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Abstract
Diverse aspects of real-world problems are portrayed through nonlinear Schrodinger equa-
tions. This exploration considers a pair of fractional order Schrodinger equations describ-
ing important nonlinear instability phenomena which are related to heat pulse, quantum 
condensates, nonlinear acoustics, hydrodynamics, and nonlinear optics.  The improved 
auxiliary equation and improved tanh schemes are imposed on the governing model which 
generate a bulk of innovative accurate wave solutions. Plenty of wave solutions achieved in 
this study could be utilized to characterize the interior mechanisms of intricate phenomena 
relating to the considered nonlinear models. Some of the solutions are selected to figure out 
in the sense of contours, 3D and 2D outlines after assigning suitable values to the involved 
free parameters. The directed techniques are employed to explore appropriate wave solu-
tions of the above-stated nonlinear model for the first time ensuring the unique solutions 
rather than the results in earlier studies. This present work highlights the competency of 
used methods celebrating huge appropriate wave solutions of suggested complex nonlinear 
models and gives a guideline for related future research.

Keywords Schrodinger model · Improved auxiliary equation approach · Improved tanh 
scheme · Solitons · Optics

1 Introduction

Nonlinear partial differential equations are significant models to express the internal behav-
iour of intricate phenomena arise in applied mathematics, mathematical physics, elastic 
media, chemical kinematics, plasma physics, optical fibre, biology, solid-state physics, 
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ocean dynamics, geochemistry, photonics, optics, shallow water waves, fiber optics, water 
optical metamaterials and so on (Oldham and Spanier 1974; Miller and Ross 1993; Fang 
et al. 2021; Wazwaz 2002; Wang et al. 2022; Bo et al. 2023). Many prominent mathemati-
cians and physicists have recently become interested in the study of wave profiles which are 
illustrated through a family of nonlinear evolution equations (Kilbas et al. 2006; Hu et al. 
2008; Wen 2023; Fang et al. 2023; Dai and Wang 2020). Several computational schemes 
have been established to analyze distinct obstacles of real-life by utilizing wave solutions 
extracted from relevant nonlinear models. Instantaneously, generalized projective Riccati 
equation method (Akram et al. 2021), Sardar sub-equation and modified Sardar sub-equa-
tion techniques (Ullah et al. 2022; Akinyemi et al. 2022a, b; Nasreen et al. 2023a), gener-
alized exponential rational function scheme (Ghanbari et  al. 2019; Rehman et  al. 2022), 
distinct tanh approaches (Zulfiqar and Ahmad 2022; Islam et al. 2023a; Ahmad and Rani 
2023; Ali et al. 2023; Mostafa et al. 2023), new extended direct algebraic method (Raddadi 
et al. 2021; Nasreen et al. 2023b, c), reduced differential transform and variational iteration 
techniques (Zulfiqar and Ahmad 2020), first integral approach (Akinyemi et  al. 2022c), 
Hirota and Darboux methods (Ma 2022; Geng et al. 2023a, b; Chen 2023a, b; Chen and 
Zhu 2023; Chen and Xiao 2022; Dai et  al. 2020; Rehman and Ahmad 2022a, b; Ismael 
et al. 2023), generalized exp (−w(�))-expansion and extended rational (G�∕G2)-expansion 
schemes (Owyed et al. 2022), improved auxiliary equation approach (Islam et al. 2023b), 
semi-inverse and fractional variation techniques (Fu et  al. 2023), the rational (G�∕G)
-expansion scheme (Islam et  al. 2018), extended simplest equation and modified Khater 
methods (Khater 2021), Φ6-model expansion tool (Seadawy et al. 2021), generalized auxil-
iary equation approach (Akinyemi et al. 2022d), various exp (−�(�))-expansion techniques 
(Inan et al. 2022; Ahmad et al. 2023a), extended and modified rational expansion method 
(Nasreen et al. 2023d), extended Fan sub-equation scheme (Younis et al. 2020), F-expan-
sion and improved F-expansion methods (Nasreen et al. 2018; Seadawy et al. 2019; Ahmad 
et al. 2023b) and so on.

In the field of wave profiles propagation, nonlinear Schrodinger equations concerning 
diverse intricate nonlinear phenomena have attracted profound attention of researchers. 
Schrodinger type partial differential equations bear specialty for explaining distinct intri-
cate nonlinear phenomena arise in electromagnetism, photonics, fluid dynamics, quantum 
electronics, plasma physics etc. The coupled Schrodinger model that we consider is stated 
as follows:

where 0 < 𝛼 , � ≤ 1 ; u(x, t) and v(x, t) denote the complex-valued functions of spatial varia-
ble x and temporal variable t . These functions are utilized to illustrate the envelopes of two 
individual and polarized optical signals. The free parameters a and b stand for the group 
velocity dispersion. Several studies of Eq. (1) alongside fractional order as well as integer 
order have extensively taken a major part of the literature after initiating in 1992 by Boyd 
(Boyd 1992). If we look back in the literature, then some works with integer orders could 
be mentioned accordingly such as in 1995, Wright had examined the modulation insta-
bility (Wright 1995); the effects of parameters on solitary waves had been explained and 
tested the stability at the same time (Yang 1997); Tan and Boyd had obtained exact ana-
lytic solutions, and analyzed single-mode and coupled-mode solitary waves (Tan and Boyd 
2000); the stability of periodic waves for certain ranges of parameters had been studied 
by Tan and Boyd (Tan and Boyd 2001); the variational iteration method had been utilized 
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by Sweilam and Al-Bar to study the same model which highlighted wave-wave interac-
tion together with energy conservation (Sweilam and Al-Bar 2007). Eslami has considered 
the model due to only time fractional and obtained some analytic solutions by applying 
Kudryashov technique (Eslami 2016). Several recent studies of the mentioned nonlinear 
system with time and space fractional derivatives are noticeable. Instantly, Lakestani and 
Manafian have used extended trial equation, exp (−Ω(�))-expansion, improved tan (�(�)∕2)
-expansion and semi-inverse variational principle methods which provided some analytic 
solutions in characterizing different soliton shapes arise in nonlinear optics (Lakestani 
and Manafian 2018); extended sinh-Gordon equation expansion method has been applied 
by Esen et. al. to generate several soliton solutions (Esen et al. 2018); Wang et. al. have 
demonstrated the model by fractional Riccati and fractional dual-function schemes which 
delivered vector solitons and periodic solutions with the assistance of Mittag-Leffler func-
tion (Wang et  al. 2020); modified generalized exponential rational function and Hirota 
bilinear techniques have been utilized by Rehman and Ahmad through which several ana-
lytical solutions have been constructed by balancing the nonlinear physical components 
(Rehman and Ahmad 2022a, b); optical solitons arise in optical fibers have been produced 
by Nasreen et. al. via new extended direct algebraic method (Nasreen et. al. 2023c); Ahmad 
et. al. have employed improved modified extended tanh-expansion method and achieved 
optical soliton solutions (Ahmad et al. 2023c).

The above study inspires us to choose the nonlinear system stated in Eq.  (1) for 
investigating accurate wave solutions and analyzing the wave propagation related to 
nonlinear optics. The current exploration deals with two competent schemes, namely 
improved auxiliary equation and improved tanh. The inspection from earlier studies 
confirms that these two competent techniques haven’t been utilized by any research-
ers to extract wave solutions of the model Eq. (1). That is why, the authors claim that 
the outcomes throughout the present work are unique and distinct. The involved free 
parameters in achieved solutions are assigned with suitable numeric values which 
characterize the dynamic nature of nonlinear optical waves through graphical repre-
sentations. Beyond 3D and 2D plots, contour plots are included to make visible the 
overhead view of dynamic waves. Diverse solitons for nonlinear dynamic waves are 
obtained which might be helpful to analyze the phenomena arise in optical communi-
cation systems.

2  Outline of schemes

Assume a nonlinear evolution equation of fractional order in the succeeding form.

where 0 < 𝜐 ≤ 1 . Implementing the transformation of wave variable as u(x, y, t,…) = U(�) 
reduces Eq. (2) into the following ordinary differential equation due to �:

where primes in U specify the order of derivatives with respect to � . Thereupon, the pro-
cesses of instructed approaches are declared as below:
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2.1  Improved auxiliary equation scheme

This approach announces the solution as follows:

where the included constraints are assessed under some procedures; homogenous balance 
rule grants the value of r and a�(�) satisfies the ODE.

The solutions of Eq. (5) are noticeable in Ref. (Akbar et al. 2019). The operational rules 
with the improved auxiliary equation approach are accessible in earlier work (Islam et  al. 
2023b).

2.2  Improved tanh approach

This technique declares the solution to be the subsequent form.

 where the concerned free parameters are evaluated under some operations, homogenous 
balance rule supplies the value of r and Ψ(�) satisfies the ODE.

The solutions of Eq.  (7) and the working rules alongside the improved tanh scheme are 
available in previous study (Islam et al. 2023a). Now, we utilize the recommended tools for 
celebrating the perfect solitary wave solutions of the pointed governing model Eq. (1).

3  Extraction of wave solutions

Consider the subsequent transformation of wave variables.

where � =
x�

�
− c

t�

�
 and � = −l

x�

�
+ m

t�

�
+ �0 . This change is made in accordance with con-

formable fractional derivatives which follows chain rule and Leibniz rule (Khalil et  al. 
2014; Abdeljawad 2015). Equation (8) is inserted in Eq. (1) and thereupon separated into 
the following two ordinary differential equations due to the independent variable �:

where c = −2l . Consider
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Then Eq. (9) and Eq. (10) produce

Balancing theme provides r = 1 . Now, the desired wave solutions are constructed 
throughout the succeeding section.

3.1  Solutions found by improved auxiliary equation approach

The solution of Eq. (12) is then appeared to be.

 where �1 and �1 are not zero at a time. Create a polynomial in a�(�) from Eq. (12) by utiliz-
ing Eq. (13) and its essential derivatives together with Eq. (5). Coefficients of this polyno-
mial are equated to zero and solve them for the subsequent results.
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A heap of accurate wave solutions of the governing model Eq. (1) may be accumulated 
with the assistance of above parameter’s values. Only the solutions for case 1 are presented 
here for simplicity while the readers might assess other results if necessary.

