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Abstract
In this study, the beta time fractional (2 + 1) dimensional Chaffee–Infante equation used 
to describe the behavior of gas diffusion in a homogeneous medium is discussed. General-
ized Kudryashov and modified Kudryashov procedures were used to discovered solitons of 
the equation. These methods can be easily applied and offer different solutions checked to 
other methods in the literature. At the same time, these two methods use symbolic calcula-
tions to better understand various nonlinear wave models and offer a powerful and effective 
mathematical approach. The solutions created in this article are different from those in the 
literature and will guide those working in the field of physics and engineering to better 
understand this model. Figures of the results were made values different from each other. 
The stability of the equations in applications has been demonstrated by testing the stability 
feature on some solutions obtained using the features of the Hamilton system. This work 
demonstrates the power and effectiveness of the methods discussed in applying many dif-
ferent forms of fractional-order nonlinear equations. The results obtained in this paper are 
original to our research and have the potential to be helpful in the fields of mathematical 
engineering and physics.

Keywords  Solitons · Wave transformations · Kudryashov methods · Chaffee–Infante 
equation · Beta-derivatives

 *	 Arzu Akbulut 
	 arzuakbulut@uludag.edu.tr; ayakut1987@hotmail.com

	 Duygu Tetik 
	 tetikkduyguu@gmail.com

	 Nisa Çelik 
	 nisa@uludag.edu.tr

1	 Department of Mathematics, Faculty of Arts and Science, Bursa Uludag University, Bursa, Turkey

http://crossmark.crossref.org/dialog/?doi=10.1007/s11082-023-06271-w&domain=pdf


	 D. Tetik et al.

1 3

640  Page 2 of 17

1  Introduction

Many problems exist in different fields of study such as wave propagation, fluid mechan-
ics, mechanical engineering, dynamical systems, chemistry, image processing, plasma 
physics, hydrodynamics, finance, biology, optics and other fields of engineering and sci-
ence. Some scientists have proposed and researched nonlinear fractional partial differ-
ential equations (NFPDEs) (Zubair et al. 2018; Raza et al. 2019; Hosseini et al. 2020). 
Suggested numerous different definitions have been presented in the study (Yang et al. 
2019; Park et al. 2020). Lately, investigators have begun to view a deficit at most of the 
fractional derivative definitions (Samko et al. 1993; Kilbas et al. 2006). Since fractional 
differential equations are an important field in plasma physics, mathematical physics, 
mathematical biology, nonlinear optics, applied mathematics, and quantum field theory, 
the solutions of these equations, along with their soliton-type solutions, have become 
very important. Fractional derivatives have an important place in the study of real-world 
problems so there is a different types of fractional derivatives for example Caputo frac-
tional derivative, conformable derivative, modified Riemann-Liouville derivative, Rie-
mann-Liouville derivative, beta derivative and many others. The universe is filled with 
events nonlinear and inner behaviors of this nonlinear are modeled for samples next to 
nonlinear alongside differential equations of fractional order as well as whole number 
order (Miller and Ross 1993; Hassani et  al. 2020). It is thought that fractional-order 
equations analyze the intricate properties of complicated physical phenomena that occur 
in many fields of study on a small scale (Gomez-Aguilar et  al. 2018; Bonyah et  al. 
2018). Later, scientists searched deeply to find approximate and suitable solutions non-
linear evolution equations, and as a result of their research, many methods have been 
developed recently to solve nonlinear evolution equations due to the differing opinions 
of scientists. On the instant, Seadawy handled the extended auxiliary equation proce-
dure (Seadawy 2017), Duran et  al. were interested in the modified 

(

1∕G�
)

-expansion 
practice (Duran et al. 2021a), Jianming et al. investigated the Backlund transformation 
procedure (Jianming et al. 2011), Yokus analyzed the extended finite difference proce-
dure (Yokus 2018), Ablowitz and Clarkson handled the inverse scattering transforma-
tion practice (Ablowitz and Clarkson 1991), Duran et al. investigated the Bernoulli sub-
equation function method (Duran et  al. 2021b), Helal and Mehana investigated the 
Adomian decomposition practice (Helal and Mehana 2006), Al-Mdallal and Syam were 
interested in the sine–cosine procedure (Al-Mdallal and Syam 2007), Das and Ghosh 
paid attention to the 

