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Abstract
In this work, exact solutions of the Van der Waals model (vdWm) are investigated with a 
new algebraic analytical method. The closed-form analysis of the vdW equation arising 
in the context of the fluidized granular matter is implemented under the effect of time-
fractional M-derivative. The vdWm is a challenging problem in the modelling of mol-
ecules and materials. Noncovalent Van der Waals or dispersion forces are frequent and 
have an impact on the structure, dynamics, stability, and function of molecules and materi-
als in biology, chemistry, materials science and physics. The auxiliary equation which is 
known as a direct analytical method is constructed for the nonlinear fractional equation. 
The process includes a transformation based on Weierstrass and Jacobi elliptic functions. 
Wave solutions of the model are analytically verified for the various cases. Then, graphi-
cal patterns are presented to show the physical explanation of the model interactions. The 
achieved solutions will be of high significance in the interaction of quantum-mechanical 
fluctuations, granular matter and other areas of vdWm applications.

Keywords The auxiliary equation method · Van der Waals model · Traveling wave 
simulation · Solitary wave solution · Truncated M-derivative

 * Wuzhuang Li 
 lwz@aynu.edu.cn

 * Mustafa Inc 
 minc@firat.edu.tr

1 School of Mathematics and Statistics, Anyang Normal University, Anyang 455000, 
Henan Province, China

2 Faculty of Engineering Technology, Amol University of Special Modern Technologies, Amol, Iran
3 Department of Mathematics, Yusuf Maitama Sule University, Kano, Nigeria
4 Department of Mathematics, Lafayette College, Easton, PA, USA
5 Department of Mathematics, Science Faculty, Firat University, 23119 Elazig, Turkey
6 Department of Computer Engineering, Biruni University, 34010 Istanbul, Turkey
7 Department of Medical Research, China Medical University, Taichung 40402, Taiwan

http://crossmark.crossref.org/dialog/?doi=10.1007/s11082-023-06084-x&domain=pdf


 W. Li et al.

1 3

474 Page 2 of 13

1 Introduction

The vdWm is a challenging problem in the modelling of molecules and materials. Nonco-
valent vdW or dispersion forces are frequent and have an impact on the structure, dynam-
ics, stability, and function of molecules and materials in biology, chemistry, materials sci-
ence and physics. The interaction of quantum-mechanical fluctuations in the electronic 
charge density produces vdW forces (Hermann et al. 2017; Stohr et al. 2019). The science 
of these interactions is being investigated in order to explore characteristics such as fluc-
tuations in nanostructures (DelRio et  al. 2005; Ambrosetti et  al. 2016), material design 
(Woods et al. 2016), thin-film rupture process (Xu et al. 2020), and flow in magnetic sys-
tems (Yu et al. 2013). Furthermore, the Van der Waals model (Herminghaus 2005) accu-
rately describes the flow in the granular media.

Granulation is described by the change of primary particles into larger forms as a result of 
phase separation. Granular matter is a quantity that is made up of separated solids and macro-
structure particles. This interaction is explained by the loss of energy in particles as a result of 
friction caused by particle collision (Bibi et al. 2018). The granular matter is commonly pro-
posed in solid or gas forms, which demonstrate a wide range of industrial applications (Her-
minghaus 2005; Bibi et al. 2018). There are two types of granulation processes: wet granula-
tion, which uses a liquid, and dry granulation, which does not. The kind of procedure used 
necessitates a detailed understanding of the drug’s physicochemical characteristics as well as 
the excipients (Shanmugam 2015). The energy is delivered in fluidized granular materials by 
continuous injection (Abourabia and Morad 2015). The VdW forces equation is given a non-
linear PDE in a normal form, which models the development of fluidized granular materials 
in nature. Therefore, the VdW equation for the granular medium is given in one dimension as,

where u represents critical average vertical density function, � shows the bifurcation param-
eter, � the effective viscosity, and x is the horizontal direction. The term including the high-
est space derivative in 1 shows the interface tension (Cartes et al. 2004; Clerc and Escaff 
2006). Studies to explore the closed-form solutions which exhibit the physical nature of 
VdW equation (Bibi et al. 2018; Abourabia and Morad 2015; Lu et al. 2017; Zafar et al. 
2020) have been contributed analytically.

