivotal aspect involves conducting a parameter-based analysis 
of the system under scrutiny, incorporating bifurcation and chaos theories. The detailed 
explanation of the bifurcation of the unperturbed system is illustrated through phase por-
traits. Additionally, the chaotic analysis of the perturbed system is determined and dem-
onstrated using various tools, including time series and phase portraits. Furthermore, the 
study delves into the sensitivity and multistability of the examined system. The authors 
emphasize the novelty of this study, asserting that it presents an interesting perspective not 
previously explored for the considered system.

The outline of the paper is as follows: Sections (2) and  (3) provide preliminary informa-
tion and present the mathematical model. The solution analysis for the proposed approach 

(1)dw + [�yD�

�
y]d� = �wd�,

(2)dy + [m1D
�

���
y + m2wD

�

�
y + m3yD

�

�
w]d� = �yd�.
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is discussed in Section (4). Section (5) focuses on the physical interpretation of the evalu-
ated model. The bifurcation theory of the model under study is examined in Section (6). 
Section (7) explores the periodic and quasiperiodic properties of the model. The sensitivity 
analysis of the model is conducted in Section (8). Section (9) investigates the multistability 
of the model. The conclusion is presented in the final section of the paper.

2  Preliminaries

The suitable derivative and conventional Brown’s law are now being examined in terms 
of their characteristics and descriptions. The following is the definition of a suitable 
derivative:

Definition 2.1 The function’s conformable derivative (Al-Askar et al. 2022)
r = r(�) ∶ [0,∞) → ℝ

for the independent variable � of the order � , it is given as:
D

�
� r(�) = lim�→∞

r(�+��1−� )−r(�)

�
 ,   𝜂 > 0,    � ∈ (0;1].

2.1  Properties

If g = g(�) and r = r(�) are �-differentiable for all positive �,

• D
�
� (T1g + T2r) = T1D

�
� (g) + T2D

�
� (r) ,   ∀ T1, T2 ∈ ℝ,

• D
�
� (t

z) = zt(z−�) ,   z ∈ ℝ,
• D

�
� (�) = 0,  ∀ r(�) = � ∈ ℝ,

• D
�
� (gr) = gD

�
� r + rD

�
� g,

• D
�
� (

r

g
) = (

gD
�
� (r)−rD

�
� (g)

g2
),

• D
�
� (r)(�) = �(1−�)

dr

d�
,

• D
�
� (r◦g)(�) = �(1−�)g�(�)r�(g(�)).

Lemma (Calin 2015) E(e��(� )) = e
1

2
�2�

, � ≥ 0.

3  Mathematical model

3.1  Description of method

Assume that NLPDE with unknown variables (�, � ) are given by,

(3)H(Y , Y� , Y� , Y�� , Y�� , ...) = 0,
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where H is the polynomial including the unknown function Y(�, � ) . For obtaining the trave-
ling wave patterns, the following transformation is used:

here W and Y are real deterministic functions. By plugging Eq. (4) in (3) to attain the non-
linear ODE as following,

consider the result of Eq. (5) has a model,

where

then Y �

(�) and Y ��

(�) can be written as:

4  Solution analysis for the SFDSW model

Plugging Eq. (4) in Eqs. (1) and (2), we attain the ordinary differential equation which perhaps 
reported as:

Plugging Eq. (10) in Eqs. (1) and (2), we get:

we have

(4)w(�, � ) = W(�)e(��(� )−
1

2
�2� )

, y(�, � ) = Y(�)e(��(� )−
1

2
�2� )

where � =
1

�
� + �� ,

(5)G(Y , Y
�

,Y
��

...) = 0,

(6)Y(�) =

n∑
i=0

liU
i(�),

(7)U(�) = tanh(�),

(8)
dY

d�
7(1 − U2)

dY

dU
,

(9)
d2Y

d�2
= (1 − U2)(−2U

dY

dU
+ (1 − U2)

d2Y

dU2
).

(10)

dw =[�W
�

d� + �Wd�]e(��(� )−
1

2
�2� )

,

dy =[�Y
�

d� + �Yd�]e(��(� )−
1

2
�2� )

,

D�

�
w =W

�

e
(��(� )−

1

2
�2� )

,

D�

�
y =Y

�

e
(��(� )−

1

2
�2� )

,

D�

���
w =Y

���

e
(��(� )−

1

2
�2� )

.

