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Abstract

This analysis examines the time-fractional mixed hyperbolic-elliptic p-system of conserva-
tion laws by applying the new extended direct algebraic method. The p-system with gen-
eralized cubic van der Waals flux, and potential applications in the field of compressible
isothermal viscosity-capillarity fluids, is investigated. In particular, this issue describes
the longitudinal isothermal motion in elastic bars or fluids. A diverse periodic, kink, and
singular soliton structures are extracted. The 3D dynamical behaviors and corresponding
contour profiles of some obtained solitons are displayed. The fractional effects in the sense
of Beta, M-truncated, and modified Riemann—Liouville, are discussed and illustrated. The
method shows the straightforward, reliability, and efficiency for solving complex physical
phenomena that is modeled by nonlinear partial differential equations.
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1 Introduction

Nonlinear partial differential equations (NPDEs) arise in numerous evolved scientific disci-
plines such as mathematical physics, fluid mechanics, nonlinear optics, ocean waves, engi-
neering, atmospheric science, biology, chemistry, economics, etc (Farlow 2012; Ablowitz
and Segur 1981; Hull 2018). In the past few years, numerous scientists and engineers have
been interested in the search for novel solutions to differential equations (DEs), notably
nonlinear evolved forms (NLEEs). Such equations represent the occurring of most nonlin-
ear real-life phenomena. So, it is substantial to comprehend the structure of these equations
to find new varieties of wave solutions and dynamical configurations. To derive these solu-
tions, a number of effective, and powerful approaches have been developed to tackle the
NLEEs. A few examples of most recent methods are the new auxiliary equation method
(Rahman et al. 2023, 2023), unified auxiliary equation method (Tarla and Yilmazer 2022;
Zayed et al. 2021), modified Sardar sub-equation method (Younas et al. 2022; Tao et al.
2022), g-model expansion method (Zhang et al. 2022; Safi Ullah et al. 2023), exp,-func-
tion method (Raheel et al. 2023, 2023), generalized Ricatti equation mapping method
(GREMM) (Altawallbeh et al. 25022; Az-Zo’bi et al. 2022; Khan et al. 2022), Jacobi ellip-
tic function expansion method (Khan et al. 2022; Az-Zo’bi et al. 2021), modified double
Laplace transform decomposition method (Saifullah et al. 2021), adaptive moving mesh
method (Almatrafi et al. 2021), improved tanh method Yokus et al. (2022), rational (G’ /G)
-expansion scheme (Tarikul Islam et al. 2022), extended FAN sub-equation method (Bad-
shah et al. 2023), modified (1/G’)-expansion method (Ali Akbar et al. 2023), and the new
extended direct algebraic method (NEDAM) (Tasnim et al. 2023; Rehman et al. 2023).

In physics and engineering, fluid dynamics depicts the flow of gases and liquids. The
mixed hyperbolic—elliptic systems of conservation laws model dynamical phase transitions
in solid dynamics as in the case of propagating phase boundaries. Also, they describe the
stationary, transonic, and van der Waals flow in fluid dynamics. The one-dimensional regu-
lar viscos-capillarity compressible fluid of van der Waals system, also known by the p-sys-
tem, that demonstrates the simple liquid—gas phase transition has the form (Slemrod 1983,
1984; Zahran et al. 2023),

q,—v, =0,

vy + (P(@))y = GV = OV (1)

In Eq. 1, the gas velocity is denoted by v, ¢ is the specific volume, while p represents the
van der Waals pressure. x and ¢ are the Lagrangian space and time variables. The positive
parameters ¢ and o represent the strength viscous and capillarity coefficients respectively.
Notify that the square of ¢ is proportional to o.

For some material models, the system is of mixed type since the constitutive pressure
may be non-monotone. That is, the eigenvalues A = F4/p’(g), which are also known by
wave speeds, differ according to the flow motion.The main crucial feature of nonlinear
mixed-type systems is that shocks may occur when transitioning between different regions;
hyperbolic with positive eigenvalues, boundary which is assumed to be smooth, and the
elliptic region when p’(q) > 0. Such discontinues are routinely observed in transonic flow
as mentioned above.