Solution group 1: The expression for traveling wave solutions due to Case 1 is found as 
follows:
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where � =
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where � =
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bk2 + 1

��
�0 + �1

�
� −

√
−�2 + 4�2tan

�√
−�2 + 4�2�∕2

���
e−i�

,

(34)

v10
1
(�) = ±

k
�
2�

�
2��1 − ��0

�
−
�
��1 − 2��0

��
� +

√
−�2 + 4�2cot

�√
−�2 + 4�2�∕2

���

2�

�
−2a

�
bk2 + 1

�
[�0 − �1{� +

√
−�2 + 4�2cot(

√
−�2 + 4�2�∕2}]e−i�

,

(35)

u11
1
(�) = ±

2�
�
2��1 − ��0

�
−
�
��1 − 2��0

��
� +

√
�2 − 4�2tanh

�√
�2 − 4�2�∕2

��

2�

�
−2a

�
bk2 + 1

��
�0 − �1

�
� +

√
�2 − 4�2tanh

�√
�2 − 4�2�∕2

��� ,

(36)

u12
1
(�) = ±

2�
�
2��1 − ��0

�
−
�
��1 − 2��0

��
� +

√
�2 − 4�2coth

�√
�2 − 4�2�∕2

��

2�

�
−2a

�
bk2 + 1

��
�0 − �1

�
� +

√
�2 − 4�2coth

�√
�2 − 4�2�∕2

���
e−i�

,

(37)

v11
1
(�) = ±

k
�
2�

�
2��1 − ��0

�
−
�
��1 − 2��0

��
� +

√
�2 − 4�2tanh

�√
�2 − 4�2�∕2

���

2�

�
−2a

�
bk2 + 1

��
�0 − �1

�
� +

√
�2 − 4�2tanh

�√
�2 − 4�2�∕2

���
e−i�

,

(38)

v12
1
(�) = ±

k
�
2�

�
2��1 − ��0

�
−
�
��1 − 2��0

��
� +

√
�2 − 4�2coth

�√
�2 − 4�2�∕2

���

2�

�
−2a

�
bk2 + 1

��
�0 − �1

�
� +

√
�2 − 4�2coth

�√
�2 − 4�2�∕2

���
e−i�

,

(39)u13
1
(�) = ±

2��

�
2��1 −

√
4���0

�
−
�√

4���1 − 2��0

�
{2 + ��}

2��

�
−2a

�
bk2 + 1

��
�0 − �1{2 + ��}

�
e−i�

,

(40)v13
1
(�) = ±

k
�
2��

�
2��1 −

√
4���0

�
−
�√

4���1 − 2��0

�
{2 + ��}

�

2��

�
−2a

�
bk2 + 1

��
�0 − �1{2 + ��}

�
e−i�

,
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where � =
x�

�
+ 2l

t�

�
 and � = −l

x�

�
+

1

2�

(
4�� − 2l2

)
t� + �0.

For the assumptions � = 0 and � = −�,

where � =
x�

�
+ 2l

t�

�
 and � = −l

x�

�
−

1

2�

(
4�2 + 2l2

)
t� + �0.

Assigning � = � = 0 provides

(41)u14
1
(�) = ±

2��1 + 2��0

�√
−�∕�tanh

�√
−���

��

e−i�
�

−2a
�
bk2 + 1

��
�0 − �1

�√
−�∕�tanh

�√
−���

��� ,

(42)u15
1
(�) = ±

2��1 + 2��0

�√
−�∕�coth

�√
−���

��

e−i�
�

−2a
�
bk2 + 1

��
�0 − �1

�√
−�∕�coth

�√
−���

��� ,

(43)v14
1
(�) = ±

k
�
2��1 + 2��0

�√
−�∕�tanh

�√
−���

���

e−i�
�

−2a
�
bk2 + 1

��
�0 − �1

�√
−�∕�tanh

�√
−���

��� ,

(44)v15
1
(�) = ±

k
�
2��1 + 2��0

�√
−�∕�coth

�√
−���

���

e−i�
�

−2a
�
bk2 + 1

��
�0 − �1

�√
−�∕�coth

�√
−���

��� ,

(45)u16
1
(�) = ±

2��1
{
1 − e−2��

}
− 2��0

{
1 + e−2��

}

e−i�
{
−1 + e−2��

}√
−2a

(
bk2 + 1

)[
�0 + �1

{
1 + e−2��

}] ,

(46)u17
1
(�) = ±

2��1
{
−1 + e2��

}
− 2��0

{
1 + e2��

}

e−i�
{
1 − e2��

}√
−2a

(
bk2 + 1

)[
�0 + �1

{
1 + e2��

}] ,

(47)v16
1
(�) = ±

k
[
2��1

{
1 − e(−2��)

}
− 2��0

{
1 + e(−2��)

}]

e−i�
{
−1 + e−2��

}√
−2a

(
bk2 + 1

)[
�0 + �1

{
1 + e−2��

}] ,

(48)v17
1
(�) = ±

k
[
2��1

{
−1 + e2��

}
− 2��0

{
1 + e2��

}]

e−i�
{
1 − e2��

}√
−2a

(
bk2 + 1

)[
�0 + �1

{
1 + e2��

}] ,

(49)u18
1
(�) = ±

−��0 + ��1{cosh (��) + sinh(��)}

e−i�
√

−2a
(
bk2 + 1

)[
�0 + �1{cosh (��) + sinh(��)}

] ,
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where � =
x�

�
+ 2l

t�

�
 and � = −l

x�

�
−

1

2�

(
�2 + 2l2

)
t� + �0.

