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Abstract
Marcatili’s analytical solution for the guided modes of rectangular optical waveguides 
(ROWGs) depends on (1) using the separation of variables (SOV) and (2) applying the par-
axial approximation. It results in two classes of modes: the TE-like and the TM-like modes 
which are supported by these waveguides. These modes are uncoupled under low-index-
contrast conditions. In the case of silicon-on-insulator (SOI) waveguides, the coupling 
between them can no longer be neglected. This paper extends using the SOV to find ana-
lytical modal solutions of SOI-ROWGs. It expands these solutions in quadruples of plane 
waves and develops a novel non-paraxial scattering model to account for the polarization 
coupling between these waves under high-index-contrast conditions. This model yields 
approximate analytical expressions of the field components of the guided modes which 
are the sum of major and minor Marcatili’s TE-like and TM-like modal fields. Numeri-
cal examples show excellent agreement with the field components of full-vectorial mode 
solvers.

Keywords Integrated optics · Optical polarization · Optical Waveguides · Photonic 
integrated circuits · Silicon photonics · Waveguide theory

1 Introduction

Marcatili’s famous analytical solution for the guided modes of rectangular optical wave-
guides (ROWGs) has been used since the early days of integrated optics (Marcatili 1969). 
It sets up, in addition to other approximate analytical approaches, the foundations of the 
theory of integrated optical waveguides. It neglects the fields in the shaded regions of the 
cladding (see Fig. 1), which applies under strong confinement conditions. Then, it employs 
two basic assumptions. The first assumption uses the separation of variables (SOV) to get 
a simplified modal field solutions in the core and cladding regions. The second assumption 
selects modes made of paraxial plane waves. It results in two uncoupled TE-like and TM-
like modes which are essentially TEM waves of orthogonal polarizations. These modes 
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belong to low-index-contrast waveguides which are not used in high-density photonic 
integrated circuits made by the silicon-on-insulator (SOI) technology. This technology 
has attracted the attention of the photonics community for more than two decades and is 
expected to have a potential impact on the photonics industry in the future. One of the main 
deficiencies in the toolbox of designers of the photonic components in this high-index-
contrast technology is the lack of full-vectorial analytical solutions of the guided modes 
of optical waveguides. These solutions enable using fast full-vectorial mode propagation 
analysis of silicon integrated optical devices, including couplers, ring resonators, arrayed 
waveguide gratings, and polarization splitters, e.g., in (Sui et al. (2015); Xie et al. 2023; Li 
et al. 2023; Pan and Rahman 2016). Despite the inherent assumptions and approximations 
used in analytical solutions, they help designers in choosing their initial design parameters 
before being subsequently refined and optimized using sophisticated 3D numerical compu-
tational and simulation tools. As a result, they save tremendous amount of time and effort 
in the design and optimization process. In this sense, the continuous improvement of exist-
ing approximate analytical solutions is significantly important.

While an improved method has been reported in Westerveld et  al. (2012) that adopts 
SOV solutions and extends the use of Marcatili’s approach to SOI-ROWGs, this method 
does not apply boundary conditions to all modal field components. Due to a gap between 
the number of boundary conditions and the number of unknown field parameters, they are 
only applied to selected field components in favor of others (Westerveld et al. 2012). This 
selective application of boundary conditions gives rise to an error which is minimized by 
minimizing a contour-integration metric that may intuitively be interpreted as energy den-
sity but does not have a rigorous physical meaning (Westerveld et  al. 2012). While the 
derived analytical expressions show excellent agreement with the numerical computa-
tions for the first three modes of a typical SOI waveguide, they fail to yield accurate results 
under the so-called “avoid-crossing” conditions, where two guided modes have similar 
effective index (Westerveld et  al. 2012). To overcome these limitations and ambiguities, 
there is a need for a rigorous model that adopts simple SOV solutions yet applies boundary 
conditions to all modal field components and gives a physical insight to the propagation of 
modes in SOI-ROWGs.

This paper invokes a plane-wave ray scattering approach to develop this model. 
As a ray approach, it gives a “visual” picture that provides better understanding of 

Fig. 1  Schematic of the cross 
section of a ROWG showing the 
refractive indexes of the core 
and the cladding. The hatched 
regions of the cladding have no 
contact surface with the core
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modal propagation. To the best of our knowledge, it has not been previously applied to 
describe modal propagation in SOI-ROWGs. To retain the basic physical picture while 
minimizing the mathematical complexity, this paper only considers symmetric ROWGs 
with uniform cladding refractive index, as shown in Fig. 1. Nevertheless, the developed 
model may directly be extended to the general case of asymmetric ROWGs considered 
in Westerveld et al. (2012). It follows Marcatili’s approach in assuming SOV solutions. 
Yet it expands these solutions in quadruples of plane waves to apply exact analytical 
scattering rules which are not limited by the paraxiality of the waves or by the index-
contrast conditions. These rules ensure that boundary conditions are applied to all field 
components. Total internal reflection (TIR) matrices are derived to enable full-vectorial 
analysis of the scattered plane waves. This scattering analysis reveals coupling between 
the modes of the slabs made by the boundaries of the core in the vertical and horizon-
tal directions. It results in two quasi-guided (QG) modes that propagate as pairs of TE 
or TM modes of these slabs. These modes are referred to as the TE–TE and TM–TM 
modes. They are the modified version of Marcatili’s TE-like and TM-like modes which 
incorporate polarization coupling. Their field components are the sum of coupled major 
and minor field components of these modes. Under strong polarization coupling, they 
do not exactly satisfy the Marcatili’s resonance conditions, which results in phase and 
polarization errors. These errors are minimized to identify the effective indexes of these 
modes and the amplitudes of their minor field components. The paper is organized 
as follows. Section  2 expresses the SOV modal solutions as a superposition of plane 
waves. It presents a full-vectorial model of the scattering of these waves inside the core 
of the ROWGs. Section 3 introduces the errors in satisfying the Marcatili’s resonance 
conditions which are induced by polarization coupling. It uses optimization to find the 
modal effective indexes. Section 4 uses optimization to find the modal polarization. It 
gives analytical expressions of the field components of the TE–TE and TM–TM modes. 
Section 5 compares the plane-wave scattering approach with the improved Marcatili’s 
method reported in Westerveld et al. (2012). Finally, Sect. 6 presents the conclusion.