(11)�W
�

+ �YY
�

e
(��(� )−

1

2
�2� ) = 0,

(12)�Y
�

+ m1Y
���

+ [m2WY
�

+ m3W
�

Y]e(��(� )−
1

2
�2� ) = 0,
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After using the Lemma in Eqs.(13-14), we have:

On integrating the Eq. (15), we get:

Plugging Eq. (17) in Eq. (16), we get:

On integrating the Eq. (18), we get:

We suppose that the Eq. (5) has a form of solution as mention below:

Where li and i = 0, 1, 2, ..., n are constant. By balancing principle as n + 2 = 3n , we get 
n = 1 . Therefore, the initial solution becomes:

By substituting Eq. (21) into Eq. (17) and equating the coefficients of the distinct terms of 
Ui , a system of algebraic equations can be obtained as follows:

(13)�W
�

+ �YY
�

e
−1

2
�2�

E(e��(� )) = 0,

(14)�Y
�

+ m1Y
���

+ [m2WY
�

+ m3W
�

Y]e
−1

2
�2�

E(e��(� )) = 0.

(15)�W
�

+ �YY
�

= 0,

(16)�Y
�

+ m1Y
���

+ m2WY
�

+ m3W
�

Y = 0.

(17)W =
−�

2�
Y2 + C.

(18)m1Y
���

−

[
�m2

2�
+

�m3

�

]
Y2Y

�

+ [� + Cm2]Y
�

= 0.

(19)m1Y
��

−

[
�m2

6�
+

�m3

3�

]
Y3 + [� + Cm2]Y = 0.

(20)Y(�) =

n∑
i=0

aiU
i(�).

(21)Y(�) = a0 + a1U(�).
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To solve the above equations with the support of Maple to get the successive solutions:
Set 1:

Set 2:

 Inserting Eq. (23) and (22) into Eq. (21), we can determine the following solutions:

5  Physical Interpretation

In this section, the results presented in this work will be compared with those obtained by 
other scholars who utilized diverse methodologies. The governing equation has been the 
subject of exploration by various researchers, as outlined in the introduction section. The 
results presented in this study have been contrasted with the findings reported by Alsallami 
et al. (2023) and Al-Askar et al. (2022). In Al-Askar et al. (2022), authors employed the 
(G�∕G) expansion method, yielding solutions in the form of exponential and trigonometric 
functions. Authors in Alsallami et al. (2023), on the other hand, employed Hirota’s method 
to obtain solutions such as the cross-Kink rational and Homoclinic breather wave solutions. 
In comparison to these two papers, the present article introduces innovative outcomes in 
dynamic behavior. The results, involving hyperbolic functions tanh, extend beyond the 

(U)0 ∶ Ca0m2 + �a0 + 2m1 −
�m2a

3

0

2�
−

�m3a
3

0

�
= 0,

(U)1 ∶ �a1 + Cm2a1 − 2m1a1 −
3�m2a

2

0
a1

2�
−

3�m3a
2

0
a1

�
= 0,

(U)2 ∶ � + Cm2 − 8m1 −
3�m2a

2

0

2�
−

3�m2a0a
2

1

2�
−

3�m3a
2

0

�
−

3�m3a0a
2

1

�
= 0,

(U)3 ∶ 2m1a1 −
�m2a

3

1

�
−

�m3a
3

1

�
−

3�m2a0a1

�
−

6�m3a0a1

�
= 0,

(U)4 ∶ 6m1 −
3�m2a

2

0

2�
−

3�m2a
2

1

2�
−

3�m3a0

�
−

3�m3a
2

1

�
= 0,

(U)5 ∶ −
3�m2a1

2�
−

3�m3

�
= 0,

(U)6 ∶ −
�m2

2�
−

�m3

�
= 0.

(22)a0 = 0, a1 = 2

√
m1�

�m1 + 2�m3

, and C = −
� − 2m1

�2
.

(23)a0 = 0, a1 = −2

√
m1�

�m1 + 2�m3

, and C = −
� − 2m1

�2
.