For the agreements � = � = K and � = 0,

where � =
x�

�
+ 2l

t�

�
 and � = −l

x�

�
−

1

2�

(
K2 + 2l2

)
t� + �0.

Under the values � = � = K and � = 0,

where � =
x�

�
+ 2l

t�

�
 and � = −l

x�

�
−

1

2�

(
K2 + 2l2

)
t� + �0.

Assigning  � = � + � provides

where � =
x�

�
+ 2l

t�

�
 and � = −l

x�

�
−

1

2�

{
(� − �)2 + 2l2

}
t� + �0.

For the agreement � = −(� + �),

(50)v18
1
(�) = ±

k
[
−��0 + ��1{cosh (��) + sinh (��)}

]

e−i�
√

−2a
(
bk2 + 1

)[
�0 + �1{cosh (��) + sinh(��)}

] ,

(51)u19
1
(�) = ±

K
{(

2�1 − �0
)
+ �1

(
eK� − 1

)}

e−i�
√

−2a
(
bk2 + 1

)[
�0 + �1

{
eK� − 1

}] ,

(52)v19
1
(�) = ±

k
[
K
{(

2�1 − �0
)
+ �1

(
eK� − 1

)}]

e−i�
√

−2a
(
bk2 + 1

)[
�0 + �1

{
eK� − 1

}] ,

(53)u20
1
(�) = ±

K
{
�0
(
−1 + eK�

)
+
(
�1 − 2�0

)
eK�

}

e−i�
(
1 − eK�

)√
−2a

(
bk2 + 1

)[
�0 + �1

{
eK�

}] ,

(54)v20
1
(�) = ±

k
[
K
{
�0
(
−1 + eK�

)
+
(
�1 − 2�0

)
eK�

}]

e−i�
(
1 − eK�

)√
−2a

(
bk2 + 1

)[
�0 + �1

{
eK�

}] ,

(55)

u21
1
(�) = ±

{
1 − �e(�−�)�

}(
2��1 − ��0 − ��0

)
−
(
��1 + ��1 − 2��0

){
1 − �e(�−�)�

}

e−i�
{
1 − �e(�−�)�

}√
−2a

(
bk2 + 1

)[
�0 − �1

{
1 − �e(�−�)�

}] ,

(56)

v21
1
(�) = ±

k
[{
1 − �e(�−�)�

}(
2��1 − ��0 − ��0

)
−
(
��1 + ��1 − 2��0

){
1 − �e(�−�)�

}]

e−i�
{
1 − �e(�−�)�

}√
−2a

(
bk2 + 1

)[
�0 − �1

{
1 − �e(�−�)�

}] ,

(57)

u22
1
(�) = ±

{
� − e(�−�)�

}(
2��1 + ��0 + ��0

)
−
(
��1 + ��1 + 2��0

){
� − e(�−�)�

}

e−i�
{
� − e(�−�)�

}√
−2a

(
bk2 + 1

)[
�0 + �1

{
� − e(�−�)�

}] ,
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where � =
x�

�
+ 2l

t�

�
 and � = −l

x�

�
−

1

2�

{
(� − �)2 + 2l2

}
t� + �0.

For the assumption � = 0,

where � =
x�

�
+ 2l

t�

�
 and � = −l

x�

�
−

1

2�

(
�2 + 2l2

)
t� + �0.

Under the values � = � = � ≠ 0

where � =
x�

�
+ 2l

t�

�
 and � = −l

x�

�
+

1

2�

(
3�2 − 2l2

)
t� + �0.

When � = � = 0,

where � =
x�

�
+ 2l

t�

�
 and � = −l

x�

�
−

l2t�

�
+ �0.

Assigning � = � = 0 provides

(58)

v22
1
(�) = ±

k
[{
� − e(�−�)�

}(
2��1 + ��0 + ��0

)
−
(
��1 + ��1 + 2��0

){
� − e(�−�)�

}]

e−i�
{
� − e(�−�)�

}√
−2a

(
bk2 + 1

)[
�0 + �1

{
� − e(�−�)�

}] ,

(59)u23
1
(�) = ±

��0{−1 + �e��} + �e��
(
��1 − 2��0

)

e−i�{1 − �e��}

√
−2a

(
bk2 + 1

)[
�0 + �1�e

��
] ,

(60)v23
1
(�) = ±

k
[
��0{−1 + �e��} + �e��

(
��1 − 2��0

)]

e−i�{1 − �e��}

√
−2a

(
bk2 + 1

)[
�0 + �1�e

��
] ,

(61)u24
1
(�) = ±

�

�
2
�
2�1 − �0

�
+
�
�1 − 2�0

��√
3 tan

�√
3��∕2

�
− 1

��

2e−i�
�

−2a
�
bk2 + 1

��
�0 + �1

�√
3 tan

�√
3��∕2

�
− 1

�� ,

(62)v24
1
(�) = ±

k�
�
2
�
2�1 − �0

�
+
�
�1 − 2�0

��√
3 tan

�√
3��∕2

�
− 1

��

2e−i�
�

−2a
�
bk2 + 1

��
�0 + �1

�√
3 tan

�√
3��∕2

�
− 1

�� ,

(63)u25
1
(�) = ±

2��1e
i�

√
−2a

(
bk2 + 1

)[
�0 + �1��

] ,

(64)v25
1
(�) = ±

2k��1e
i�

√
−2a

(
bk2 + 1

)[
�0 + �1��

] ,

(65)u26
1
(�) = ±

2�0e
i�

��2
√

−2a
(
bk2 + 1

){
�0 − �1

} ,
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where � =
x�

�
+ 2l

t�

�
 and � = −l

x�

�
−

l2t�

�
+ �0.