The study of fractional calculus in nonlinear science has given a new impetus in 
applications to numerous systems. It has been notably apparent that understanding the 
dynamical behavior of such systems is a widely studied area with the proper descrip-
tion of non-integer order derivatives such as Riemann–Liouville, conformable, Caputo, 
truncated-M-derivative (Vanterler et  al. 2018; Atangana et  al. 2015; Çenesiz et  al. 
2017; Khan and Khan 2019; Atangana and Gómez-Aguilar 2018). Several applica-
tions have been contributed to the models in fractional form by exploring the analyti-
cal techniques including the discrete tanh method (Houwe et al. 2020b), the sech–tanh 
functions expansion (Park et  al. 2020), Grunwald Letnikov method (Aminikhah et  al. 
2017), Sine-Gordon expansion method (Korkmaz et al. 2020; Akbar et al. 2021), gen-
eralized Kudryashov method (Korkmaz and Hepson 2018b), ansatz method (Korkmaz 
and Hepson 2018a) and so on (Sabi’u et  al. 2019a, b, 2022; Khan et  al. 2022; Sabi’u 
et al. 2023; Akinyemi et al. 2021a, b; Khater et al. 2020; Qian et al. 2019; Attia et al. 
2020; Ghanbari 2021a, b; Ghanbari et  al. 2019, 2020). Moreover, to understand the 
dynamic behaviour of different mathematical and physical models at any given time, 

(1)
�2u

�t2
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�2
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�x2
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�u

�t
− u3 − � u
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= 0,
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the fractional derivatives are one of the best solutions, see Rida et  al. (2017), Arafa 
and Hagag (2019), El-Sayed et  al. (2010), Ali et  al. (2019), Alquran (2023) and Jara-
dat and Alquran (2022). For example, the Caputo fractional generalized tumor model 
(Padder et  al. 2023), the numerical comparison of nonlinear Duffing oscillator model 
with fractional and integer derivative (Qureshi et  al. 2023), the optimization of for 
human immunodeficiency virus with Caputo fractional operator (Jan et  al. 2023), the 
nonlinear Radhakrishnan–Kundu–Lakshmanan equation (Ghanbari and Gómez-Aguilar 
2019a), the generalized Schrödinger equation (Ghanbari and Gómez-Aguilar 2019b), 
the Hirota–Maccari equation (Ghanbari 2019), etc.

In this work, we aim to construct the solutions of VdW equation in fractional form,

where 𝛼 ∈ (0, 1], 𝛽 > 0, and the term D�,�

t,M
 is stated by the truncated M-fractional deriva-

tive in time which will be solved analytically by the auxiliary equation method. This 
method is one of the direct methods which provides effective solutions based on Weier-
strass and Jacobi elliptic functions. According to the procedure, the given non-linear PDE 
is reduced to the ODE by employing a transformation to the model. Recently, studies con-
ducted in Sirendaoreji (2022), Houwe et al. (2020a) and Raheel et al. (n.d.) aimed to pro-
pose travelling wave simulations with the present strategy. Another study is employed in 
Daşcıoğlu and ünal, S. Ç. (2021) to the space-time fractional Kawahara model by using the 
current strategy. The significance of this study is to derive solitary wave solutions of the 
time-fractional VdW equation using the auxiliary equation method. To our knowledge, the 
model equation has not been implemented by the current analytical approach in one dimen-
sion. Then, the analytical findings are utilized to examine the physical characteristics of 
this model graphically. The natural behaviors of the patterns are depicted in two and three-
dimensional views.

The following is the structure of this paper: In Sect.  2, the truncated M-fractional 
description is presented. The methodology of the new algebraic analytical method with 
the M-fractional derivative is presented in Sect. 3. Section 4 explains the application of the 
process with graphical visualizations. Finally, Sect. 5 summarizes the concluding remarks 
and possible extensions of the study.

2  Definition and properties of the truncated M‑fractional

For u ∶ [0,∞) → ℝ, the truncated M-fractional derivative of u of order � is express as

where E�(.) is a truncated Mittag–Leffler function of one parameter (Vanterler et al. 2018). 
The main advantage of this fractional operator is that it generalized four different fractional 
derivatives, for details see Vanterler et al. (2018) and the references therein. The M-frac-
tional derivative supports several properties given below.

Theorem 1 Let � ∈ (0, 1] , 𝛽 > 0 , a, b ∈ ℝ and u, v �-differentiable at a point t > 0. Then,

(2)D
2�,�

t,M
u + D

2�,�

x,M

(
D

2�,�

x,M
u − D

�,�

t,M
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, ∀ t > 0, 0 < 𝛼 < 1, 𝛽 > 0,
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• D
�,�

t,M
{(au + bv)(t)} = aD

�,�

t,M
{u(t)} + bD

�,�

t,M
{v(t)}.

• D
�,�
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v
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v(t)D
�,�
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{u(t)}−u(t)D

�,�

t,M
{v(t)}

[v(t)]2
.

• D
�,�

t,M
(�) = 0, for constant �.