(24)Y1(�) =2

√
m1�

�m1 + 2�m3

tanh(�).

(25)Y2(�) = − 2

√
m1�

�m1 + 2�m3

tanh(�).
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scope of the aforementioned papers. This distinction underscores the innovativeness of the 
findings presented in this article.

Furthermore, through the application of suitable parameter values, an array of varied 
formations such as dark solitons, V-shaped solitons, singular dark solitons, and bell-shaped 
solitons have been documented. To achieve this, we will utilize various parameter values 
that showcase distinct 2D and 3D graphs illustrating exclusive wave behaviors. By visual-
izing the arrangement and comprehending the related physical phenomena, we can observe 
a range of solutions represented by dark and bright shapes of solitons, along with bell-
shaped solitons, periodic waves, kink solitons, and other types of solitons. The implemen-
tation of precise values for each parameter has allowed us to enhance numerous soliton 
features.

By selecting appropriate parameter values of Eq.  (24), specifically 
� = 0.2, m1 = 0.02, m2 = −0.5, m3 = 0.03, � = 0.7 , we obtain a predicted dark soliton 
as shown in Fig. 1. Dark solitons have garnered considerable attention in the field of non-
linear optics due to their stable transmission properties. In optical fibers, a stable optical 
soliton typically emerges when there is a balance between Kerr nonlinearity and group 
velocity dispersion (GVD). Bright solitons propagate in regions characterized by anoma-
lous dispersion, while dark solitons are transmitted in regions with normal dispersion. The 
distinguishing feature of solitons, whether dark or bright, is their particle-like nature dur-
ing interactions. The 3D graph represents the interval −7 < 𝜂 < 7 and 0 < 𝜁 < 7 . The 2D 
graph is plotted at different values of � as � = 1, 5, 9 within the range of −4 < 𝜁 < 4.

The solution of Eq. (24) exhibits a soliton with a V-shaped structure, characterized by 
different values of m1 = 0.002 and m2 = 0.03 , as shown in Fig. 2. The 3D plot illustrates 
the range 0 < 𝜂 < 4 and −4 < 𝜁 < 4 . The 2D plot demonstrates the variation of � at values 
of 1, 5, and 9 within the range −4 < 𝜁 < 4.

The solution of Eq. (24) yields a bell-shaped soliton with a minor change in the values 
of m1 = 1 and the same value of m2 = 1 , as depicted in Fig. 3. The 3D plot illustrates the 
range 0 < 𝜂 < 4 and −4 < 𝜁 < 4 . The 2D plot represents the variation of � at values of 0.1, 
0.5, and 0.9 within the range −4 < 𝜁 < 4.

In Fig. 4, we illustrate the variation of time � with respect to � . We observe the impact of 
m1 on fixed values of m2 = 1 . As the value of m1 increases to 1.5, it exhibits discontinuity. 
The 3D plot represents the range 0 < 𝜂 < 4 and −4 < 𝜁 < 4 . The 2D plot demonstrates the 
variation for � values of 0.1, 0.5, and 0.9 within the range −4 < 𝜁 < 4 . In contrast to recent 

Fig. 1  3D and 2D graphs of Eq. (24)
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literature, this paper presents novel solutions that have not been previously documented, 
as evidenced by a comparative analysis. These unique findings contribute innovatively to 
advancing our comprehension of soliton theory and the chaotic dynamics exhibited by 

Fig. 2  3D and 2D graphs of Eq. (24)

Fig. 3  3D and 2D graphs of Eq. (24)

Fig. 4  3D and 2D graphs of Eq. (24)
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fractional-order nonlinear systems, thereby enhancing the overall understanding in this 
field. The significance of obtaining solutions for SFDSW equations lies in their importance 
and utility in understanding various essential physical phenomena across applied sciences, 
plasma physics, fluid mechanics and population dynamics.

6  Bifurcation theory

The concept of bifurcation refers to mathematical changes in the system and the quality of 
solutions provided by a group of differential equations. It is commonly used in the study of 
the mathematical structure of dynamic systems. Bifurcation occurs when a small change 
in the parameter values of a system leads to a sudden change in its behavior. It encom-
passes both local and global aspects of one-dimensional separation of operators operating 
in Banach’s permanent spaces, demonstrating how the theory can be applied to problems 
involving split equality. Additionally, this concept delves into standard structures such as 
stability and the composition of the dividing solutions in detail.