For the assumptions � = � and � = 0,

where � =
x�

�
+ 2l

t�

�
 and � = −l

x�

�
+

1

2�

(
4�2 − 2l2

)
t� + �0.

Under the value � = 0,

where � =
x�

�
+ 2l

t�

�
 and � = −l

x�

�
−

1

2�

(
�2 + 2l2

)
t� + �0.

3.2  Improved tanh method

The solution of Eq. (12) due to balancing value turns into the following form:

A polynomial in Ψ(�) is obtained by inserting Eq.  (71) and its essential derivatives 
together with Eq. (7) into Eq. (12) whose coefficients are equated to zero for algebraic 
equations in used free parameters. Calculating these equations by Maple, a computer 
software, gives the succeeding outputs.

Case 1: c0 = ∓
2f1√

−2a(bk2+1)
 , c1 = ∓

2e0√
−2a(bk2+1)

 , d1 = 0 , e1 = 0 , m = 2� − l2.

Case 2: c0 = 0 , c1 = ∓
2e0√

−2a(bk2+1)
 , d1 = ∓

�e0

√
−2a

a
√
(bk2+1)

 , e1 = 0 , f1 = 0,

Case 3: c0 = ∓
2f 1√

−2a(bk2+1)
 , c1 = 0 , d1 = ±

2e0�√
−2a(bk2+1)

 , e1 = 0 , m = 2� − l2.

(66)v26
1
(�) = ±

2k�0e
i�

��2
√

−2a
(
bk2 + 1

){
�0 − �1

} ,

(67)u27
1
(�) = ±

2�[�1 − �0tan(��)]e
i�

√
−2a

(
bk2 + 1

)[
�0 + �1tan(��)

] ,

(68)v27
1
(�) = ±

2k�[�1 − �0{tan(��)}]e
i�

√
−2a

(
bk2 + 1

)[
�0 + �1{tan(v�)}

] ,

(69)u28
1
(�) = ±

n
(
2��1 − ��0

)
+ ��1{ne

�� − m}

ne−i�
√

−2a
(
bk2 + 1

)[
�0 + �1(ne

�� − m)
] ,

(70)v28
1

(�) = ±
k
[
n
(
2��1 − ��0

)
+ ��1{ne

�� − m}
]

ne−i�
√

−2a
(
bk2 + 1

)[
�0 + �1{ne

�� − m}
] ,

(71)U(�) =
c0 + c1Ψ(�) + d1Ψ

−1(�)

e0 + e1Ψ(�) + f1Ψ
−1(�)

.

l = ±
√
8� − m.
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Case 4:c0 = 0,c1 = ∓
2e0√

−2a(bk2+1)
 , d1 = ±

�e0

√
−2a

a
√
(bk2+1)

,e1 = 0, f1 = 0,

Case 5: c0 = 0,c1 = ∓ 2e0
√

−2a(bk2+1)
 , d1 = 0,e1 = 0, f1 = 0 , l = ±

√
2� − m.

Case 6: c0 = 0 , c1 = 0 , d1 = ∓ 2e0�
√

−2a(bk2+1)
 , e1 = 0 , f1 = 0 , m = 2� − l2.

The found parameter’s values combined with Eq. (71) and the solutions of Eq. (7) generate 
six groups of wave solutions. For the simplicity, three groups of traveling wave solutions are 
presented in this present text as follows:

Group 1: Due to Case 1, the wave solution expressions are

where � =
x�

�
+ 2l

t�

�
 and � = −l

x�

�
+ (2� − l2)

t�

�
+ �0 . Accordingly, the wave solutions are

l = ±
√
−4� − m.

(72)u1(�) =
∓2ei�Ψ(�)

√
−2a

(
bk2 + 1

) ,

(73)v1(�) =
∓2kei�Ψ(�)

√
−2a

(
bk2 + 1

) ,

(74)u1
1
(𝜂) = ±

2
√
−𝛿ei𝜙 tanh

�√
−δ𝜂

�

�
−2a

�
bk2 + 1

� , 𝛿 < 0

(75)v1
1
(𝜂) = ±

2k
√
−𝛿ei𝜙 tanh

�√
−δ𝜂

�

�
−2a

�
bk2 + 1

� , 𝛿 < 0

(76)u2
1
(𝜂) = ±

2
√
−𝛿ei𝜙 coth

�√
−δ𝜂

�

�
−2a

�
bk2 + 1

� , 𝛿 < 0

(77)v2
1
(𝜂) = ±

2k
√
−𝛿ei𝜙 coth

�√
−δ𝜂

�

�
−2a

�
bk2 + 1

� , 𝛿 < 0

(78)u3
1
(𝜂) = ∓

2
√
𝛿ei𝜙 tan

�√
δ𝜂
�

�
−2a

�
bk2 + 1

� , 𝛿 < 0
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where � =
x�

�
+ 2l

t�

�
 and � = −l

x�

�
+
(
2� − l2

)
t�

�
+ �0.

where � =
x�

�
+ 2l

t�

�
 and � = −l

x�

�
−

l2t�

�
+ �0.