(

G�∕G
)

 -expansion procedure (Das and Ghosh 2019), Islam and 
Akter handled the rational fractional 

(

D�
�
G∕G

)

-expansion practice (Islam and Akter 
2020), Mohyud-Din et al. handled the variational iteration practice (Mohyud-Din et al. 
2009), Hashemi and Mirzazadeh were interested in the Lie symmetry practice (Hashemi 
and Mirzazadeh 2023), Wazwaz analyzed the sine-cosine procedure (Wazwaz 2004), 
Bekir investigated the (G�∕G)-expansion procedure (Bekir 2008), Arshed et  al. were 
interested in the first integral practice (Arshed et  al. 2020), Biswas et  al. handled the 
modified simple equation method (Biswas et al. 2018), Celik analyzed the F expansion 
practice (Çelik 2021), Kudryashov acquired the exact solutions of the Fisher model by 
the Kudryashov method (Kudryashov 2012), Kudryashov handled the first integral 
method (Kudryashov 2020), Kudryashov explored the general projective Riccati equa-
tions and the enhanced Kudryashov’s methods (Kudryashov 2023), Wang et al. applied 
the semi-inverse method to fractal (2 + 1)-Dimensional Zakharov–Kuznetsov model 
(Wang 2023a; Wang and Xu 2023; Wang et al. 2023a), Alquran applied the Maclaurin 
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series to nonlinear equations (Alquran 2023a), Alquran applied the rational sine-cosine 
approach to second fourth-order Wazwaz equation (Alquran 2023b), Jaradat and 
Alquran applied the Kudryashov expansion method to (2 + 1)-dimensional two-mode 
Zakharov–Kuznetsov equation (Jaradat and Alquran 2020), Ghanbari applied the algo-
rithm of the new method to the Oskolkov and the Oskolkov–Benjamin–Bona–Mah-
ony–Burgers equations (Ghanbari 2021a), Ghanbari and Gómez–Aguilar applied the 
generalized exponential rational function procedure to the nonlinear Rad-
hakrishnan–Kundu–Lakshmanan model (Ghanbari and Gómez-Aguilar 2019a), Sadaf 
et  al. applied the 

(

G′

G
,
1

G

)

-expansion method to CI equation (Sadaf et  al. 2023a), 
Mahmood et al. applied the modified Khater method to the (2 + 1)-dimensional Chaf-
fee–Infante equation (Mahmood et  al. 2023), Akram et  al. applied the extended 

(

G′

G2

)

-expansion method to the higher order nonlinear Schrödinger equation (Akram et  al. 
2023a, 2023b, c) and so on (Wang 2023b, c, d, e, f;  Wang and Shi 2022; Wang et al. 
2023b, c; Ali et al. 2019; Jaradat et al. 2018; Jaradat and Alquran 2022; Ghanbari 2022; 
Ghanbari and Gómez-Aguilar 2019b; Ghanbari and Baleanu 2019, 2020, 2023a, 2023b; 
Khater and Ghanbari 2021; Ghanbari 2019, 2021b; Ghanbari et al. 2018; Ghanbari and 
Akgül 2020; Ghanbari and Kuo 2019; Tian et al. 2022; Sadaf et al. 2023b.

The Chaffee–Infante (CI) model, which is useful for studying the diffusion formation 
of a gas in a uniform medium, is very important. Therefore, it has an important role in 
the field of mathematics and physics (Raza et al. 2021). The CI equation was first stud-
ied by Nathaniel Chafee and Ettore Infante. The most interesting aspect is a bifurcation 
in the system parameter that indicates the steepness of the potential. The CI model is 
very important in many areas, for example; such as ion-acoustic waves in plasma, fluid 
dynamics, plasma physics, sound waves, and electromagnetic waves Sriskandarajah and 
Smiley (1996). This model is the standard representation of endless-dimensional gradi-
ent systems in which the structure of the spherical attractor can be exactly character-
ized (Caraballo et al. 2007). The appropriate derivative time-fractional CI equation is as 
follows:

where � represents the coefficient of diffusion and � represent degradation coefficient. The 
diffusion of a gas in a homogeneous medium is an important phenomenon in a physical 
context and the CI model provides a useful model to study such phenomena.