The existence and asymptotic stability of monotonic increasing traveling wave solutions
of Eq. 1 was studied by Zhang et al. (2016). In Bedjaoui et al. (2005), authors investigated
the existence and properties of non-monotonic traveling waves. With van der Waals pressure
p(g) = g — ¢°, the system describes the longitudinal isothermal motion. Such case has been
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discussed analytically by applying the Kudryashov simple equation method (Az-Zo’bi 2019),
g—;— expansion, and e~?©)-expansion function methods (Bilal et al. 2021), Painleve analysis,
and auxiliary equation mapping approaches (Akbar et al. 2021). Recently, the extended simple
equation, Paul-Painleve approach, and He’s variational iteration methods have been employed
in Zahran et al. (2023). With p(¢) = ¢ — (g — 2)%, Eq. 1 is considered in Affouf and Caflisch
(1991). The present study addresses Eq. 1 with general cubic van der Waals pressure

P(@) =8y + 6,9+ 6,4" + 834°.6; € R. )

Upon conducting review through the published literature, the system has not been explored
before. The NEDAM will be employed to tackle the aforementioned model.

The outline of our work is arranged as follows: in the coming section, Sect. 2, the use of
extended direct algebraic scheme for processing (141)-NLEE:s is discussed. Section 3 includes
the application of the NEDAM to our generalized model. The existence sets of free parameters
and constrains are listed. According to the analysis in Sect. 3, the wave soliton solutions for
one set of constraints are listed in Sect. 4. The fractional issue of the considered model, subject
to some recent developed fractional derivatives, is processed in Sect. 5. Dynamical behaviors
of some obtained solitons are depicted, and the summarizing of entire article is discussed in
Sect. 6.

2 The NEDAM

The NEDAM is a recent development in the field of NPDEs. This method covers many other
existing schemes. As will be shown, the method depends on traveling wave to convert a given
NPDE with polynomial nonlinearity into a nonlinear ordinary differential equations (NODE)
that can be processed analytically. This approach provides an effective way to obtain exact
solutions to a wide range of NPDEs with integer and fractional derivatives. In the recent last,
this technique is considered to construct more general exact traveling wave solutions with dif-
ferent shapes. Here, we mention,the Tzitzeica, Dodd-Bullough-Mikhailor, and the Liouville
equations (Mirhosseini-Alizamini et al. 2020), the Kerr-resonant nonlinear Schrodinger (NLS)
equation (Tasnim et al. 2023; Javad Vahidi et al. 2021), the generalized non-linear Schrodinger
model in metamaterials (Salathiel et al. 2019), the potential Kadomtsev-Petviashvili equa-
tion in shallow waters waves (Kurt et al. 2020), the 2D Kundu-Mukherjee-Naskar equation
(Giinerhan et al. 2020), cubic focusing and paraxial (NLS) equations in Kerr media (Hussain
et al. 2022), the Biswas-Arshed equation (Munawar et al. 2021), the Zakhrov model in ionized
plasma (Rehman et al. 2023), and the biofilm model (Igbal et al. 2023).
To execute the NEDAM, consider the generic one-dimensional NLPDE:

d)(v, Vis Vis Vi s Vi > Vigs ) =0, 3)

where ¢ is a polynomial of the empirical function v and its total partial derivatives. The
concept of new extended direct algebraic algorithm follows the listed steps.

Step 1. Assume that
vx, 1) =v({),f =x+vi, 4)

with v # 0 is the wave’s speed, to convert Eq 2 into the NODE
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(p(v, Vv, ) =0, 5)
where v/ = j—;,
Step 2. The NEDAM Assumes the solution of Eq. 5 by the formal polynomial in
9(¢) given by
Q) = Y ¢ e, #0. ©6)
j=0

In Eq. 6: ¢;’s are real constants to be identified, and the function 9(¢) holds the generalized
auxiliary NODE

9'©) = In(b)(a + ) +7 (). b € R = {1}, a, 8,7 ER. @)

Many solutions sets of Eq. 7 were derived. Through the generalized trigonometric and
hyperbolic functions

bs b b b siny(©)
sin, (¢) = 20 cos, () = =, tany(0) = TR

®)