2  Plane‑wave scattering model

2.1  Plane‑wave recycling

Consider a ROWG of width a and thicknessb . The core has refractive index n1 sur-
rounded by a cladding of lower refractive index,n2 , as shown in Fig.  1. The SOV 
solution of Helmholtz equation for the fields of the guided modes in the core of the 
waveguide is the product of sinusoidal functions in the x and y directions. It is straight-
forward to show that this product may be replaced by a quadruple of plane waves whose 
propagation constant vectors, k =

(
±kx ±ky �

)
 . The signs(+,+),(+,−) , (−,+) , and 

(−,−) correspond to waves 1, 2, 3, and 4, respectively. Starting from wavei , the TIR at 
the horizontal or vertical boundaries of the core recycles it into another wave f  of the 
same quadruples of waves and then back into itself after consecutive reflections, see 
Fig. 2.
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2.2  Total internal reflection matrices

To incorporate their field polarization, the TIR of these waves is described by the following 
matrices,

and

at the horizontal and vertical boundaries of the core, respectively. See Appendix A for 
details. The parameters, kx = kx∕

√
k2
x
+ �2 , ky = ky∕

√
k2
y
+ �2 , �x = �∕

√
k2
x
+ �

2 , 

�y = �∕
√

k2
y
+ �

2 , and �0x∕y = �
⟂x∕y + �∥x∕y , where �∥x∕y and �

⟂x∕y are the TIR coefficients 
of the parallel and normal polarizations at the horizontal and vertical directions, respec-
tively. The upper and lower signs of the off-diagonal elements of H

_

 and V
_

 correspond to 

incident waves with positive and negative signs of kx and ky , respectively.

(1)H
_

=

⎛⎜⎜⎜⎝

�
2

x
�0y − �∥y 0 ∓kx�x�0y

0 �∥y 0

∓kx�x�0y 0 k
2

x
�0y − �∥y

⎞⎟⎟⎟⎠

(2)V
_

=

⎛⎜⎜⎜⎝

�∥x 0 0

0 �
2

y
�0x − �∥x ∓ky�y�0x

0 ∓ky�y�0x k
2

y
�0x − �∥x

⎞⎟⎟⎟⎠

Fig. 2  Schematic of the propaga-
tion of plane-wave rays inside 
the core of a ROWG showing 
consecutive reflections which 
recycle one wave into another
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2.3  Coupling between slab waveguide modes

The normalized electric field vectors of the ith plane waves which constitute the modes of 
the slabs made by the horizontal and vertical boundaries of the core are denoted by E

_ i

 and 

�
_ i

 , respectively (see Appendix B). They are the eigen vectors of the double reflection matri-

ces H
_

2 and V
_

2 corresponding to the TE or TM polarization. They transform to field vectors 

of the same mode when reflected by the boundaries of the same slab. This transformation 
is described by,

and

where E
_ f

 and �
_ f

 are the final field vectors in the recyclying process. The recycled pairs ( i, f  ) 

are (1, 2) and (3, 4) at the horizontal surfaces and (1, 3) and (2, 4) at the vertical surfaces. 
The left and right suffix of the reflection coefficients correspond to the TE and TM modes, 
respectively. The parameter � is zero for TE modes and unity for TM modes. The field vec-
tors, E

_ i

 and �
_ i

 couple at the boundaries of the slab waveguide where they are no longer 

eigen vectors. This coupling is described by,

and

where the parameter, � = kxky is a measure of paraxiality of the waves for both TE and TM 
polarizations. These equations describe back and forth coupling between E

_ i

 and �
_ i

 as the 

plane waves propagate along the ROWG. They couple the TE/TM polarized modes of the 
horizontal slab represented by E

_ i

 to the mode of the same polarization of the vertical slab 

which is represented by �
_ f

 . This coupling means that the TE (TM) polarized wave contin-

ues to propagate as a TE (TM) wave either with respect to the horizontal or vertical bound-
aries of the waveguide core. Apart from a propagation phase, Eqs. (3) through (6) represent 
the equations of “motion” of the plane waves inside the core of the ROWG.