Equation(1) is where the methodology of bifurcation analysis is applied. The Galilean 
translation Eq. (17) in a dynamic system, such as, is subjected to analysis study.

where A =
�m2

2m1�
+

�m3

m1�
 and B =

�+Cm2

m1

 . The above-mentioned system (26) contains two 
equilibrium points, which are given below:

Y0 = (E0, 0) , Y1 = (E1, 0) and Y2 = (E2, 0).
Here, the values of E0 , E1 , and E2 are defined as follows:
E0 = 0 , E1 =

√
B

A
 , and E2 = −

√
B

A
.

In particular, we will introduce a specific type of bifurcation known as "Hopf bifur-
cation." This phenomenon occurs when a stable equilibrium point gives rise to periodic 
cycles as the bifurcation parameter reaches a critical value. This system will help us clar-
ify the direction of classification for mathematical models. Homoclinic bifurcation, on the 
other hand, occurs when large invariant sets, such as periodic trajectories, intersect with 
the equilibrium point. This leads to a change in the topology of trajectories in phase space, 
which cannot be explained within a small region, unlike localized spatial bifurcation. In 
fact, the change in topology extends beyond what homoclinic bifurcation alone can account 
for.

Using the perspective of a dynamical system, the equilibrium points ( Pi, Yi ) can 
be classified as follows: they are assigned as saddle points if M∗(Pi, Yi) < 0 , center 
points if M∗(Pi, Yi) > 0 and the trace �1(Pi, Yi) = 0 , nodes if M∗(Pi, Yi) > 0 and 
(𝜏1(Pi,Yi))

2 − 4M∗(Pi,𝜙i) > 0 , and zero points if M∗(Pi, Yi) = 0 with a Hopf index of zero 
for ( Pi, Yi ). Here, M∗ represents the Jacobian and �1 represents the trace of system (26).

• A > 0 , B < 0

  We have plotted the phase portrait for Fig.  5 using the given parameter val-
ues A = 0.5 and B = −0.1 for the equilibrium points E0 = (0, 0) , E1 = (1, 0) , 
and E2 = (−1, 0) . At these points, there are two nonlinear periodic trajectories: 
NPT(1, 0) at the equilibrium points E1 = (1, 0) and E2 = (−1, 0) , and one super non-

(26)

{
dY

d�
= P,

dP

d�
= AY3 − BY ,
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linear periodic trajectory denoted as SNPT(3,  1). Additionally, there is one non-
linear homoclinic trajectory represented by NHT(1, 0). Consequently, the equilib-
rium point (0, 0) becomes a saddle point, while E1 = (1, 0) and E2 = (−1, 0) become 
center points, as shown in Fig. 5. Furthermore, the system (26) exhibits an infinite 
number of periodic trajectories both inside and outside the homoclinic trajectories, 
indicating the presence of an infinite number of periodic waves.

• A > 0, B > 0

  In Fig.  6, we set A = 0.6 and B = 0.3 . The system (26) has three equilibrium 
points, namely E0 = (0, 0) , E1 = (1, 0) , and E2 = (−1, 0) as shown in Fig. 6. There is 
only one nonlinear periodic trajectory NPT(1, 0) and the center point is named as 
E0 , while P is a saddle point for NPT(1, 0). There are basically two saddle points, 
E1 = (1, 0) and E2 = (−1, 0) . Therefore, the system has infinite periodic trajectories 
over (0, 0) and open bounded trajectories on the right and left sides of E1 and E2 . 
Also, there are heteroclinic trajectories joining all the saddle points.

• A < 0 , B > 0

  In Fig. 7, we plotted the phase portrait for A = −0.8 , B = 0.5 . There is one non-
linear periodic trajectory denoted as NPT(1,  0) located at the center E0 = (0, 0) . 
Thus, the system (26) has an infinite family of periodic trajectories over (0,  0), 
which corresponds to an infinite periodic wave.