. rb* —sb rb* +9b sinh,, ()
sinh,({) = , cosh,({) = , tanh, ({) = o0
and with arbitrary constants r, s > 0, the various families of solutions are summarized as
follows:
Family 1.  For f? — 4ay < 0andy # 0, a class of periodic, singular, and combined peri-
odic-singular solitons is obtained as follows:

g\ (P —day) —(p? —4ay)
9,(0) = 2 + 2 tan, 5 ¢l )
—(§* - 4ay) ~(p? — 4ay)
9@ =—-— 2 coty, 2 aF (10
9;(8) = —2%
_(ﬂz —401;/)
+ T <tanb< —(ﬁ2 —40:7/){) =+ \/E Ser< —(/32 - 405}’)C>>,
(11)
9@ =—+
—(ﬂ2 _40”,)
+ — <—cotb< A 40!7’)C> +/rs CSCb( —(? ‘4“7)‘:>)’
(12)
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950 =1

—(p* — 4ay) — (6% — 4ay) \/— (B2 - 4day) C] (13)
—¢||

+ tan — cot
4y b 4 ¢ b

Family 2. For 2 — 4ay > 0and y # 0, a class of dark, combined bright-dark, and dark-
singular solitons is obtained as follows:

5 (82 —4ay) —(#? = 4ay)
9,(0) = 3~ % tanh, 3 ¢l (14)
p (P2 - 4ay) —(p% - 4ay)
9,(8) = 3~ % coth,, 5 45 15)
93(8) = —g
(ﬁz - 40’7) N . 2
+ — <—tanhb<\/ (52 - 40’7)5) Tiy/rs SeChb< (52 - 4“?’)C>>’
(16)
99(8) = —2’%’
(B2 —4ay)
+ T<_00thh< (ﬁ2_4ay)g> + \/E CSChb< (ﬂ2_4ay)c)>’
a7
9,0(8) = _%
(7 —4ar) (7~ 4ar) (7 —4a) || 08
- tanh, Tg‘ + coth, TC .
Family 3. Foray > 0 and § = 0, a sub-case of Family 1 is obtained as follows:
81,(0) = \/gtanb(\/a_yi), 19)
9,0 = —\/gcotb(\/a_rs“ ). (20)
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9,5(8) = \/g(tanb(z\/m?) +1/rs secb(2\/a_ycf)), 1)
9, = \/g (—cotb(Z\/Wc) +/rs cscb(zx/a_ye“)), (22)

ay ay
9,5(0) = %\/g(tanb<\/2_§’> —cotb(\/z_é‘>>. 23)

Family 4. Foray < 0and f = 0, a sub-case of Family 2 is obtained as follows:

816(6) = = [=tanh, (v/=ay¢). (24)
817(6) = =y [~ cothy (y/=ar¢). 25)

9,50 = A /—%(—tanb(%/—ayg) +1i\/rs sechb(Z\/—ay{,’)), (26)

9,0(0) = 4 /—%(—cothb(%/—ayé’) +/rs cschb(z,/—ayc)), @7

\/—ay \/—ay
BZO(C)z—%‘/—%(tanhb( > C>+cothb( 5 é’)) (28)

Family 5. For f = 0 and y = a, a sub-case of Family 1, as well as Family 3, is obtained

as follows:
951(€) = tan,(af), (29)

9,(8) = —cot(ad), (30)

923(0) = tan,2ad) £ \/rs sec,(2a), (31)

9,4(0) = —cot,2ag) £ \/rs csc,(2af), (32)

1= Hom(26) -o(29)).

Family 6. For =0 and y = —a, a sub-case of Family 2, as well as Family 4, is
obtained as follows

‘926(C) = —tanhh(ag’), (34)
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Family 7.

Family 8.

Family 9.

Family 10.

Family 11.

Family 12.

Step 3.

Step 4.