2.4  TE–TE and TM–TM modes

Since the field vectors E
_ i

 and �
_ i

 of the modes of the horizontal and vertical slabs are cou-

pled at the boundaries of the core as described by (5 and 6), the field vector E
_ i

 of the plane 

waves constituting the guided modes of the ROWG must be a linear combination of these 
two vectors,

(3)H
_

E
_ i

= �
⟂y∕∥yE

_ f

(4)V
_

�
_ i

= (−1)��
⟂x∕∥x�

_ f

,

(5)V
_

E
_ i

= (−1)1+��∥x∕⟂xE
_ f

+ ��ox�
_ f

(6)H
_

�
_ i

= −�∥y∕⟂y�
_ f

+ (−1)���oyE
_ f
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These guided modes are either TE–TE or TM–TM modes depending on the polarization 
of E

_ i

 and �
_ i

 . The amplitudes ui and wi are, by definition, invariant along the direction of 

propagation. Unless otherwise stated, we assume that the waves are initially reflected by 
the horizontal boundaries, i.e., ky∕kx > b∕a . This assumption implies that ui is the inde-
pendent mode amplitude while wi is a dependent amplitude that results from polarization 
coupling at the vertical sidewalls. It puts no restriction on the analysis as the horizontal and 
vertical parameters may always be interchanged. Because of symmetry, ui is the same for 
all waves except for a possible change in sign that accounts for the even and odd symmetry 
of the modal fields in the horizontal and vertical directions. Also because of symmetry, the 
polarization coupling parameter, cp ≡ wi∕ui is independent of the wave number i . Accord-
ing to (5), this parameter vanishes in the paraxial limit, � → 0 , and the modes become 
entirely determined by E

_ i

 . In this limit the TE–TE and TM–TM modes are identical to the 

Marcatili’s TE-like ( Ex
pq

 ) and TM-like ( Ey
pq ) modes, respectively (Marcatili 1969). Away 

from this limit, they add to both of the major components of these modes other minor field 
components which result from the polarization coupling, as shown below.

2.5  Transport matrices

Since E
_ i

 and �
_ i

 are known eigen vectors (see Appendix B), it is sufficient to monitor the 

evolution of the amplitude vector, A
i
=
(
ui wi

)t , of the scattered waves, where the super-
script t stands for transpose. This is done by reducing the above equations of motion of E

_ i

 

and �
_ i

 in (3–6) to the following transport equations of A
i
,

where

and

are the transport matrices of the horizontal and vertical surfaces of the core, respectively. 
These matrices are, indeed, unitary matrices, which conserve the Euclidean norm of A

i
 . 

Inspection of (9 and 10) shows that they do not commute.

(7)E
_ i

= uiE
_ i

+ wi�
_ i

(8)
A
f
= T

_H∕V

A
i

(9)T
_H

=

(
�
⟂y∕∥y (−1)���oy
0 −�∥y∕⟂y

)

(10)T
_ V

= (−1)�
(

−�∥x∕⟂x 0

(−1)���ox �
⟂x∕∥x

)
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3  Guided‑mode resonance conditions

3.1  Polarization‑coupling induced errors

A plane wave executing even number of reflections in either vertical or horizontal direc-
tions must replicate itself to sustain modal propagation. Suppose that the wave executes 
2m1 reflections at the top and bottom horizontal surfaces of the core followed by one reflec-
tion at the vertical sidewall. Then it executes  2m2 reflections at the horizontal surfaces fol-
lowed by another reflection at the other vertical sidewall before it replicates its path, as 
shown in Fig. 2. The transport matrix of the wave along this path, M

_

= T
_ V

T
_

2m2

H

T
_ V

T
_

2m1

H

 . To 

constitute a guided mode, the vector A
i
 must be an eigen vector of M

_

 . In addition, to ensure 

consistent propagation of this modes, its eigen value � must satisfy the transverse reso-
nance condition (TRC),

In the paraxial limit ( � → 0 ) � = (�∥x∕⟂x)
2(�

⟂y∕∥y)
2(m1+m2) and (11) reduces to the Mar-

catili’s resonance conditions, (�∥x∕⟂x)
2e−2jkxa = 1 and (�

⟂y∕∥y)
2e−2jkyb = 1 of the TE-like and 

TM-like modes which are independent of m1 and m2 . Away from this limit, there is no solu-
tion of (11) which is independent of m1 and m2 . This result shows that there is a tradeoff 
between the accuracy of satisfying the TRCs and the strength of polarization coupling. As 
the coupling increases the accuracy of Maractili’s resonance conditions decreases and vice 
versa. It implies invoking optimization techniques to compute the modal effective indexes 
of the modes of high-index-contrast waveguides.

3.2  Multipath interference

To investigate the effect of varying the number of double reflections in the vertical and hori-
zontal directions on satisfying the TRC, we carry out numerical computations of the matrix M

_

 

for an ensemble of rays executing different number of reflections. In these computations we 
assume that the ith waves of the quadruples of plane waves constituting the QG mode executes 
N double reflections at the vertical sidewalls of the core. Its trajectory traverses 2N half zigzag 

(11)�e−2jkxae−2j(m1+m2)kyb = 1

Fig. 3  Schematic of the propaga-
tion of plane-wave rays along the 
x–z and y–z’ planes of the core 
of a ROWG. The rays are formed 
as the plane waves fold in both 
vertical and horizontal directions. 
The folded waves interfere at the 
end of the wave trajectory
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paths (HZPs) in the horizontal direction (x–z plane). Each HZP is labeled by an integer s that 
increases from unity to 2N along the direction of propagation, as shown by the schematic in 
Fig. 3 Copies of the initial field vector are transmitted by different rays which all execute the 
same 2N horizontal reflections. Consider now the reflections of the wave in the y–z’ plane at 
the top and bottom surfaces of the core. Since the number of horizontal reflections is fixed, the 
ray path is determined by the number of vertical reflections it executes between the start and 
end point. Suppose that q is an integer that counts the number of vertical reflections along a 
single HZP. Then the minimum and maximum number of these reflections are qmin = 1 and 
qmax = Q(s) − Q(s − 1) , where Q(s) =

