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Abstract
In this paper, we present an innovative approach to acquire the exact solutions of the Shy-
naray-IIA equations (S-IIAE), by using the improved modified Sardar sub-equation method 
(IMSSEM). The S-IIAE are nonlinear and coupled partial differential equations that arise 
in various fields of physics and engineering such as optical fibers and ferromagnetic mate-
rials. The IMSSEM is applied to S-IIAE; we successfully derived exact solutions that accu-
rately described the wave propagation behavior of the system under consideration. The 
obtained solutions include rational, trigonometric, and trigonometric hyperbolic function 
solutions. The obtained solutions are concise and offer a deeper insight into the dynamics 
and characteristics of the S-IIAE. Moreover, some of the new solutions to S-IIAE are plot-
ted in different dimensions through which bright, anti-kink and bright solitary wave struc-
tures are established. The results of the study also indicated that the proposed method is a 
valuable approach for achieving analytical solutions to a wide range of nonlinear partial 
differential equations.
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1  Introduction

The nonlinear partial differential equations (NPDEs) are widely used for the representa-
tion of physical problems arising in various branches of science and engineering, and often 
they describe real phenomena of complex nature in physics, fluid dynamics, and many 
other fields. For example, the Korteweg and de Vries equation (1895), Fisher’s equation 
(1951), the equation governing wave propagation in low-pass electrical transmission line 
(Houwe et  al.  2020), the Biswas–Arshed equation (Sabi’u et  al.  2019b), the Boussin-
esq-like equations (Shi et  al. 2015; Mirhosseini-Alizamini et  al. 2021), the incompress-
ible Navier–Stokes equations in streamfunction‐vorticity formulation (Raza et  al. 2021), 
the Sine–Gordon equation (Ben-Yu et  al. 1986), and the nonlinear Schrodinger equation 
(Kato 1987). The Shynaray-IIA Equation (S-IIAE) are coupled system of nonlinear PDEs, 
whereas, it involves significant challenges of a serious nature, which are associated with 
intricate and nontrivial behaviors of the system (Myrzakulova et al. 2022). The well-known 
mathematical form of S-IIAE (Fahim et al. 2022) is expressed below:

where q(x, t) , r(x, t)  and v(x, t) represent the unknown variables and they naturally depend 
on independent variables x and t . Note that m and n are constants. The integrable property 
of this equation via the inverse scattering transform, other properties such as geometrical 
and gauge equivalence, and space curves integrable motion are extensively studied, see 
Sagidullayeva et al. (2022) and the reference therein.

The solution of NPDEs became a challenging problem in mathematics and engineering, 
especially to get the stability and consistency of such systems while finding numerical solu-
tions (Shah et al. 2010; Hussain et al. 2019). The most commonly used numerical methods 
for solving the NPDE are the finite difference methods, spectral methods, finite element 
and finite volume methods (Ma and Yan 2006; Sod 1978; Fallah et al. 2000; Meuris et al. 
2023). The non-numerical solutions of such equations are not an easy task all the time, 
therefore, the most serious concerns of researchers regarding the exact solutions to such 
equations have been addressed positively which is strictly based on the motivation of phys-
ical insights of the problem. The solitary wave methods are among the convincing methods 
for finding the exact solution to NPDEs. Previously, many methods have been used to find 
the exact solutions of NPDEs, such as the tanh method (Almatrafi 2023), the homogeneous 
balance method (Jafari et al. 2014), the sub-equation method (Akinyemi et al. 2021; Senol 
et al. 2021), the Kudryashov method and its modifications (Kudryashov 2012, 2020), the 
sine-Gordon methods (Baskonus et al. 2019; Kumar et al. 2017a; Fahim et al. 2022), the 
generalized algebraic and Q-expansion methods (Almatrafi and Alharbi 2023; Alharbi and 
Almatrafi 2022), the Jacobi elliptic function expansion method (Khan et al. 2022), and so 
on, see Iqbal (2018), Bilal et al. (2021), Seadawy et al. (2021, 2019), Iqbal et al. (2023), 
Khatri et al. (2019), Kumar et al. (2017b, 2021), Dahiya et al. (2021), Sabi’u et al.  (2019a, 
2022, 2023) for more details and the references therein. In addition, some of the most accu-
rate and efficient techniques were designed with extreme efforts of researchers for the solu-
tions of NLPDEs. However, some of these methods do not provide reasonable solutions to 
the system of NLPDEs adequately. Therefore, this prompted us to apply IMSSEM (Akiny-
emi 2021) for the solutions of S-IIAE. More precisely, the IMSSEM is a novel approach 