• A < 0 , B < 0

  In Fig.  8, we plotted the phase portrait for the given parameters A = −0.5 , 
B = −0.3 as shown. There is one saddle point located at the center E0 = (0, 0) for 
open trajectories. Hence, the point (0, 0) is the only equilibrium point. The saddle 
point implies that the system has an infinite number of open bounded trajectories.

Fig. 5  Bifurcation phenomena of dynamical system (26)
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7  Quasi‑periodic and chaotic pattern

In mathematics, a quasiperiodic wave is a type of motion created by a dynamical system 
that contains a finite number of frequencies. To add more interest, the perturbed term 
l0 cos(�t) is included in Eq. (1). Consequently, Eq. (10) with the perturbed term can be 
expressed as:

Fig. 6  Bifurcation phenomena of dynamical system(26)

Fig. 7  Bifurcation phenomena of dynamical system(26)
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where � is the frequency and f0 represents the power of the perturbation. System (27) does 
not include the trivial force, i.e., it is not involved in Eq. (26). To investigate the periodic 
and quasiperiodic behavior of Eq. (1) with the existence of perturbation by unknown vari-
ables, we will examine the consequences of the frequency on the target model. Here, we 
will maintain visible limits of the considered system modifications and discuss the conse-
quences of the power and frequency of the perturbation. Figure 9 shows a 3D phase por-
trait and a time series graph for A = 0.6 , B = 0.1 , and a = 0.5 , with the initial conditions 
(1.06, 1.1), f0 = 1.05 , and � = 1.9 . It is evident that a perturbed dynamical system (27) 
indicates periodic performance. While a specific pattern is found in three dimensions, out-
side of all these periodic waves, it can be seen in the time series graph, which continues to 
ensure periodic performance at particular values of the variables.

7.1  Case 1: f
0
= 0

By fixing � = 1.1 , the quasi-periodic behavior of the perturbed dynamical system (27) 
is shown in Fig. 9a–c. Figure 9a–c depict the time series, 2D phase portrait, and 3D 
phase portrait, respectively. The time series shows a steady curve, and the phase por-
trait exhibits a regular trajectory overlaid on the other. This observation demonstrates 
that the system is essentially quasi-periodic.

(27)

⎧⎪⎨⎪⎩

dY

d�
= P,

dP

d�
= AY3 − BY + f0 cos (�t),

Fig. 8  Bifurcation phenomena of dynamical system (26)
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7.2  Case 2: f
0
≠ 0

We adjusted f0 = 1.05 and used the same settings as in Fig. 9 to obtain Fig. 10a–c, which 
display the time series and phase portrait accordingly. The time series generates packets of 
identical amplitude across a defined time period, while the phase portrait exhibits a predict-
able trajectory overlaid on the other, albeit with a different shape than in Fig. 9. These graphs 
depict the quasi-periodicity of the system.

Fig. 9  Quasi-periodic phenomena with perturbed dynamical system (27) for the initial values (0.29, 0.13) 
with A = −13, B = 5.307, a = 0.1, f0 = 4.5 and � = 2.1
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8  Sensitive analysis

We will now continue investigating periodic and quasi-periodic chaotic phenomena using 
the sensitivity behavior of a strong structural solution (27), with the following initial con-
ditions: Navy blue color is used to indicate (V ,W) = (0.029, 0) , while pink color is used 
to represent (V ,W) = (0.013, 0) . In Fig.  11, two results are computed while maintaining 
similar parameters to Fig. 8. It is clear to observe that even small changes in initial values 
can disrupt the results, demonstrating the quasi-periodic chaotic behavior of the curve with 
these boundary values. In Fig. 12, using the initial condition (V ,W) = (0.75, 0) represented 
by Navy blue color and (V ,W) = (0.8, 0) with pink color, two solutions are reported with 
the same parameter measurements as shown in Fig. 7. It is noteworthy that even slight vari-
ations in the initial values have no effect on the results, further strengthening the claim for 
chaotic behavior. In Fig. 13, using the initial condition (V ,W) = (0.03, 0) represented by 
Navy blue color and (V ,W) = (0.01, 0) with pink color, the two results are shown by con-
sidering the same variable values as those taken in Fig. 5. It is known that minor changes 

Fig. 10  Quasi-periodic phenomena without perturbed dynamical system (27) for the initial values 
(0.29, 0.13) with A = −13, B = 5.307, a = 0.1, f0 = 0 and � = 2.1
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in the initial conditions have an effect on the results of specific values, indicating the quasi-
periodic chaotic nature of those values.