• If u is differentiable, then D�,�

t,M
{u(t)} =

t1−�

Γ(�+1)

du(t)

dt
,

for ∀a, b ∈ ℝ (Atangana et al. 2015; Çenesiz et al. 2017; Khan and Khan 2019).
Many important characteristics of the M-fractional derivative are supported, including the 

Laplace transform, exponential function, Gronwall’s inequality, several integration rules, chain 
rule, and Taylor series expansion (Khan and Khan 2019).

3  Description of the method

This section will describe the proposed methodology for solving Eq. (2) in steps.
Step 1 The procedure starts by reducing the model Eq. (2):

to an ODE given as

with the help of a suitable wave transformation

where k and � are unknowns to be thought up during the implementation of the method.
Step 2 This step determines the traveling wave solutions to Eq. (6) of the form:

where A1 is an unknown constant, Q(�) provides the following second order auxiliary ODE:

Step 3 Moreover, to differentiate this approach from the unified expansion technique, we 
suggested that the ODE Eq. (8) is an equation whose solutions are:

(4)P1

(
u,D

�,�

t,M
u,D

�,�

x,M
u,D

2�,�
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= 0,

(5)P2(U,U�,U��,…) = 0,

(6)u(x, t) = U(�), � =
Γ(� + 1)

�
(kx� −�t�),

(7)U(�) = A1Q(�)

(8)Q��(�) = cQ3(�) − 2a2Q(�) − 3aQ�(�).

(9)Q(�) =

⎧
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In solutions Eq. (9), � represents the Weirstrass elliptic function, ds, nc, cn, sd are the Jac-
obi elliptic functions (JEFs), � = ±1 and a, b, c1, c2, c3 are constants. By substituting Eq. 
(7) and Eq. (8) into Eq. (5) and setting the coefficients of like powers of Qi(Q�)j to the zero, 
we obtain a set of algebraic equations for unknowns �, a, �,A1, k,� . The particular goal is 
to designate the parameters A1, k,� in terms of the others. Once the relations between the 
parameters are arranged, the solution to Eq. (5) can be represented explicitly.

4  Application of the method

Applying wave transformation Eq. (6) into Eq. (1) and integrating twice, the Van der Waals 
Model can be determined as

Placing Eq. (7) and solutions of Eq. (8) into Eq. (1)

and equaling the coefficients to zero, we get a set of algebraic equations in terms of 
�, a, �,A1, k,�:

Solutions of this algebraic system with respect to A1, k,� are

for nonzero �, a and �.

Case 1 Using these data and assuming Q = � ae−a�ds
�
e−a� + c2,

√
2

2

�
, the solution of Eq. 

(5) can be achieved as:

Selecting c = 2 and reusing the transformation Eq. (6) to return original variables, the solu-
tions of the vdW Eq. (1) is given as:

The solution Eq. (15) are plotted on (a) 3D, (b) contour and (c) 2D for values of � = 0.5 , 
a = 2.5 , � = 0.9 , � = 0.5 , � = −1 and c2 = 0 in Fig. 1.

(10)(�2 − k2�)U(�) + k4
d2

d�2
U(�) + k2��

d

d�
U(�) + k2U3(�) = 0.

(11)
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)
Q(�) +

(
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) d
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(
ck4 + k2A1

2
)
(Q(�))3

)
= 0,

(12)
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1
= 0.

(13)A1 = ±
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Case 2 Using these data and assuming Q = � ae−a�nc
�√

2e−a� + c2,

√
2

2

�
, the solution of 

Eq. (5) can be achieved as:

Selecting c = 2 and using the transformation Eq. (6) to return original variables, the solu-
tions of the vdW Eq. (1) is given as:

Case 3 Using these data and assuming Q =
� a

2

[
1 − tanh

(
a

2
�

)]
, the solution of Eq. (5) can 

be achieved as:

(16)U3,4(�) = ±��
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√
2

2

�
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e
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(kx�−�t� )

�
nc

�√
2e

−a
�
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�
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�
+ c2,

√
2

2

�
.

(a) (b)

(c) (d)

Fig. 1  The hyperbolic exact solution ||u1,2(x, t)|| with parameters � = 0.5 , a = 2.5 , � = 0.9 , � = 0.5 , 
� = −1, c2 = 0 and a 3D, b contour, and c 2D plot with respect to t, and d 2D plot with respect �
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Selecting c = 2 and reusing the transformation Eq. (6) to return original variables, the solu-
tions of the vdW Eq. (1) is given as:

The solution Eq. (17) are plotted on xtu-space for values of � , a and � in Figs. 2 and 3.

U5,6(�) =
��

2

√
� c

2�2 − 9

(
1 − tanh

(
a

2
�

))
.