[
s
(
ky∕kx

)
(a∕b)

]
 and ⌊x⌋ denotes the floor of x . The 

expression of qmax is derived by applying simple geometrical rules. It assumes initial reflection 
of the wave in the vertical direction, i.e., 

(
ky∕kx

)
(a∕b) > 1 . Otherwise, the vertical and hori-

zontal parameters must exchange. Each selection of q and s identifies a different path of the 
ray. Again, all these paths start at the same initial point and end up at the same final point after 
the wave executes 2N horizontal reflections and different number of vertical reflections that 
depend on q and s . The transport matrix of the ray that executes 2N horizontal reflections and 
q vertical reflections in the sth HZP is,

with

Note that unlike M
_

 the transport matrix M
_

′ incorporates the propagation phase. Also note 

that Q(s − 1) represents the number of vertical reflections executed by the ray in the initial 
s − 1 HZPs. Only when these reflections have been executed when the ray execute other q ver-
tical reflections at the subsequent HZP. The number of reflected rays, ZN =

∑2N

s=1
qmax . It is the 

same as the overall number of vertical reflections executed along the wave trajectory. Only 
rays with an index q∗ which yields an even number of the sum, q∗ + Q(s − 1) execute double 
vertical reflections. Each of these rays satisfy a TRC.

3.3  Modal effective indexes

Once M
_

′ is computed for a given ray path (q∗, s,N) , its trace and determinant are computed to 

get its eigen value �′ . Unlike � of Sect. 3.1, �′ incorporates the propagation phase delay. Thus, 
the TRC in (11) reduces to �� = 1 . Because of the unitarity of M

_

′ , this condition is automati-

cally satisfied in magnitude. The error r�(s, q∗,N) in satisfying the phase condition equals the 
wrapped phase �(s, q∗,N) of �′ , which is limited between −� and � . The effective indexes of 
the QG modes are calculated by minimizing the absolute phase error ||r�(s, q∗,N)|| for all the 
rays executing double reflections at all N . This is done by searching for the minima of the 
error function,

(12)M
_

� = e−j(2N−s+1)kxae−jqkybT
_ V

(2N−s+1)T
_H

qM
_ o

�

(13)M
_ o

� = e−j(s−1)kxae−jQ(s−1)kybT
_ V

(s−1)T
_H

Q(s−1)

(14)f
(
kx, ky

)
≡

1

ZT

Nmax∑
N=1

2N∑
s=1

∑
q

||r�(s, q∗,N)||
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where ZT = 
∑Nmax

N=1
ZN is the total number of rays in the statistical ensemble while Nmax is an 

arbitrary large number that ideally tends to infinity. The entire parameter space over which 
the search is done is bounded by k2

x
+ k2

y
<
(
n2
1
− n2

2

)
k2
o
 . This bound ensures that 𝛽 > n2ko . 

In addition, the vertical ( kx = 0 ) and horizontal ( ky = 0 ) axes corresponding to the modes 
of the horizontal and vertical slab waveguides are excluded from the search space. It is sub-
divided into two subspaces. The subspace where ky∕kx > b∕a , as assumed by default in this 
work, and the subspace where ky∕kx < b∕a . In this latter subspace T

_ V

 and T
_H

 as well as kxa 

and kyb interchange in the computation of M
_

′.

3.4  Numerical examples

Consider computing the effective indexes of the TE–TE and TM–TM modes of a ROWG 
with n1 = 3.5, n2=1.5, a=0.5 µm, and b=0.2 µm. The error function in (14) is computed at 
Nmax=20 (200 rays) and a uniform discretization step of 0.01 µm−1 in kx and ky . All compu-
tations are done at a free-space wavelength of 1.55 µm. The results show that the average 
error fluctuates around 1.5 rad in the entire computational space except at two points where 
it has local minima of different depths. These points appear in the contour plot of Fig. 4a. 
The first point corresponds to a TE–TE mode. It reaches a minimum of 0.28 rad (depth of 
1.22 rad) at kx =5.90 µm−1 and ky=8.48 µm−1. The corresponding modal effective index is 
2.40. The second point corresponds to a TM–TM mode. It reaches a minimum of 0.69 rad 
(depth of 0.81 rad) at kx=4.76 µm−1 and ky=11.74 µm−1. The corresponding modal effec-
tive index is 1.58. The values of kx and ky for the TE–TE and TM–TM modes coincide 
with the solution of Marcatili’s resonance conditions of the fundamental TE-like (circle) 
and TM-like (square) modes. This result shows that the Marcatili’s resonance conditions 
compute the effective indexes of the QG modes beyond the paraxial limit from a statistical 
average perspective. Numerical computations with a commercial mode solver that employs 
finite difference approach (Zhu and Brown 2002) with PML boundary conditions yield 
effective indexes which are within 10% of the computed values. See the rows of Table 1 
corresponding to a∕b = 2.5 for details. 