(1)

iqt + qxt − i(vq)x = 0,

irt − rxt − i(vr)x = 0,

vx −
n2

m
(rq)t = 0,
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that combines and utilizes the strengths of existing methodologies to offer robust and ver-
satile solutions for nonlinear NPDEs.

The primary objective of this research paper is to present the exact solution to the chal-
lenging S-IIAE for the first time in the literature using the IMSSEM (Akinyemi 2021), 
by employing this innovative method, we aim to overcome the limitations of traditional 
approaches and provide concise and elegant solutions to this complex equation.

The structure of this work is as follows: we give a brief introduction to the importance 
of NPDEs in science and engineering and some available methods for solving them in 
Sect. 1. Section 2 contains the methodology of the suggested technique for the solution of 
S-IIAE. In Sect. 3, we used the IMSSEM to solve the S-IIAE precisely. Section 4 addresses 
the graphical depiction of the solutions. Section 5 of the study contains its conclusion.

2 � Methodology of the proposed improved modified Sardar 
sub‑equation method

This section will elucidate the procedures of the IMSSEM (Akinyemi 2021) for solving 
NPDEs. Now, Let us consider the NLPDE

where the function u = u(x, t) represents an unknown function in the given context. In order 
to proceed, we have introduced a wave transformation as follows:

by using the transformation in Eq. (3) into the nonlinear PDE in Eq. (2), where c ≠ 0 , we 
can reduce the PDE into an ODE of integer order

We have solved the ODE (4) by using the IMSSEM, the technique has the standard 
form:

where aj (j = 0, 1, 2, 3,⋯N).
The value of N can be determined by homogeneous balancing procedure (HBP), by bal-

ancing the highest order nonlinear and highest order derivative term in Eq. (4). Therefore, 
the highest degree of d

ru

dξr
 is classified as:

(2)F
(
u, ut, ux, uxx,⋯

)
= 0,

(3)u = u(�)whereη = x − ct,

(4)N
(
u�, u��, u���,⋯

)
= 0.

(5)u(η) = a0 +

N∑

j=1

ajϕ
j(η),whereaN ≠ 0,

(6)O

(
dru

dηr

)
= n + r,

(7)O

(
uq

dru

dηr

)s

= qn + s(n + r).
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2.1 � The enhanced improved modified Sardar sub‑equation approach

The ϕ(η) in Eq. (5) is considered the solution to the following equation:

where �i, i = 0, 1, 2 are constants to be determined, for more detail on Eq. (8) see Akinyemi 
(2021) and the references therein. The following set of solutions that satisfied Eq. (8) with 
C as the constant of integration are:

For �0 = �1 = 0 and 𝛿2 > 0, we obtained the rational solutions:

For δ0 = 0 and δ1 > 0, the exponential solutions will be of the form:

The trigonometric hyperbolic solutions are as follows:
(i) For δ0 = 0 , δ1 > 0 and δ2 ≠ 0 , we have

(ii) For δ0 =
δ1

2

4δ2
 , δ1 < 0 and δ2 > 0 , we have

(8)
(
ϕ�
)2
(η) = δ2ϕ

4(η) + δ1ϕ
2(η) + δ0,

(9)ϕ±

1
(η) = ±

1
√
δ2(η + C)

.

(10)ϕ±

2
(η) =

4δ1e
±
√
δ1(η+C)

e±2
√
δ1(η+C) − 4δ1δ2

,

(11)ϕ±

3
(η) =

±4δ1e
±
√
δ1(η+C)

1 − 4δ1δ2e
±2

√
δ1(η+C)

.