957(§) = —cothy(af), (35)
9,5(0) = —tanh, (a&) + i\/rs sech,2af), (36)
9,0(8) = —coth, 2ag) + \/rs cschy(2al), (37)
930(0) = (tanhb< : c) + cothb<%§> ) (38)
For f? = 4ay, a singular soliton is obtained:
_ o n(b) pE+2)
b= =20 ey e 39
For a = kf(k # 0) and y = 0, a bright-like soliton is obtained:
93,(8) = b — (40)
For f = y = 0, a linear bright-like soliton is obtained::
933(0) =(In (b)) al. (41)
For f = a = 0, a singular soliton is obtained:
-1
9 -
34(0) = ) 7e" (42)

For a =0 and g # 0, a class of dark (kink and anti-kink) solitons is obtained
as follows:

pp
935(8) = - .
% y(coshb(ﬁC) —sinh, (f¢) + r) (43)
B(sinh,(BE) + cosh, (B)
936(0) = — (sinh u(P0) 44)

v (sinh,(BE) + cosh,(BE) + )
For y = kf(k # 0) and @ = 0, a combined bright-singular soliton is obtained:

r bk

937(8) = T o

(45)
By Inserting 9(¢) (Eq. 6), along with Eq. 7, into Eq. 5, the positive integer
m can be determined by employing the balance principle process between
the orders of highest nonlinear and higher derivative terms in the resulting
equation.

Substituting the value of m into the obtained equation in the previous step, we
get a polynomial of 8(¢). Collecting the coefficients of (¢Y,j=0,1,2,...,
gives an algebraic system of unknown coefficients Cis Vs @, B,y, and
6,1=0,...,3.
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Step 5. Finally, by solving the system with predetermined coefficients, and making
backward substitutions completes the determinatio n of exact closed-form
solutions for the considered problem in Eq. 3.

3 Mathematical analysis

In order to handle our problem in Eq. 1 along with the generalized pressure considered
in Eq. 2, the new extended direct algebraic approach, discussed in the previous part, will
be employed. By considering the wave’s transform in Eq. 4, the following system of
NODE:s is executed

vg'(§) = V') =0,

W) +paQ) = "(©) + ovI(Q). (46)
Integrating once gives
vq(§) —v(§) =0,
8:4(0) + 5,90 + 6,9(0) = 0v"() = V() + w(C) =0. “n
Now, by inserting the first part into the other, we get
—voq"(£) = veq () + 8y + (8, +v*)q(0) + 6,9(0) + 639(0)* = 0. (48)

Achieving a balance between the highest-order derivative and the nonlinear term that
emerge in v and v?V', implies

2m+2=3m+1=>m=1.
Therefore, the formal solution of Eq. 48 is given by
q&) =) + ¢y, c; # 0. 49)

Substituting into Eq. 48 through Eq. 7, gathering the coefficients with the same power of
9, and making them vanishes result the following set of simultaneous algebraic equations:

99 1 ac;vlog(b)(Bo log(b) — ¢) + ¢y () + V*) + 363 + ¢26, + 5y = 0.

9l v(alogz(b)(2ay + ﬂ2) — pglog(b) + v) + 3C(2)53 +2¢y6, + 6, =0.
(50)
92 1 yvlog(b)(3po log(b) — ¢) + ¢, (3¢yb5 + 6,) = 0.

93 1 2y%volog*(b) + 365 = 0.

To extract the soliton solutions for the system under consideration, the Mathematica pack-
age is used to solve the obtained system. That is, to reach the values of free coefficients
and regarding constraints. the following nontrivial and non-duplicate sets of parameters are
obtained.

Set 1. For arbitrary ¢; # 0, and y # 0, we get
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_ ci5;
v= 220 log?(h)’
e <61(3ﬂ610g(b)—§) _ 2% )
07 ¢ yo log(b) 5 )’
(51)
5 = (76,0 log(b)—c, 65¢) (4?6202 log? (b)+¢262(c2—96? log* (b) (B2 —4ay ) )+4yc, 636,06 log(b))
(U 108735207 log’ (b) ’
5 = 4y*6262 log" (b)-252(r* log (b)(362 log” (b)(B2 —4ay )+¢2)+3¢265)
1= 12748562 log*(b) :
Set 2. For o = 362 log*(b)(f? — 4ay) + ¢2, we get
830-1/8,(488302+5, (0~1445,02))
- 12650 >
\/yz Iogz(b)(\/53 (4852262+53(02—1445162))—530>
c=F ,
L= \es, (52)
oo = yvlog(b)(¢—3po log(h))—c, 6,
0 3¢,6, ’
8y = ac,v1og(b)(¢ — o log(h)) — ¢y (8, + V) + ¢} (—83) — c26,.
Set 3. For ¢, = 0, and ¢ # 3fc log(b), we get
_ 2830
T 83(c-3pclogh)?’
cl = — 2yé,0 log(b)
1 83(c=3polog(h))’
(53)
5 = 4ay 830 log? (b)(g—fo log(b))
0= 8(c-3pologh)®
51 _ 2626(8, Iog(b)(g—Sﬂo'Iog(b))z(o'Iog(b)(Zay+ﬂ2)—ﬁg)—26§o').