Consider now a square waveguide with a=b=0.5 µm with all other parameters 
unchanged. A contour plot of the error function in (14) of both TE–TE and TM–TM modes 

Fig. 4  Contour plot of the error function in (14) in the kx-ky space for a ROWG with n1 = 3.5 , n2 = 1.5, and 
a = 0.5 µm. The thickness b equals 0.2 µm in (a) and 0.5 µm in (b). The circles and squares surround points 
corresponding to the Marcatili’s TE-like and TM-like modes, respectively. Blue and red colors denote the 
TE–TE and TM–TM modes, respectively. All solutions lie in the yellow region where 𝛽 > n2ko
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is shown in Fig. 4b. There are two TM–TM modes and one TE–TE mode supported by 
the waveguide. Because of the geometrical symmetry of the core, these modes have two-
fold degeneracy. The points of the space corresponding to each mode exist in pairs with 
kx and ky interchanged. One solution in each pair corresponds to a TE-like mode while the 
other solution corresponds to a TM-like mode. The TE–TE mode has one solution pair at 
ky∕kx=5.90 µm−1 and kx∕ky=9.31 µm−1. The solution at ( kx,ky) = (5.90, 9.31) corresponds 
to the Marcatili’s TE-like ( Ex

01
 ) mode while the other solution at (9.31,5.90) corresponds 

to the Maractili’s TM-like ( Ey

10
 ) mode. The TM–TM mode have two pairs of solutions at 

ky∕kx = 5.90 µm−1 and  kx∕ky = 4.76 µm−1 and at ky∕kx = 11.26 µm−1 and  kx∕ky = 4.76 
µm−1. The first pair at (5.90,4.76) and (4.76,5.90) correspond to the TE-like ( Ex

00
 ) and TM-

like ( Ey

00
 ) modes, respectively. The second pair at (11.26, 4.76) and (4.76,11.26) corre-

spond to the TE-like ( Ex
10

 ) and TM-like ( Ey

01
 ) modes, respectively. As expected, this result 

shows that because of the symmetry of the core in the case of unity aspect ratio the TE–TE 
/TM–TM modes are no longer affiliated with the Marcatili’s TE-like/ TM-like modes. They 
may be regarded as the supermodes which result from coupling between the TE-like and 
TM-like modes. In this case, the aspect ratio plays a role similar to asynchronicity in con-
ventional couplers (Nishihara et al. 1989). It controls the weights of the coupled modes so 
that under unity aspect ratio they are equally weighted. Table 1 shows the computed effec-
tive indexes of the TE–TE and TM–TM modes of the ROWG in this example ( a∕b = 1 ) 
and compares them with those computed by the numerical mode solver used in the previ-
ous example. It shows that the error in effective indexes remains within 11%. It also shows 
a discrepancy in the effective indexes computed by the numerical solver for modes that 
have identical effective indexes due to symmetry.

4   Field components of quasi‑guided TE‑TE and TM‑TM modes

4.1  Analytical expressions

The field vectors of the plane-waves constituting the TE–TE and TM–TM modes are 
expressed by the linear combination in (7) which has one independent constant, ui . The 
other constant,wi = uicp , is completely determined in terms of the polarization coupling 

Table 1  Parameters of the modes of the ROWGs in the numerical examples of Sect. 3.4

Aspect 
ratio, 
a/b

ROWG 
mode

Equivalent 
Marcatili’s 
mode

Effective index Polarization coupling parameter, cp

Marcatili Numerical Error% Mean magnitude Mean angle (rad)

2.5 TE–TE TE-like ( Ex
00

) 2.3986 2.4040 − 0.22 0.461 3.143
2.5 TM–TM TM-like ( Ey

00
) 1.5755 1.7200 − 8.40 0.599 − 0.003

1 TE–TE TE-like ( Ex
01

) 2.2025 2.3333 − 5.61 0.543 3.153
1 TE–TE TM-like ( Ey

10
) 2.2025 2.0557 7.14 0.543 − 0.012

1 TM–TM TE-like ( Ex
00

) 2.9580 2.9552 0.09 0.314 3.149
1 TM–TM TM-like ( Ey

00
) 2.9580 2.9551 0.10 0.314 − 0.008

1 TM–TM TE-like ( Ex
10

) 1.7751 1.9802 − 10.4 0.591 3.139
1 TM–TM IM-like ( Ey

01
) 1.7751 1.6024 10.8 0.591 0.002
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parameter, cp , as explained above. Due to symmetry, the constants,ui = ±u , for 
alli = 1, 2, 3, 4 . The ray path dependence of eigen values of M

_

′ outlined in Sect. 3.2 gives 

rise to statistical variations in cp . To arrive at an optimized solution of the minor field com-
ponents of the modes made by the scattered waves a least-square approximation is invoked, 
which replaces cp with its statistical average  cp . Then their plane wave field vectors are 
added after assigning their retardation phase. This addition constructs modes with four dif-
ferent even/odd symmetries with respect to the vertical and horizontal axes passing through 
the center of the core. For convenience these forms have been unified in one form. In this 
unified form, the electric field components of the TE–TE modes are the sum of (a) major 
field components (Marcatili’s TE-like Mode),

with EJy = 0 , (b) major field components due to polarization coupling,

where, � = �cp , and (c) minor Maractili’s TM-like field components,

where A is an arbitrary amplitude while �x = kx(x − a∕2) +
(
mx + 1

)
�∕2 , and 

�y = ky(y − b∕2) +
(
my + 1

)
�∕2 . The parameters mx and my are the mode orders in the x 

and y directions. The origin of the x and y coordinate axes in this unified form coincides 
with the lower left corner of the waveguide core. The bar denotes the components of the 
Marcatili’s modes in the absence of polarization coupling while the tilde denotes the extra 
components due to this coupling. The suffixes J and N stands for major and minor, respec-
tively. The parameter, F = �∕kxky while β , Kx , and Ky are normalized propagation constants 
as defined in Appendix B. Similarly, the magnetic field components of the TM–TM modes 
are the sum of (a) major field components (Marcatili’s TM-like Mode), HJx , HJy = 0 , and 
HJz , (b) major field components due to polarization coupling, H̃Jx , H̃Jy = 0 , and H̃Jz , and 
(c) minor Marcatili’s TE-like field components, H̃Nx , H̃Ny , and H̃Nz . All these components 
are obtained after replacing the electric field E with the magnetic field H and � with −� in 
(15-20). It should be noted that the field expressions in (15-20) are only valid for modes 
satisfying the condition ky∕kx > b∕a , as assumed by default in this work. If this condition 
is not satisfied, then the x and y components of the fields as well as all other x and y param-
eters must interchange.