Group 2: The solution expressions for Case 2 are

where � =
x�

�
+ 2l

t�

�
 and � = ∓

√
8� − m

x�

�
+ m

t�

�
+ �0 . Consequently, the wave solutions 

are.

(79)v3
1
(𝜂) = ∓

2k
√
𝛿ei𝜙 tan

�√
δ𝜂
�

�
−2a

�
bk2 + 1

� , 𝛿 < 0

(80)u4
1
(𝜂) = ±

2
√
𝛿ei𝜙 cot

�√
δ𝜂
�

�
−2a

�
bk2 + 1

� , 𝛿 < 0

(81)v4
1
(𝜂) = ±

2k
√
𝛿ei𝜙 cot

�√
δ𝜂

�

�
−2a

�
bk2 + 1

� , 𝛿 < 0

(82)u5
1
(𝜂) = ±

2ei𝜙

𝜂

√
−2a

(
bk2 + 1

) , 𝛿 < 0

(83)v5
1
(𝜂) = ±

2kei𝜙

𝜂

√
−2a

(
bk2 + 1

) , 𝛿 < 0

(84)u2(�) = ∓
2ei�

√
−2a

(
bk2 + 1

)
{
Ψ(�) − �Ψ−1(�)

}
,

(85)v2(�) = ∓
2kei�

√
−2a

(
bk2 + 1

)
{
Ψ(�) − �Ψ−1(�)

}
,

(86)u1
2
(𝜂) = ∓

2δei𝜙
�

−2a
�
bk2 + 1

� ×
tanh

2
�√

−δ𝜂
�
+ 1

√
−δtanh

�√
−δ𝜂

� , 𝛿 < 0

(87)v1
2
(𝜂) = ∓

2𝛿kei𝜙
�

−2a
�
bk2 + 1

� ×
tanh

2
�√

−δ𝜂
�
+ 1

√
−δtanh

�√
−δ𝜂

� , 𝛿 < 0
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where � =
x�

�
+ 2l

t�

�
 and � = ∓

√
8� − m

x�

�
+ m

t�

�
+ �0.

where � =
x�

�
+ 2l

t�

�
 and � = ∓

√
−m

x�

�
+ m

t�

�
+ �0.

Group 3: Consistent with Case 3, the solution expressions are

(88)u2
2
(𝜂) = ∓

2δei𝜙
�

−2a
�
bk2 + 1

� ×
coth

2
�√

−δ𝜂
�
+ 1

√
−δcoth

�√
−δ𝜂

� , 𝛿 < 0

(89)v2
2
(𝜂) = ∓

2𝛿kei𝜙
�

−2a
�
bk2 + 1

� ×
coth

2
�√

−δ𝜂
�
+ 1

√
−δcoth

�√
−δ𝜂

� , 𝛿 < 0

(90)u3
2
(𝜂) = ∓

2δei𝜙
�

−2a
�
bk2 + 1

� ×
tan2

�√
δ𝜂

�
− 1

√
δtan

�√
δ𝜂

� , 𝛿 < 0

(91)v3
2
(𝜂) = ∓

2𝛿kei𝜙
�

−2a
�
bk2 + 1

� ×
tan2

�√
δ𝜂

�
− 1

√
δtan

�√
δ𝜂

� , 𝛿 < 0

(92)u4
2
(𝜂) = ±

2δei𝜙
�

−2a
�
bk2 + 1

� ×
cot2

�√
δ𝜂

�
− 1

√
δcot

�√
δ𝜂

� , 𝛿 < 0

(93)v4
2
(𝜂) = ±

2𝛿kei𝜙
�

−2a
�
bk2 + 1

� ×
cot2

�√
δ𝜂
�
− 1

√
δcot

�√
δ𝜂

� , 𝛿 < 0

(94)u5
2
(𝜂) =

±2ei𝜙

𝜂

√
−2a

(
bk2 + 1

) , 𝛿 < 0

(95)v5
2
(𝜂) =

±2kei𝜙

𝜂

√
−2a

(
bk2 + 1

) , 𝛿 < 0

(96)u3(�) =
∓ei�

√
−2a

(
bk2 + 1

) ×
2f1 − 2e0�Ψ

−1(�)

e0 + f1Ψ
−1(�)

,
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where � =
x�

�
+ 2l

t�

�
 and � = −l

x�

�
+
(
2� − l2

)
t�

�
+ �0 . Therefore, the wave solutions are

where � =
x�

�
+ 2l

t�

�
 and � = −l

x�

�
+
(
2� − l2

)
t�

�
+ �0.