82(¢—3p log(b))*

In what follow, the corresponding solitons will be derived.

4 Soliton solutions

By backward substitution along with Eq. 49, wave’s traveling Eq. 4, and the mentioned
solutions of Eq. 7, we list the dynamical behaviors through formal soliton solutions of
gas volume, g(x, t), according to the sets of parameters in Eq. 51. The velocity of gas,
v(x, t), can be derived easily by putting v = vg.

For Set 1 in Eq. 51, the following solutions are received:

1. When A = % —4ay < 0:
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1 Cl<3v—Aoln(b)tanb (% v —A(x— 272?1—?2;(1’)» —g) 2
G100 = = yo In(b) o -

1 2651
e e O G = Rt P

1
H=—|- e
Dia(e0) = yo In(b) 5, (55)
q13(x, 1)
2oyt 26a1
(v (an (VB (- i ) ) = Vs (VB (- st ) ) ) <6) o
6 yo In(b) - 5 [
(56)
q140x, 1)
_ [V (oo (VIR g )) = Ve (VAL i) =€) s
6 vo In(b) 5 |
(57)
q15(x, 1)
(s o (o ) o (o ) )
127650 In(b) .
(58)
2. When A = ﬂ2 —day > 0:
28,51
| e (3vaom@anh, (LVA(x- ) ) +c) o
B =z[- ey |
oD =g Vo) o G
1 3851
x, 0= l _cl<3\/ZG In(b) coth, (EVX()C_ 2y2ci1n(b)2 )) + g) _ @ 60
q1,7\%s 6 yo In(b) 5, >, (60)
qy8(x, 1)
2651 251
[l o () e ()
B 6 _E " yo In(b) d

(61)
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q19(x, 1)
| 2 a(ceravRomo (oo, (VA(r- 520 )) + ivisescn, (VA(r- 5557 ))))
6 7@ + yo In(b) "
(62)
91,10(x, 1)
2oyt 2ot
aln(h)(?acl&}\/Z(tanhb (i\/Z(x— m)) + coth,, (i\/Z(x— m))) +4y52> +2¢,85¢
- 127650 In(b) :
(63)
3. When f =0, and ay > 0O:
t v/ _ant_
- cg | HaE ( @ (x - 5ver)) 8 64)
g1 =— )
6)/(7 ln(b) \/ay 353
t o5t
. (x t) _ ¢ ac; cot, | y/ay| x — 22 gln(b)z )> 52 (65)
1,12\ - - Y
6y In(b) Jay 35,
q1,13(x, 1)
2ot 2ot
e () ()
Sroln®) N7 BET
(66)
q1,14(x, 1)
2oyt 231
e o ) e ()
“oromn®) Var T
(67)
q1,15(x, 1)
2631 2oyt
| (30’\/_1I1(b) <c0t,) <%\/_<x— —ZyZ;I:(b)Z )) — tan, (%\/a_y(x— —ZyZ;I:(b)Z >>) + g) 2,
T 6| yo In(b) 5 |
(68)

4. When f =0, and ay < O:

265t
ac tanh, <\/—ay(x— %)) 5
11600 ) = — (519 + 2726 In(b) _ _2, (69)