(15)EJx = A�xsin�xsin�y

(16)EJz = −jAkxcos�xsin�y,

(17)ẼJx∕y∕z = �EJx∕y∕z,

(18)ẼNx = −�FkxKyAsin�xsin�y,

(19)ẼNy = −�F

√
K

2

x
+ β2Acos�xcos�y,

(20)ẼNz = −j�FKy�xAcos�xsin�y
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4.2  Numerical examples

To verify the utility of the derived analytical expressions in (15-20), they are compared 
to the modal fields computed by a full-vectorial mode solver that employs finite element 
method with PML boundary conditions. Since Maxwell’s equations relate electric and 
magnetic fields, it is sufficient to compare the analytical with the numerical solutions for 
only one of these fields. The error metric that describes the difference between the two 
solutions of the �th field component of the TE–TE modes is,

The electric field E is replaced with the magnetic field H for the error of the TM–TM 
modes. The double sum in (21) is over the points 

(
xi, yj

)
 of the 2D grid in the x-y plane 

where computations are done. The suffix A and N stands for the analytically and numer-
ically computed fields respectively. Both analytical and numerical fields are normalized 
such that the sum of the square of their Euclidean norms inside the core of the waveguide 
is unity. This normalization ensures equal energies of both fields inside the core. Com-
putations of Δx , Δy , Δz , and their sum (total error) were carried out for the x , y , and z 
field components of the TE–TE and TM–TM modes of SOI-ROWGs with different core 
dimensions. The results of computations in Table 2 show that the error remains below ~ 4% 

(21)Δ� =
∑
j

∑
i

|||E
(n)

A�

(
xi, yj

)
− E

(n)

N�

(
xi, yj

)|||
2

Table 2  Error in the analytical expressions of the field components of the TE–TE and TM–TM modes com-
pared to numerical computations

a/b ROWG mode Equivalent Marcatili’s 
mode

Errors in analytical expressions

x y z Total error

0.5/0.2 TE–TE TE-like ( Ex
00

) 0.0077 0.0018 0.0015 0.0110
0.5/0.2 TM–TM TM-like ( Ey

00
) 0.0123 0.0012 0.0429 0.0563

0.5/0.5 TM–TM TE-like ( Ex
00

) 0.0034 0.0107 0.0024 0.0165
0.5/0.5 TM–TM TM-like ( Ey

00
) 0.0118 0.0032 0.0024 0.0173

1.0/1.0 TE–TE TM-like ( Ey

20
) 0.0304 0.0053 0.0082 0.0439

1.4/0.3 TE–TE TE-like ( Ex
20

) 0.0356 0.0005 0.0149 0.0510
1.4/0.3 TE–TE TM-like ( Ey

00
) 0.0121 0.0001 0.0007 0.0130

Fig. 5  Effective index of the 
TM–TM (TM-like Ey

00
 ) mode 

(blue) and the TE–TE (TE-like  
Ex
20

 ) mode (red) against wave-
guide width a in µm for a SOI-
ROWG with n1 = 3.5 , n2 = 1.5

, and b = 0.3 µm. The inset 
zooms in on the point where the 
two modes have similar effective 
index

1.2 1.3 1.4 1.5
2.4

2.5

2.6

2.7

1.395 1.400 1.405

2.600

2.604
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for the individual field components while the total error remains below ~ 6% for all SOI-
ROWGs, even for those waveguides with unity aspect ratio.

The improved Marcatili’s method reported in Westerveld et  al. (2012) fails under the 
so-called “avoid crossing” condition where two of the waveguide modes have similar effec-
tive indexes. To inspect the utility of the derived analytical expressions in (15-20) under 
this condition, the effective indexes of the modes of an SOI-ROWG of thickness b = 0.3 
µm were computed using the numerical mode solver as a function of waveguide width a . 
Figure 5 shows that that the effective index branches of the TM–TM (TM-like  Ey

00
 ) and the 

TE–TE (TE-like  Ex
20

 ) modes avoid crossing at a point where the width a = 1.4 µm. The 
contour plots of the analytically and numerically computed fields of both modes are shown 
in Fig. 6. The corresponding error metrics in Table 2 are all within ~ 5%. This result shows 
that the analytical expressions presented in (15-20) are in good agreement with the numeri-
cal computations under this “avoid crossing” condition.

5  Comparison with the improved Marcatili’s method

This section compares the plan-wave scattering approach with the improved Marcatili’s 
method in Westerveld et al. (2012) for the purpose of outlining the similarities and differ-
ences between the two. This comparison refers to the field components and waveguide axes 
according to the coordinate system of the current paper which is different from that in Wes-
terveld et al. (2012). The analytical expressions of the modal fields in section II-A in West-
erveld et al. (2012) result in modal solutions with Ey = 0 (or Hy = 0 ) when boundary con-
ditions are applied at the interfaces parallel (or normal) to the dominant field component. 