(17)u5,6(x, t) =
��

2

√
� c

2�2 − 9

(
1 − tanh

(
a

2

Γ(� + 1)

�
(kx� −�t�)

))
.

(a) (b)

(c) (d)

Fig. 2  The Jacobi elliptic function solution plots for Case 3 for � = 1 , a = 0.5 and � = −1.5 a 3D b contour, 
c 2D plot with respect to t, and d 2D plot with respect to �
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Case 4 Using these data and assuming Q =
� a

2

[
1 − coth

(
a

2
�

)]
, the solution of Eq. (5) can 

be achieved as:

Selecting c = 2 and reusing the transformation Eq. (6) to return original variables, the solu-
tions of the vdW Eq. (1) is given as:

(18)U7,8(�) = ±
��

2

√
� c

2�2 − 9

[
1 − coth

(
a

2
�

)]
.

(19)u7,8(x, t) = ±
��

2

√
� c

2�2 − 9

[
1 − coth

(
a

2

(
Γ(� + 1)

�
(kx� −�t�)

))]
.

(a) (b)

(c) (d)

Fig. 3  The Jacobi elliptic function solution plots for Case 3 for � = −1 , a = 0.5 and � = 1.5 a 3D b contour, 
and c 2D plots with respect to t and, and d 2D plot with respect to �
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Case 5 Using these data and assuming Q = � ae−a�cn
�
sqrt2e−a� + c3,

√
2

2

�
, the solution of 

Eq. (5) can be achieved as:

Selecting c = −2 and reusing the transformation Eq. (6) to return original variables, the 
solutions of the vdW Eq. (1) is given as:

Case 6 Using these data and assuming Q =

√
2

2
� ae−a�sd

�√
2e−a� + c3,

√
2

2

�
, the solution 

of Eq. (5) can be achieved as:

Selecting c = −2 and reusing the transformation Eq. (6) to return original variables, the 
solutions of the vdW Eq. (1) is given as:

4.1  Result discussion

The solutions derived in this article using the auxiliary equation for the M- derivative 
time fractional vdWm included different Jacobi elliptic functions and hyperbolic func-
tion solutions. The solution u1,2(x, t) is the Jacobi ds function solution, u3,4(x, t) is the 
Jacobi nc function solution, u9,10(x, t) is the Jacobi nc function solution, and u11,12(x, t) is 
the Jacobi sd function solution. While the solutions u5,6(x, t) and u7,8(x, t) are hyperbolic 
functions solutions. We applied appropriate values to graph some of these solutions, 
namely; u1,2(x, t) , and Case 3 in contour, 3D, and 2D plots. Moreover, for Fig. 1, the con-
tour, 3D, and 2D plots are implented with parameters � = 0.5 , a = 2.5 , � = 0.9 , � = 0.5 , 
� = −1 , c2 = 0 . Figure  2 is generated with parameters � = 1 , a = 0.5 and � = −1.5 . 
Lastly, Fig.  3 is adopted with parameters � = −1 , a = 0.5 and � = 1.5 . We set t = 0.9 
and varied the value of the fractional derivative � for the subplot (d) in all three figures. 
This is done because varying values of the fractional derivative are more conducive to 
comprehending the influence of the conformable derivative � . In addition, the hyper-
bolic function solution and the Jacobi elliptic function solutions reported in this paper 
have not been reported to the best of our knowledge for the M- derivative time fractional 
vdWm in scientific literature. The reported solutions are entirely different from those 
reported using the extended G

′

G
-expansion and Expa function methods (Raheel et al. n.d.).

(20)U9,10(�) = ±��

�
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√
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�
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5  Conclusion

This study investigates the Van der Waals Model using a novel algebraic approach, which 
results in the achievement of a large number of new exact solutions to the considered prob-
lem. Using this method, we first reduced the proposed model to a nonlinear ODE with the 
help of a complex wave transformation, we then substituted the solution into the result-
ant ODE and found the relations between the parameters of the equations. The exact solu-
tions are discovered for certain values of �, a, �, and other parameters. These solutions for 
the M- derivative time fractional vdWm included different Jacobi elliptic function solu-
tions such as ds, nc, cn and sd JEFs solutions and hyperbolic function solutions. Then, 
graphical patterns are presented to show the physical explanation of the model interactions 
in 2D, contour, and 3D plots. The achieved solutions will be of high significance in the 
interaction of quantum-mechanical fluctuations, granular matter and other areas of vdWm 
applications. In conclusion, this approach may be extended to solve the nonlinear ODEs, 
NPDEs, fractional N0DEs, and fractional NPDEs, in various fields of applied science and 
engineering.
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