675 In(b) J=ar 35,

th L'f53t
(x t) 3 C]€ N acy CO! b ( —Qay <)C - 2720 In(b)2 )) 62 (70)
DD = T () J—ay 35,
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q18(x 1)
o (g —60+\/—ay ln(b)(—tanhh (\/-(1}’(2)(— ,:j:;,)g )) + i\/Esech,,(‘/—ar (2;( - yﬁjli‘(;)z )))) 5,
=- 670 In(b) A
(71)
qy,19(x, 1)
~ ) (g - 66\/—ayln(b)(—colhb (x/—ay<2x - yzjli';;)z )) + \/Ecsch,,(\/—ay(Zx— ,zj:(;p )))) 5
== 670 1n(b) T 36y
(72)
q120(6, 1)
1 01(36\/—70tyln(h)<tanhb(%m(x—zy;j%)>+cothb(% —ay(x—%))>+g) 26,
6| yo In(b) T |
(73)
5.Whenf=0,anda = y:
2
NS €105t 5,
X, 1) = ——— + ¢, tan, R S - =
D106 t) = =gy T tany <y< 2726 In(b)? 35, 74
2
¢S 105t 5,
X, 1) = ————— — ¢ cot, X— — -,
N0 l) = =gr gy T ol (y( 2726 In(b)? 35, (73)
q1,23(x, 1)
26,1 26,1
2. 3 2. 3
(19 2y alln(b)z 2r°x alln(b)z 0,
=——F—+¢|tan, | ———— |+ y/rssec, | ——— || — .
6yo In(b) y y 365
(76)
q124(x,1)
2 285t 2 285t
919 2rix - o‘lil(b)Z 2rix = alln(h)2 I
=———"—+¢/|—coty| ————— |+ /rscse, | ———— || - =—.
6yo In(b) y y 365
a7
912506, 1)
(‘2 1 (‘2 I3
| ¢ (3\/7_20]n(b)<cotb <%\/y_2<x— %)) — tan,, (%\/ﬁ(x— %))) +g) 25,
ol yo In(b) B E ’
(78)
6. When f=0,and @ = —y:
670 In(b) tanh cit
o _clorben o)) o,
G126 670 In(b) 35,
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265t
o o <6yo-1n(b) coth, (y(x - m)) + g) 5 80)
X, 1) = — - ==
9127 6yc In(b) 36,
q128(x, 1)
2. 265t 2 265t
I L + ¢;| —tanh —2;/ 51;(1;)2 + iy/rssech —27 _ ”l:“(b)z _ ﬁ
6yo In(b) ! b y - b y 38,
(1)
q129(x, 1)
255t 265t
27/2 _ 4% 27/2)(— 193
19 o In(b)? o In(b)? 6y
=——— +¢|—coth) | —— |+ h| ———— || - —,
6yo ) [T v + Vrsesch, v 35,
(82)
91,30 1)
c (3 aln(b)(tanh (l (x—ﬂ>>+colh (l (x—ﬂ +
1 1\ 77 b | 27 226 In(b)? b\ 27 226 In(h)? ¢ 26,
T 6| yo In(b) B E i
(83)
7. When #? = 4ay:
_ ¢S 2yc, 0 In(b) 6,
DD = "E® T P — 2y 27 35, (84)
yo In(b) 103t — 2y*oxIn(b) 3
8. Whena = =0:
) = c¢ 2yc 0 In(b)? 6 s
12 670 In(b) * log(b)(c265t — 2y%0xIn(b?) 355 (85)
9. Whena =0, and g # O:
I - 6pr e - m +3p
| — sinhy, [ﬂ[xf m ]]ﬂ:oshb [ﬁ[x— m ]]+r 25
G306 = 5 p - 5—; , (86)
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€ ] 21 o ETY - gli(b) - 3ﬁ
1 sinh,, (ﬂ (x— ol >)+cosh,, <ﬂ (x— el )>+s 252
D)= — -—1
q134(x, 1) 6 Y 5
(87)
10. Whena = 0, and y = kp:
1 9 1 6,
1) = - + |- —=.
e . 6pkoIn(b) 2k |~ 38, (88)
)

b 2pk2oInb

r

5 The fractional effects

The non integer derivative operators are undeveloped and straightforward. Nevertheless,
fractional calculus is a key tool for modelling numerous phenomena raised across various
scientific fields (Podlubny 1999; Hilfer 2000; Kilbas 2010; Singh et al. 2022; Zhang and
Shu 2021; Anastassiou 2022; Wang et al. 2022). In the recent past, several kinds of frac-
tional order derivatives appeared. The unconventional fractional operators, as in the case
of Jumarie’s modified Riemann—Liouville derivative (MRLFD) (Jumarie 2006), local frac-
tional transform (LFD) (Yang et al. 2015), Beta (BFD) (Rahman et al. 2023, 2023; Atan-
gana et al. 2016) and M-truncated (MTFD)derivatives (Rahman et al. 2023, 2023; Sousa
et al. 2017), show the applicability in the traveling-wave theory of NLEEs. Such deriva-
tives agree the majority of conventional Newtonian definitions and properties of derivative,
namely, linearity, product, quotient, and chain rules.