Fig. 6  Contour plot of the field components of the TM–TM (TM-like Ey

00
 ) mode (top) and the TE–TE (TE-

like  Ex
20

 ) mode (bottom). The analytical solutions are shown to the left in (a) and (c) while the numerical 
solutions are shown to the right in (b) and (d). The SOI-ROWG parameters are n1 = 3.5 , n2 = 1.5 , a = 1.4 
µm, and b = 0.3 µm
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These solutions may directly be obtained by adding the field vectors E
_ i

 of the plane waves 

1, 2, 3, and 4 in Appendix B after assigning their retardation phase. Since E
_ i

 has two polar-

izations corresponding to the TE and TM modes of the horizontal slab (of thickness b ), two 
types of modes result from this addition. They are the Maractili-type modes reported in 
Westerveld et al. (2012) where Ey = 0 and Hy = 0 for the TE and TM polarizations, respec-
tively. The addition of the four plane waves to get these solutions is equivalent to the super-
position of two modes of the horizontal slab made by the plane wave pairs (1, 2) and (3, 4) 
of field vector E

_ i

 which propagate at an angle with the z-axis (see Fig. 2). The interference 

between these slab modes results in a standing-wave along the wider dimension of the 
waveguide core (the x-axis). It gives a field solution which is the superposition of two slab 
modes that, indeed, satisfies the boundary conditions of the horizontal slab (along the y-
axis) and yet varies along the x-axis ( �∕�x ≠ 0 ). This variation led to the conclusion in 
Westerveld et al. (2012) that the dispersion relations of the horizontal slab of the TE and 
TM polarization are “in fact more general”. It motivated extending the Marcatili-type 
modes to the SOI waveguides. Unlike the traditional Marcatili’s modes which exactly sat-
isfy the boundary conditions of both horizontal and vertical slabs under the paraxial 
approximation ( � → 0 ) (Marcatili 1969), the analytical solutions of modes in Westerveld 
et al. (2012) admit non-paraxial solutions ( � ≠ 0 ) at the cost of satisfying exact boundary 
conditions only of the horizontal slab. Note that the waveguide core may always be rotated 
to make this slab vertical, e.g., in Fig. 1d in Westerveld et al. (2012). 

Despite the non-paraxiality of the analytical expressions in Westerveld et  al. (2012) 
which is required to describe the modes of SOI waveguides, they do not account for polari-
zation coupling between E

_ i

 and �
_ i

 at the boundaries of the vertical slab (of width a(> b)). 

This coupling is clearly seen by referring to (5) in Sect. 2.3 where the coupling between E
_ i

 

and �
_ f

 is described by the product of � and �ox . The parameter �ox is the sum of the reflec-

tion coefficients of the normal and parallel polarizations, �
⟂x and �∥x , at the boundaries of 

the vertical slab (See Sect.  2.2). It never vanishes, and as a result polarization coupling 
cannot, in principle, be ignored under non-paraxiality conditions ( � ≠ 0 ), which is obvi-
ously the case of the modes of SOI waveguides. Neglecting the coupling between E

_ i

 and �
_ i

 

in Westerveld et  al. (2012) resulted in four unknown field parameters in the waveguide 
core, namely, A1 , A2 , � , and � . These four parameters are equivalent to the four amplitudes 
needed to describe the four interfering waves of Sect. 2.1, yet of only the field vector E

_ i

 (i.e. 

excluding �
_ i

 ). Since the amplitudes of �
_ i

 ( wi’s) are independent of the amplitudes of E
_ i

 ( ui
’s) until boundary conditions are applied, the work in Westerveld et al. (2012) missed four 
unknown field parameters corresponding to the amplitudes wi ’s of the vector �

_ i

 that result 

from the polarization coupling at the vertical sidewalls. This vector must be incorporated 
for general description of modal polarization as is done in (7) of Sect. 2.4. Note that while 
E
_ i

 and �
_ i

 are not orthogonal they are linearly independent vectors which span all possible 

polarizations of a given plane wave. These four missing unknowns fill in the gap between 
the 16 boundary-condition equations and the 12 unknown field parameters ( A1 − A10 , � , 
and � ) reported in Westerveld et al. (2012). Their absence led to an overdetermined system 
of equations that necessitates applying boundary conditions on selected field components 
in favor of the others, i.e., exact boundary conditions are not applied in Westerveld et al. 
(2012). This is a fundamental difference between the analytical expressions of the modal 
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fields obtained by the improved Marcatili’s method and those given in (15-20) which sat-
isfy all boundary conditions. The selective application of boundary conditions limits the 
application of the improved method to cases where the unselected components may be 
ignored. Namely, when the width of the core is much larger than its thickness. It adds extra 
limitations to those already set by the SOV solutions which increase the error in the ana-
lytical expressions; particularly for higher-order modes or for SOI-ROWGs with aspect 
ratios close to unity.