Scientists analyzed the (2 + 1) CI equation using many different solution methods, 
for example, Sakthivel and Chun applied the exp-function approach (Sakthivel and 
Chun 2010), Riaz et al. applied Lie symmetry analysis (Riaz et al. 2021), Mao applied 
the trial equation practice (Mao 2018), Qiang et al. applied the undetermined coefficient 
procedure (Qiang et  al. 2013), Akbar et  al. applied the first integral practice (Akbar 
et al. 2019), and Arshed et al. utilized the sinh-Gordon expansion practice (Arshed et al. 
2023).

The beta derivative
Fractional derivatives are very important in scientific study fields. For this rea-

son, fractional derivatives have been studied in depth and many definitions have been 
found, for example; Grunwald–Letnikov, Riemann–Liouville, the Caputo, modified Rie-
mann–Liouville, and Atangana–Baleanu derivatives (Samko et  al. 1993; Kilbas et  al. 
2006). In this paper, the beta derivative will be hadled. The most important property of 

(1)
(

��u

�t�

)

x

−

(

�2u

�x2
− �u3 + �u

)

x

+ �
�2u

�y2
= 0
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this derivative is that the chain rule is applicable. Thus, we can reduce nonlinear differ-
ential equations to ordinary differential equations with the help of wave transformations. 
The beta derivative satisfies several properties that were as limitation for the fractional 
derivatives and has been used to model some physical problems. Basic definitions of the 
beta derivative are given as follows:

Definition  Let �(t) be a function defined for all non-negative t. The � derivative of 
T�(�(t)) of order � is given by

where T�(�(t)) =
d��(t)

dt�
 and 0 < 𝛽 ≤ 1

Some rules are given for � derivative by the following theorem.

Theorem  Let �(t) and �(t) be � -differentiable functions for all t > 0 and ��(0, 1]. Some 
basic properties are discussed as follows: 

1.	 T�(a1�(t) + a2�(t)) = a1T
�(�(t)) + a2T

�(�(t)),∀a1, a2 ∈ R

2.	 T�(�(t)�(t)) = �(t)T�(�(t)) + �(t)T�(�(t)),

3.	 T�(
�(t)

�(t)
) =

�(t)T� (�(t))−�(t)T� (�(t))

�(t)2
,

4.	 T�(�(t)) =
(

t +
1

Γ(�)

)1−�
d�(t)

dt
 (Atangana et al. 2016).

The main procedure of this article is to find exact solutions to the CI model. The meth-
ods are explained in the second section. In chapter 3, the methods are applied to the CI 
equation. The stability test was applied to the exact solutions found in Sect. 4. In chapter 5, 
the exact solution graphs of the equation are given.

2 � Methods

Think that nonlinear time fractional conformable differential equation as follows:

where u is a variable depending on x and t, � represents beta fractional order derivative. 
The wave transformation will be used as follows:

where

If we utilize the wave transformation to Eq. (2), the nonlinear ordinary differential equation 
is obtained as follows:

T�(�(t)) = lim
�→0

�

(

t + �

(

t +
1

Γ(�)

)1−�
)

− �(t)

�
,

(2)Φ
(

u
�

t , ux, uxx,
(

ux
)�

t
, uyy,…

)

= 0,

(3)u(x, y, t) = U(�),

(4)� = x + y −
v

�

(

t +
1

Γ(�)

)�

.
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2.1 �  The generalized Kudryashov procedure

We choose the solution for U(�) as follows:

here ai, bj(i = 0, 1,… , n, j = 0, 1,… ,m) are constants and an, bm should be different from 
zero. Ω(�) provides the following differential equation:

the solution of the Eq. (7) is given by:

where � is the integral constant. Positive integers n and m are calculated by the homogene-
ous balancing principle, using the order of the highest-order derivative term and the degree 
of the highest-order nonlinear term. Expression (6) is written into equation (5) using (7) 
and the polynomial Ω(�)i−j(i, j = 1, 2, 3,…) is obtained. An algebraic equation system is 
found by setting all coefficients of this polynomial dependent on Ω(�) equal to zero. The 
obtained algebraic equation system is solved according to the coefficients ai, bj, v, � and the 
solutions of equation (5) are obtained. The exact solutions of equation (2) are obtained by 

writing � = x + y −
v

�

(

t +
1

Γ(�)

)�

 to the solutions of equation (5) (Akbulut 2023; Akbar 
et al. 2021; Akbulut and Kaplan 2021).