Here, we limit the fractional effects on wave propagation of our model to those obtained
by Beta, M-truncated, and modified Riemann—Liouville fractional derivatives. The basics
used definitions and properties of these operators are as following:

Definition 1 (BFD) The p-order Beta fractional derivative of a function g : [z, ) — R,
7 > 0, is defined as (Atangana et al. 2016)

1—
q<z+h(t+ ﬁ) ,,> -4 @)
p :

0D (q(1) = lim

Theorem 1 Assume that q and p are f-differentiable with p € (0, 1], the following proper-
ties are satisfied:

1. The BDF is linear.

Z.QD”(C) =0,CeR

t
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3. 4D (q(1).p(1)) = p(tYaD{(q(t)) + q(t}y D} (p(D)).
4.4D%(q(1).p(1) = p(YAD! (q(1)) + g(tYAD! (p(1)), provided p(t) # 0.

5. 0D (q(p(1)) = p' (1), D} (q(p(1))), provided that p(?) is differentiable, and q(t) is p-dif-
ferentlable on the range of p.

1—
ADp(q(t)) = (t + m) pq’(t), provided that q(t) is differentiable.

Definition 2 (MTFD) The p-order M-truncated fractional derivative of a function
q : [r,0) > R, 7 >0, is defined as (Sousa et al. 2017)

q(;E,(ht™")t) — (1)

DP1 =1 90
Dy (g(0) = lim . : (90)
where, n > 0, and
i §
E (s) = — > 0,5 € C,
i (s) ;FWH) n>0.s o1

defines the one-parameter truncated Mittag-Leffler function. The MTFD satisfies the first
five properties in Theorem 1. In addition, the following property:

q @), 92)

.11 =,
Dy (g(0) = T+ 1)

is verified. The M-truncated fractional operator is considered as a generalization of the
conformable fractional derivative (Az-Zo’bi et al. 2021).

Definition 3 (MRLFD) Suppose g(x,1),t € R is continuous. The p-order modified Rie-
mann-Liouville derivative is given by

4(1)—=g(0)
r< p) di / =0T de, <0,
D} (q(1)) = 4(1)—g(0) (93)
e p)dt/ oy dr, 0<p<l,

(q(p ")(t))(n), I<n<p<n+l.

The MRLEFD satisfies classical linearity, product, and chain rules of integer-order deriva-
tive. Moreover, for ¢ > 0, we have
I'a+o
ra+<-op

The time-fractional version of the p—system in Eq. 1 is considered. The NEDAM is
employed with the following modifications of wave transformation Eq. 4:

1 4
=x+- (+m> 95)

D}(1°) = 7. (94)
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Fig. 1 The 3D a dynamical behavior and regarding, b contour plots of the gas volume in Eq. 54

-5

(®)

Fig.2 The 3D a dynamical behavior and regarding, b contour plots of the gas volume in Eq. 86

{=x+v

T(n+1),
Y, r, (96)

and,

P

C=X+V—F(p+1)’

o7
for the BFD, MTFD, and MRLFD respectively. The rest of solving steps carry out identi-

cally as listed in Sect. 4. Also, the soliton solution will be as above with replacing the
parameter ¢ by its corresponding value in each fractional derivative case. The assumption
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o

-5

(b)

Fig.3 The 3D a dynamical behavior and regarding, b contour plots of the gas volume in Eq. 88

of wave transformation in the local fractional derivative (LFD) situation, the parameter ¢ is
postulated as in Eq. 96.