9  Multi‑stability

This section will evaluate the multi-stability of the system (26). Multi-stability charac-
terizes a flexible program with a limited parameter option, where diverse initial condi-
tions result in the presence of two or more simultaneous outcomes. We employ a phase 
portrait and time series graphing approach to analyze the system (27) and explore its 

Fig. 11  Sensitivity behaviour of the dynamical system (26) with same parametric values taken in Fig.  8 
with initial condition (V, W) = (0.029, 0) in Navy blue color and (V, W) = (0.013, 0) in pink color

Fig. 12  Sensitivity behaviour of the dynamical system (26) with same parametric values taken in Fig.  7 
with initial condition (V, W) = (0.75, 0) in Navy blue color and (V, W) = (0.8, 0) in pink color
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unique multi-stability characteristics. As shown in Fig.  14a, two separate snapshots 
are presented with parameter values a = 4.3 , � = 2.9 , A = −0.186 , B = 0.07 , and 
f0 = −3.4067 . The initial condition (V ,W) = (1.19, 1.099) is represented in blue, while 
the initial condition (V ,W) = (0.14, 0.099) is represented in green. When considering the 
initial condition (V ,W) = (1.19, 1.099) , quasi-periodic behavior is observed, whereas the 
same set of primary variables (V ,W) = (0.14, 0.099) exhibits periodic behavior in the 
hypothetical system.

Fig. 13  Sensitivity behaviour of the dynamical system (26) with same parametric values taken in Fig.  5 
with initial condition (V, W) = (0.03, 0) in Navy blue color and (V, W) = (0.01, 0) in pink color

Fig. 14  Multi-stability of dynamical system (27) with fixed parametric values such as 
a = 4.3, � = 2.9, A = 0.186, B = 0.07 and f0 = 3.4067 and different initial conditions 
(V ,W) = (1.19, 1.099) in blue colour and (V ,W) = (0.14, 0.099) in green colour
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10  Conclusion

In this research, we effectively examined the stochastic-fractional Drinfel’d-Sokolov-
Wilson model, a mathematical model applicable in the fields of electromagnetism and 
fluid mechanics. In our examination, we thoroughly scrutinized the equation through 
various lenses, encompassing soliton dynamics, bifurcation analysis, chaotic behav-
iors, and sensitivity analysis. Initially, we employed the tanh technique to identify the 
traveling wave solutions of the model, enabling the establishment of soliton solutions 
depicted in Figs. 1, 2, 3 and 4. Various categories of soliton solutions, including dark 
solitons, bell-shape solitons, and more, were observed in the models. The updated dis-
cussion revealed that the reported soliton solutions are novel and have not been pre-
viously documented in the literature. Additionally, we observed bifurcation, the quali-
tative behavior of quasi-periodic nonlinear waves and chaotic behaviors within the 
dynamical system, illustrating corresponding phase portraits as shown in Figs. 5, 6, 7, 8, 
9 and10. It was evident that the observed model exhibits waves of nonlinear and super 
nonlinear periodicity. Lastly, an investigation has been conducted into the system’s sen-
sitivity and multistability to initial conditions as presented in Figs. 11, 12, 13 and 14. It 
is anticipated that the results presented in this study, such as bifurcation, periodic and 
quasi-periodic behavior, chaos, sensitivity, and multi-stability, have implications for a 
wide range of nonlinear phenomena in the world. In contrast to recent literature, this 
paper presents novel solutions, as evidenced by a comparative analysis. The results, pre-
viously unreported, contribute innovatively to the comprehension of soliton theory and 
the chaotic tendencies within fractional order nonlinear systems. These groundbreaking 
findings not only advance our understanding but also lay the groundwork for refining 
research methodologies. Moving forward, this work serves as a catalyst for continued 
exploration into the dynamics of nonlinear systems. Therefore, this study may inspire 
further research into various nonlinear challenges.
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