Applying boundary conditions to all field components using exact scattering rules 
ensures that only the errors due to the SOV solutions are encountered in computations 
which is the best that can be done under the SOV assumption. These errors are described 
by the function f

(
kx, ky

)
 defined by (14) of Sect. 3.3 whose minima are close to zero but 

never exactly zero. They result from the mismatch between the exact modal solutions 
of the SOI-ROWGs (which may be obtained by numerical solvers) and the approximate 
analytical solutions which are based on the SOV assumption. The fact that the minima 
of f

(
kx, ky

)
 of the SOI-ROWGs take place at the Marcatili’s resonance conditions, as is 

shown in Sect. 3.4, is one of the main outcomes of this work. In (Marcatili 1969) these 
conditions were only applied to weakly-guided waveguides with no clue about their exten-
sion to high-index contrast waveguides. In (Westerveld et al. 2012), their use was extended 
to SOI-ROWGs, with no verification that they yield the optimum choice of kx and ky that 
minimizes the errors of the SOV solutions of the modes of these waveguides. Finally, the 
minimization of the contour integration metric Umm in Westerveld et al. (2012) is entirely 
different from the minimization of the error function f

(
kx, ky

)
 for two reasons. First, Umm 

not only minimizes the error in the SOV solutions but also due to the selective applica-
tion of boundary conditions. Second, while Umm may intuitively be interpreted as energy 
density that cannot be attached to a rigorous physical meaning, f

(
kx, ky

)
 has a well-defined 

physical meaning. It represents the sum of the absolute values of the phase errors in satis-
fying the guided-mode resonance conditions by the interfering plane-wave rays.

6  Conclusion

A novel plane-wave scattering model has been developed to describe modal propagation 
in SOI-ROWGs.The model assumes SOV solutions of the modal fields. It satisfies the 
boundary conditions of all field components and incorporates polarization coupling at the 
boundaries of the waveguide core. It yields approximate full-vectorial analytical expres-
sions of the fields of the guided modes of these waveguides. These expressions reduce to 
the field expressions of the Marcatili’s TE-like and TM-like modes when polarization cou-
pling is neglected. The Marcatili’s resonance conditions compute the modal propagation 
constants which minimize the error in the SOV solutions for all the modes. The derived 
expressions enable using mode propagation analysis to get fast full-vectorial analysis of sil-
icon photonic integrated circuits. Although the modal solutions are only given in the core, 
their extension in the cladding (excluding the hatched regions of Fig. 1) may directly be 
obtained by applying the boundary conditions along the core surface. The analytical model 
developed for the derivation of the guided modes applies exact scattering rules of the plane 
waves which may directly be extended to other asymmetric ROWGs under different metal-
lic or dielectric boundary conditions. It enables incorporating different wave propagation 
effects such as nonlinearity or anisotropy in future work.
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Appendix A: Total internal reflection matrices

Consider the TIR of a plane wave of propagation constant �⃗ki at the planar interface between 
two semi-infinite dielectric media. The unit vector normal to the plane of incidence, 
�n = �⃗ki × �g∕‖�⃗ki × �g‖ , where ĝ

_

 is the unit vector normal to the interface. The electric field of 

the incident wave E
i
 is the sum of the field normal to the plane of incidence, E

⟂i
= N

_

E
i
 , 

and the field parallel to the plane of incidence, E
∥i
=

(
I
_

− N
_

)
E
i
 . Here, I

_

 is the identity 

matrix while N
_

 is the matrix whose element Nij = n̂in̂j , where n̂i is the ith components of n̂ . 

The electric fields of the reflected wave which are normal and parallel to the plane of inci-

dence are, E
⟂r

= �
⟂
N
_

E
i
 and E

∥r
= �∥

(
2G
_

− I
_

)(
I
_

− N
_

)
E
i
 . Here G

_

 is the matrix whose 

element Gij = ĝiĝj where ĝi is the ith components of ĝ . Thus, the overall reflected field vec-

tor, E
r
= R

_

E
i
 , where R

_

= �
⟂
N
_

+ �∥

(
2G
_

+ N − I
_

)
 . The reflection matrix R

_

 is a symmetric 

matrix that is invariant under the transformations, n̂
_
↔ −n̂

_
 or ĝ → −ĝ . It is also invariant to 

translation of the planar dielectric interface. Under time reversibility condition, t → −t , the 
TIR coefficients, 𝜌⊥ → 𝜌∗

⊥
 and �∥ → �∗

∥
 while, G

_

 , N
_

 , and I
_

 remain the same. Hence the 

matrix, R → R∗ , which means that, E
i
= R

_

∗E
r
 and since E

i
= R

_

−1E
r
 , then the R

_

−1 = R
_

∗ . 

Combining this equality with the symmetry property shows that the reflection matrix is a 
unitary matrix, R

_

−1 = R
_

∗t . The H
_

 and V
_

 matrices in (1 and 2) are the reflection matrices of 

the horizontal and vertical surfaces of the core of ROWGs corresponding to ĝ = ±ây and 
ĝ = ±âx , respectively.

Appendix B: normalized plane‑wave field vectors

The normalized field vector of the ith plane waves constituting the TE modes of the hori-
zontal slab waveguide, E

_ i

=
(
± �x 0 −kx

)t
 where the upper sign is for i = 1, 2 and the 

lower sign for i = 3, 4 . The corresponding field vector of the vertical slab waveguide, 
�
_ i

=
(
0 ±�y −ky

)t

 where the upper sign is for i = 1, 3 and the lower sign for i = 2, 4 . The 

normalized field vector of the ith plane waves constituting the TM modes of the horizontal 

slab waveguide, E
_ i

=
(
±Kykx −

√
K

2

x
+ β2 ±Ky�x

)t

 where the pairs (+,+) , (−,−) , 

(−,+) , and (+,−) , correspond to i = 1, 2, 3, 4 , respectively. The corresponding field of the 
vertical slab waveguide, �

_ i

=
(
±
√

K
2

y
+ β2 Kxky ±Kx�y

)t

 , where the pairs (−,+) , (+,−) , 

(+,+) , and (−,−) , correspond to i = 1, 2, 3, 4 , respectively. The normalized propagation 
constants, β = �∕n1ko and Kx∕y ≡ kx∕y∕n1ko . 
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