6 Discussion and conclusion

In this article, the (141) dimensional non-monotone p-system with general cubic nonlinear
viscosity-capillarity van der Waals pressure is presented, and studied analytically for the
first time. The system arises in fluid dynamics, especially in the gas longitudinal isothermal
transition. The recent developed traveling-wave technique, named the extended direct alge-
braic method (NEDAM)(Almatrafi et al. 2021; Tasnim et al. 2023; Mirhosseini-Alizamini
et al. 2020; Javad Vahidi et al. 2021; Salathiel et al. 2019; Kurt et al. 2020; Giinerhan et al.
2020; Hussain et al. 2022; Munawar et al. 2021; Igbal et al. 2023), is applied to derive vari-
ous types of soliton solutions for the considered model. This method is a generalization of
the well-known generalized Riccati equation mapping method (Altawallbeh et al. 25022;
Az-Zo’bi et al. 2022). Within two nonempty hyperbolic and elliptic regions, the gas transi-
tion ill-posedness causes an instability while pursuing numeric, or numeric-analytical solu-
tions. To overcome such cases, the closed form analytical solutions gained the researchers’
interests.

Through the listed solutions of the auxiliary equation Eq. 7, which can be derived by
the ansatz method and normal techniques for special cases, the NEDAM guarantees condi-
tional existence of periodic, singular, dark, mixed bright-dark, and combined soliton solu-
tions of nonlinear evolution equations (NLEESs). In our case, three different sets of exist-
ence constrains have been derived by the aid of symbolic computation MATHEMATICA.
Many other sets can be derived. For the set of parameters in Eq. 51, all possible solitons
were typed in Sect. 4. The 3D propagation dynamical behavior of some derived solitons
and the corresponding contours are figured as follows:

@ Springer



E.A.Az-Zo'bi et al.

629 Page 18 0f 23

Fig.4 The 2D time-fractional q1‘11 (g‘ovg,)
effect on a ql’l(x, 0.5), Eq. 54,

b g, 33(x,0.5), Eq. 86, and ¢
q135(x,0.5), Eq. 83, with p = 0.3,
and P =0

\,
e

AN
\
NS
|

W N ————

RSN

(a)
g1,33(x,0.5)

3+

— p=1
—— BFD
MTFD
7 ~———— MRLFD

(b)
91,35(x,0.5)

10T

— p=1
—— BFD
T MTFD
5 10
~——— MRLFD

S ——

—-_—

(c)

of gas volume ¢ ,(x,1),

the dynamical behavior
is  obtained subject to

1. Figure 1 shows
Eq. 54. The periodic wave  propagation
b=2,y=2,a=0.75=05,0=1,6=0.1,¢,=1,6,=0,6; =-2,andr=s = 1.

2. The anti-kink dark soliton solution of gas volume g 3,(x, 1), Eq. 86, is plotted in

Fig.2forb=2,p=4,y =2,0=1,6=0.1,¢,=3,6,=0.1,6; =—l,and r = s = 2.
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Fig.5 The 2D time-fractional
effect on a g, ; (x, 2), Eq. 54,

b g, 33(x,2), Eq. 86, and ¢
q135(x,2), Eq. 88, with p = 0.3,
and P =0

\

91,33(x.2)

3+

2f

1+

\

— p=1
—— BFD
= x MTFD

-15

~——— MRLFD

— p=1
—— BFD
= x MTFD

-15 -10 -5

~——— MRLFD

—_—

(c)

3. The singular-kink dark soliton solution of gas volume ¢, 35(x,?), Eq. 88, is depicted
inFig.3forb=2,=1,k=0.5,0 =05, =2,¢c, =-1,6,=1,6; =—l,andr =5 = 2.

4. Figure 4 shows the 2D (0.3)-order time-fractional effects of BFD, MTFD, and
MRLEFD for the solitons in Figs. 1, 2, and 3 respectively for = 0.5. Fort =2 and p = 0.3,
the comparison of considered fractional derivatives with the first-order derivative of
obtained solitons in Figs. 1, 2, and 3 is illustrated.
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Since y # 0, The mixed bright-dark soliton can’t be obtained for this set of parameters.
Many other periodic, singular, kink, and kink-like structures can be constructed with the free
choices of unconditional parameters. These portraits clearly show the stability of solutions on
the indicated domains. Also, they will be helpful to conclude the physical properties of the
considered model that allow specialists to draw conclusions in an efficient way (Fig. 5).

To generalize our work, due to the high importance of fractional calculus, the time-
fractional versions, in the Beta, M-truncated and modified Riemann—Liouville senses, are
analyzed, compared, and illustrated.
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