(97)v3(�) =
∓kei�

√
−2a

(
bk2 + 1

) ×
2f1 − 2e0�Ψ

−1(�)

e0 + f1Ψ
−1(�)

,

(98)u1
3
(𝜂) =

∓2ei𝜙
�

−2a
�
bk2 + 1

� ×
f1

√
−δ tanh

�√
−δ𝜂

�
− e0𝛿

e0

√
−δ tanh

�√
−δ𝜂

�
− f1

, 𝛿 < 0

(99)v1
3
(𝜂) =

∓2kei𝜙
�

−2a
�
bk2 + 1

� ×
f1

√
−δ tanh

�√
−δ𝜂

�
− e0𝛿

e0

√
−δ tanh

�√
−δ𝜂

�
− f1

, 𝛿 < 0

(100)u2
3
(𝜂) =

∓2ei𝜙
�

−2a
�
bk2 + 1

� ×
f1

√
−δ coth

�√
−δ𝜂

�
− e0𝛿

e0

√
−δ coth

�√
−δ𝜂

�
− f1

, 𝛿 < 0

(101)v2
3
(𝜂) =

∓2kei𝜙
�

−2a
�
bk2 + 1

� ×
f1

√
−δ coth

�√
−δ𝜂

�
− e0𝛿

e0

√
−δ coth

�√
−δ𝜂

�
− f1

, 𝛿 < 0

(102)u3
3
(𝜂) =

∓2ei𝜙
�

−2a
�
bk2 + 1

� ×
f1

√
δ tan

�√
δ𝜂
�
− e0𝛿

e0

√
δ tan

�√
δ𝜂
�
+ f1

, 𝛿 < 0

(103)v3
3
(𝜂) =

∓2kei𝜙
�

−2a
�
bk2 + 1

� ×
f1

√
δ tan

�√
δ𝜂
�
− e0𝛿

e0

√
δ tan

�√
δ𝜂

�
+ f1

, 𝛿 < 0

(104)u4
3
(𝜂) =

∓2ei𝜙
�

−2a
�
bk2 + 1

� ×
f1

√
δ cot

�√
δ𝜂
�
+ e0𝛿

e0

√
δ cot

�√
δ𝜂

�
− f1

, 𝛿 < 0

(105)v4
3
(𝜂) =

∓2kei𝜙
�

−2a
�
bk2 + 1

� ×
f1

√
δ cot

�√
δ𝜂

�
+ e0𝛿

e0

√
δ cot

�√
δ𝜂

�
− f1

, 𝛿 < 0



Distinct wave profiles relating to a coupled of Schrödinger…

1 3

Page 17 of 25 492

where � =
x�

�
+ 2l

t�

�
 and � = −l

x�

�
−

l2t�

�
+ �0.

Remarks A variety of wave solutions of the governing model (1) are successfully con-
structed by means of the improved auxiliary equation and improved tanh schemes. The 
acquired solutions are figured out in contour, 2D and 3D outlines with the consideration of 
different parameter’s values. A noteworthy number of wave solutions stated in this explo-
ration might play significant role to discuss the nature of wave propagation in nonlinear 
optics. The competency of the used techniques and finding outcomes throughout the pre-
sent work are noteworthy due to the plenty and variation of achieved wave solutions than 
previous results (Nasreen et. al. 2023c; Ahmad et al. 2023c).

4  Graphical representations

The significance of physical representations of wave solutions designated from non-
linear partial models are remarkable to make understand the underlying scenario of 
concerned intricate phenomena. In this consideration, it fascinates the researchers to 
depict dynamic nature of waves for bringing out the internal behavior of complex physi-
cal phenomena. This current work consists of a few contours, 3D and 2D sketches of 
some acquired wave solutions. The solitons in Kink, anti-kink, singular kink, periodic, 
singular periodic, bell, singular bell shapes are presented in this work. The different 
values of used parameters might provide diverse solitons. Kink type solitons are crucial 
in assorted arenas like nonlinear optics and condensed matter physics. They indicate 
steady, confined transitions between different positions in materials, vital in understand-
ing defects in crystalline structures, phase changes, and optical communication systems. 

(106)u5
3
(𝜂) =

∓2ei𝜙
√

−2a
(
bk2 + 1

) ×
f1(

e0 − f1𝜂
) , 𝛿 < 0

(107)v5
3
(𝜂) =

∓2kei𝜙
√

−2a
(
bk2 + 1

) ×
f1(

e0 − f1𝜂
) , 𝛿 < 0

Fig. 1  Anti-kink shape soliton of Eq.  (19) for � = � = 1 , a = −1.5 , b = � = �
0
= 0.5 , c = k = �

1
= −1 , 

l = −2 , � = 0.7 , � = 1.5 , �
0
= 0
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Various singular type solitons are appeared in this exploration. These type solitons sig-
nify abrupt, concentrated disturbances in physical systems, decisive in various domains 
like nonlinear optics and fluid dynamics. They characterize localized areas of extreme 
energy or diverse structures, offering understandings into complicated phenomena, shock 
waves, or compact information carriers in nonlinear dynamic wave equations. Subse-
quently, the significance and necessity of various solitons are unquestionable to explain 
nonlinear complex physical phenomena. Figure  1: The solution Eq.  (19) represents 
anti-kink soliton for the values � = � = 1 , a = −1.5 , b = � = �0 = 0.5 , c = k = �1 = −1 , 
l = −2 , � = 0.7 , � = 1.5 , �0 = 0 within the interval −15 ≤ x , t ≥ 15 whereas 2D plot is 
found with t = 0 . Figure 2: Periodic soliton for solution Eq.  (33) is exhibited with the 
values � = � = � = �1 = �0 = 1 , a = −1.5 , b = �0 = 0.5 , c = k = −1 , l = −2 , � = 0.9 
in the range −10 ≤ x , t ≥ 10 while 2D plot is drawn for t = 0 . Figure  3: The solution 
Eq.  (51) signifies singular kink shape soliton under the values � = � = �1 = �0 = 1 , 
a = c = k = l − 1 , b = �0 = 0.5 , K = 0.8 , � = −0.5 , � = 1.4 within the range −15 ≤ x , 
t ≥ 15 whereas 2D plot is shown with t = 0 . Figure  4: The singular kink type soliton 
of Eq.  (63) is revealed for the values � = � = �1 = �0 = 1 , a = −1.5 , c = k = l = −1 , 
b = �0 = 0.5 , � = −0.5 in the interval −10 ≤ x , t ≥ 10 although 2D plot is displayed 
along with t = 0 . Figure 5: The solution Eq.  (65) provides singular bell shape soliton 

Fig. 2  Periodic shape soliton of Eq.  (33) under � = � = � = �
1
= �

0
= 1 , a = −1.5 , b = �

0
= 0.5 , 

c = k = −1 , l = −2 , � = 0.9

Fig. 3  Singular kink type soliton of Eq.  (51) with � = � = �
1
= �

0
= 1 , a = c = k = l − 1 , b = �

0
= 0.5 , 

K = 0.8 , � = −0.5 , � = 1.4
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Fig. 4  Singular kink shape soliton of Eq.  (63) for � = � = �
1
= �

0
= 1 , a = −1.5 , c = k = l = −1 , 

b = �
0
= 0.5 , � = −0.5

Fig. 5  Singular bell shape soliton of Eq.  (65) with � = � = l = �
1
= �

0
= 1 , a = −1.5 , c = k = −1 , 

b = �
0
= 0.5 , � = −0.5

Fig. 6  Periodic type soliton of Eq.  (67) under � = � = � = �
1
= �

0
= 1 , a = −1.5 , c = k = −1 , 

b = �
0
= 0.5 , l = −2
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for the values � = � = l = �1 = �0 = 1 , a = −1.5 , c = k = −1 , b = �0 = 0.5 , � = −0.5 
within −4 ≤ x , t ≥ 4 where 2D plot is appeared alongside t = 0 . Figure 6: Periodic type 
soliton is exhibited for the solution Eq. (67) under the values � = � = � = �1 = �0 = 1 , 

Fig. 7  Anti-kink shape soliton of Eq. (74) for � = � = �
0
= 1 , a = � = −0.8 , b = 0.5 , k = l = −1

Fig. 8  Kink type soliton of Eq. (75) with � = � = �
0
= 1 , a = −0.8 , b = 0.5 , k = l = −1 , � = −0.5

Fig. 9  Singular periodic type soliton of Eq. (79) under � = � = �
0
= 1 , a = −0.8 , b = � = 0.5 , k = l = −1
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a = −1.5 , c = k = −1 , b = �0 = 0.5 , l = −2 in the range −13 ≤ x , t ≥ 13 whereas 2D is 
plot is given for t = 0 . Figure 7: The solution Eq. (74) represents ant-kink shape soliton 
for the values � = � = �0 = 1 , a = � = −0.8 , b = 0.5 , k = l = −1 within the interval 
−3 ≤ x , t ≥ 3 while 2D plot is provided along with t = 0 . Figure 8: The solution Eq. (75) 
provides kink type soliton together with the values � = � = �0 = 1 , a = −0.8 , b = 0.5 , 
k = l = −1 , � = −0.5 in the range −10 ≤ x , t ≥ 10 whereas 2D plot is drawn for t = 0 . 
Figure 9: Singular periodic shape soliton for the solution Eq. (79) is displayed under the 
values � = � = �0 = 1 , a = −0.8 , b = � = 0.5 , k = l = −1 within −3 ≤ x , t ≥ 3 while 2D 
plot is represented by considering t = 0 . Figure 10: The solution Eq. (107) is in singular 
kink shape soliton for the values � = � = � = �0 = 1 , a = −0.8 , b = f1 = 0.5 , k = l = −1 , 
e0 = 0.7 in the interval −13 ≤ x , t ≥ 13 whereas 2D plot is represented along with t = 0.

5  Conclusions

The present study deals with a coupled of nonlinear Schrodinger equations signifying 
intricate phenomena connected to nonlinear optics, heat pulse, hydrodynamics, nonlinear 
acoustics, and quantum condensates. A variety of traveling and solitary wave solutions 
have been generated by the adaptation of advised schemes in different types of functions. 
The acquired solutions have been figured out in the outlines of 2D, 3D and contour shapes 
to illustrate the dynamic characteristics of nonlinear waves. Achieved distinct solitons 
might bear great importance to explain the dynamic nature of nonlinear wave propaga-
tion in optical communication systems. The abundance and generality of obtained solu-
tions might be new aspects in the literature. The efficiency and competency of the directed 
schemes providing much more wave solutions claim to be used for future related research.
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