2.2 � The modifed Kudryashov procedure

We choose the solution for U(�) as follows:

where ai(i = 0, 1,… , n) are constants and there should be an ≠ 0 . Ω(�) provides the follow-
ing ordinary differential equation:

the solution of the Eq. (10) is given by:

(5)Ψ
(

U,U�,U��,U���,…
)

= 0.

(6)U(�) =

∑n

i=0
aiΩ

i(�)
∑m

j=0
bjΩ

j(�)
,

(7)
dΩ

d�
= Ω2(�) − Ω(�).

(8)Ω(�) =
1

1 + �e�
.

(9)U(�) =

n
∑

i=0

ai(Ω(�))
i
,

(10)
dΩ

d�
=
(

Ω2(�) − Ω(�)
)

ln�

(11)Ω(�) =
1

1 + ���
.
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where � is the integral constant. n is calculated by the homogeneous balancing principle, 
using the order of the highest-order derivative term and the degree of the highest-order 
nonlinear term. Expression (9) is written into equation (5) using (10) and the polynomial 
Ω(�)i(i = 1, 2, 3,…) is obtained. An algebraic equation system is found by setting all coef-
ficients of this polynomial dependent on Ω(�) equal to zero. This algebraic equation system 
is solved according to the coefficients an, v, � and the solutions of equation (5) are obtained. 

The exact solutions of equation (2) are obtained by putting � = x + y −
v

�

(

t +
1

Γ(�)

)�

 to the 
solutions of equation (5) (Akbulut 2023; Akbulut et al. 2022).

Remark  The solutions we found here are special cases of the solutions we found with the 
generalized Kudryashov method.

Remark  Our methods are different from the other methods in the literature because of the 
selected auxiliary equations are different.

3 � Application of the methods

In this part, the given methods will be applied to Eq. (1). If we apply (4) to Eq. (1), the follow-
ing ODE is obtained:

3.1 � Generalized Kudryashov method

Balancing the highest power nonlineer term U3 and the highest order derivative U′ , m = 1 and 
n = 2 are obtained. Thus, using (6) the solution of (12) can be given as follows:

We substitute Eq. (13) in Eq. (12) and find a polynomial equation by substituting solution 
(7) for the result and set the coefficients a0, a1, a2, b0, b1, v, � equal to zero and the follow-
ing system of equations is obtained:

(12)U�� + (v − �)U� + �U
(

1 − U2
)

= 0

(13)U(�) =
a0 + a1Ω + a2Ω

2

b0 + b1Ω

−�a3
0
+ �a0b

2

0
= 0,

−b1b0a0 − b1�a0b0 + 2b1�a0b0 + b1va0b0
−va1b

2

0
+ �a1b

2

0
+ b2

0
a1 + �a1b

2

0
− 3�a2

0
a1 = 0,

−b2
1
�a0 + b2

1
va0 + b2

1
a0 + b2

1
�a0 + 3b1b0a0 + b1�a1b0 − b1va1b0

+2b1�a1b0 − b1va0b0 + b1�a0b0 − b1b0a1 − 3�a0a
2

1
+ �a2b

2

0

−3�a2
0
a2 + 4b2

0
a2 − 2va2b

2

0
− �a1b

2

0
− 3b2

0
a1 + va1b

2

0
+ 2�a2b

2

0
= 0,

−b2
1
a0 + b2

1
�a0 + b2

1
�a1 − b2

1
va0 + 3b0a2b1 − 2b1b0a0 + 2b1�a2b0 − b1�a1b0 + b1va1b0

+3b1�a2b0 + b1b0a1 − 3b1va2b0 − 6�a0a1a2 + 2va2b
2

0
− 10b2

0
a2 − �a3

1
+ 2b2

0
a1 − 2�a2b

2

0
= 0,

2a2b
2

1
− �a3

2
= 0,

−3a2b
2

1
− b2

1
�a2 + b2

1
va2 + 6b0a2b1 − 3�a1a

2

2
= 0,

b2
1
�a2 − b2

1
va2 + b2

1
�a2 + a2b

2

1
− 3b1�a2b0 + 3b1va2b0

−9b0a2b1 + 6b2
0
a2 − 3�a0a

2

2
− 3�a2

1
a2 = 0.
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By solving these algebric equations system for a0, a1, a2, b0, b1, v and �, we obtain the fol-
lowing cases:

Set1 
Substituting (14) into (3) without ignoring (13), we have the exact solution as follows:

Set2 
Substituting (16) into (3) without ignoring (13), we have the exact solution as follows:

Set3 
Substituting (18) into (3) without ignoring (13), we have the exact solution as follows:

Set4 
Substituting (20) into (3) without ignoring (13), we have the exact solution as follows:

3.2 � The modified Kudryashov method

Balancing the highest power nonlineer term U3 and the highest order derivative U′′ , we 
obtain n = 1. Using the method, the exact solution can be given as follows:

(14)
{

a0 = 0, a1 = 0, a2 =
b1

2
, b0 = −

b1

2
, b1 = b1, v = 6 + �, � = 8

}

(15)
u1(x, y, t) = −

1

−1 + A2e
2

(

x+y−
v

�

(

t+
1

Γ(�)

)�
) .

(16)
{

a0 = 0, a1 = −
a2

2
, a2 = a2, b0 = 0, b1 = −

a2

2
, v = �, � =

1

2

}

(17)u2(x, y, t) =
−1 + Ae

(

x+y−
v

�

(

t+
1

Γ(�)

)�
)

1 + Ae

(

x+y−
v

�

(

t+
1

Γ(�)

)�
) .

(18)
�

a0 = 0, a1 =
√

2b1i, a2 = −
√

2b1i, b0 = −
b1

2
, b1 = b1, v = �, � = −1

�

(19)u3(x, y, t) =
−2i

√

2Ae

�

x+y−
v

�

�

t+
1

Γ(�)

��
�

−1 + A2e
2

�

x+y−
v

�

�

t+
1

Γ(�)

��
� .

(20)
{

a0 = −
b1

2
, a1 = b1, a2 = −

b1

2
, b0 = −

b1

2
, b1 = b1, v = −6 + �, � = 8

}

(21)u4(x, y, t) =
A2e

2

(

x+y−
v

�

(

t+
1

Γ(�)

)�
)

−1 + A2e
2

(

x+y−
v

�

(

t+
1

Γ(�)

)�
)

(22)U(�) = a0 + a1Ω
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We substitute Eq. (22) in (12), and find a polynomial equation by substituting solution (10) 
for the result and set the coefficients a0, a1, v, � equal to zero and we get the following sys-
tem of equations:

By solving these algebric equations system for a0, a1, v and �, the following cases are 
obtained.

Set1 
If we substitute (24) into (22), the exact solutions are obtained as follows:

Set2 
If we substitute (26) into (22), the exact solutions are obtained as follows:

Set3 
If we substitute (28) into (22), the exact solutions are obtained as follows:

4 � Figures of the results

In this part, plots of some results are given for arbitrary constants. Plots are given as three-
dimensional, two-dimensional, and contour plots.

Figure 1 represents dark wave. Also, Fig. 1d is given to see how the solution changes for 
different values of �.

Figure 2 represents soliton wave. Also, Fig. 2d is given to see how the solution changes 
for different values of �.

Figure 3 represents kink wave. Also, Fig. 3d is given to see how the solution changes for 
different values of �.

(23)

− �a3
0
+ �a0 = 0,

− 3�a2
0
a1 + a1 ln (�)

2 − a1 ln (�)v + a1 ln (�)� + �a1 = 0,

− 3a1 ln (�)
2 − a1 ln (�)� − 3�a0a

2

1
+ a1 ln (�)v = 0,

2a1 ln (�)
2 − �a3

1
= 0.

(24)
{

a0 = 0, a1 = ±1, v = 3 ln (�) + �, � = 2 ln (�)2
}

(25)
u1,2(x, y, t) = ±

1

1 + A�

(

x+y−
v

�

(

t+
1

Γ(�)

)�
) .

(26)
{

a0 = ±1, a1 = ∓2, v = �, � =
1

2
ln (�)2

}

(27)
u3,4(x, y, t) = ±1 ∓

2

1 + A�

(

x+y−
v

�

(

t+
1

Γ(�)

)�
) .

(28)
{

a0 = ±1, a1 = ∓1, v = −3 ln (�) + �, � = 2 ln (�)2
}

(29)
u5,6(x, y, t) = ±1 ∓

1

1 + A�

(

x+y−
v

�

(

t+
1

Γ(�)

)�
) .
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Figure 4 represents dark wave. Also, Fig. 4d is given to see how the solution changes for 
different values of �.

5 � Stability properties

Stability analysis is an important research area for nonlinear evolution equations. It 
helps to study how a system responds to external influences and how it behaves over 
time. The stability property obtained using the properties of the Hamilton system is 
tested on some solutions to show the usability of the model in applications. In this part 
of the study, the stability features of the solutions obtained for Set 5 and Set 6 are exam-
ined with the help of the properties of the Hamilton system.

The momentum in the Hamiltonian system

MH =
1

2 ∫
�

−�

F2(�)d�,

Fig. 1   The dark wave of the Eq. (17) when A = 0.8, � = 0.5, � = 1, v = 1, y = 0, a2 = 1, b1 = 1
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where F(�) is the solution of the model and the essential circumstance for stability is for-
mulated in the next form

where v0 are optional constants (Yue et al. 2020a, b).
(17) in solution

by using custom parameters their values

thus, the obtain

(27) in solution

𝜕M

𝜕v
∣v=v0> 0,

{� = 1,A = 1, � = 1, y = 0}

M = 2 +
4e−3

1 + e−3
−

4e−1

e−1 + 1
+ ln

(

e−2
)

− 4 ln
(

e−1 + 1
)

+ 2 ln
(

1 + e−3
)

+ 2 ln (1 + e)

𝜕M

𝜕v
∣v=1= 0.584589133 > 0.

Fig. 2   The soliton wave of the Eq. (19) when A = 0.8, � = 0.5, � = 1, v = 1, y = 0, b1 = 1
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by using custom parameters their values

thus, the obtain

{� = 1,� = 2,A = 1, � = 1, y = 0}

(

2

v
+

22+2v

v ln (2)
(

22v + 2
) −

23+2v

v ln (2)
(

21+2v + 1
) +

ln (2−v)

ln (2)v2
−

ln (2v)

ln (2)v2

−
2 ln

(

22v + 2
)

ln (2)2v2
+

2 ln
(

21+2v + 1
)

ln (2)2v2

)

v=1
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Fig. 3   The kink wave of the Eq. (25) when A = 0.1, � = 0.7,� = 0.2, � = 1, v = 3ln(2) + 1, y = 0
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As a result, this solution is stable. The same steps are applied to the next solutions obtained, 
and the stability feature of each is determined.

6 � Conclusion

In this study, solutions of the local temporal fractional (2 + 1) dimensional Chaffee–Infante 
equation were obtained by generalized Kudryashov and modified Kudryashov methods. 
These two methods can be easily applied and offer different solutions compared to other 
methods in the literature. Since the methods are powerful and effective, the procedures used 
can be applied to different nonlinear differential equations. The generalized Kudryashov 
method produced four solutions, and the modified Kudryashov method produced 6 solu-
tions. The resulting solutions are hyperbolic and rational functions. The obtained solutions 
were examined by stability test. As a result, the solutions are stable. 3D and 2D contour 

Fig. 4   The dark wave of the Eq. (27) when A = 0.2, � = 0.8,� = 0.8, � = 1, v = 1, y = 0



Applications of two kinds of Kudryashov methods for time…

1 3

Page 13 of 17  640

drawings were drawn for some families, and in these drawings, the graphs of soliton, kink, 
and dark solution were obtained. Maple software program was used to check the accuracy 
of the results. The CI equation provides a useful model for studying the diffusion of a gas 
in a uniform medium. In addition, ion-acoustic waves in plasma also play an important 
role in various scientific and technological fields, including fluid dynamics, plasma phys-
ics, signal processing through optical cables, sound waves, and electromagnetic waves. The 
results obtained have the potential to be useful in the fields of physics, mathematics and 
engineering.
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