(12)ϕ±

4
(η) = ±

�

−
δ1

δ2
sech

�√
δ1(η + C)

�
,

(13)ϕ±

5
(η) = ±

�
δ1

δ2
csch

�√
δ1(η + C)

�
.

(14)ϕ±

6
(η) = ±

√

−
δ1

2δ2
tanh

(√
−
δ1

2
(η + C)

)
,

(15)ϕ±

7
(η) = ±

√

−
δ1

2δ2
coth

(√
−
δ1

2
(η + C)

)
,

(16)ϕ±

8
(η) = ±

�

−
δ1

2δ2
(tanh

�√
−2δ1(η + C)

�
± isech

�√
−2δ1(η + C)

�
,
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The solutions which have the form of trigonometric functions are presented below:
(i) For δ0 = 0 , δ1 < 0 and δ2 ≠ 0 , we have

(ii) For δ0 =
δ1

2

4δ2
 , δ1 > 0 and δ2 > 0 , we have

Remember that we have substituted Eqs. (5 and 8) into Eq.  (4), and equate all the 
coefficients of each power of �(η) to zero and solve the resultant system of algebraic 
equations with the help of Maple. Eventually, we incorporated these constants (coeffi-
cients) into Eq. (5) and obtained the solution of distinct types as shown in Eqs. (9–25). 
As a result, we obtained different exact solutions for NPDEs.

(17)ϕ±

9
(η) = ±

�

−
δ1

2δ2
(coth

�√
−2δ1(η + C)

�
± csch

�√
−2δ1(η + C)

�
,

(18)ϕ10(η) = ±

√

−
δ1

8δ2
(tanh

(√
−
δ1

8
(η + C)

)
+ coth

(√
−
δ1

8
(η + C)

)
.

(19)ϕ±

11
(η) = ±

�

−
δ1

δ2
sec

�√
−δ1(η + C)

�
,

(20)ϕ±

12
(η) = ±

�

−
δ1

δ2
csc

�√
−δ1(η + C)

�
.

(21)ϕ±

13
(η) = ±

√
δ1

2δ2
tan

(√
δ1

2
(η + C)

)
,

(22)ϕ±

14
(η) = ±

√
δ1

2δ2
cot

(√
δ1

2
(η + C)

)
,

(23)ϕ±

15
(η) = ±

�
δ1

2δ2
(tan

�√
2δ1(η + C)

�
± sec

�√
2δ1(η + C)

�
,

(24)ϕ±

16
(η) = ±

�
δ1

2δ2
(cot

�√
2δ1(η + C)

�
± csc

�√
2δ1(η + C)

�
,

(25)ϕ±

17
(η) = ±

√
δ1

8δ2

(
tan

(√
δ1

8
(η + C)

)
− cot

(√
δ1

8
(η + C)

))
.
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3 � Shynaray‑IIA equation (S‑IIAE) and its solutions by Sardar 
sub‑equation method

In this section, we present the exact solutions of S-IIAE (1) by IMSSEM (Akinyemi 2021)

In case when r = �q (� = ±1) , the S-IIAE takes the following form

In the above equation m , n and � are constants. By using the traveling wave transforma-
tion, Eq. (26) is reduced into the following ODE

where v, �,�, � characterize the frequency, phase constant, wave number and velocity of 
soliton, respectively. Substituting Eq. (27) into the first part of the system (26) and separat-
ing the real and imaginary parts, we have the real part of the form

Equation (28) is integrated, and we get

Substitute Eq. (29) into the first part of (28) and separate the real and imaginary parts as

where the imaginary part is given by

By using the HBP, by balancing the highest order derivative and highest order nonlinear 
term, we obtained N = 1 . The determined value of N is substituted in Eq. (5), we obtain 
the simple form of the solution as:

iqt + qxt − i(vq)x = 0,

irt − rxt − i(vr)x = 0,

vx −
n2

m
(rq)t = 0.

(26)
iqt + qxt − i(vq)x = 0,

vx −
n2

m

(
|q|2

)
t
= 0.

(27)
q(x, t) = U(�)ei�(x,t), v(x, t) = G(�),

�(x, t) = −�x + �t + �, � = x − ct,

(28)

cU
��(�) + �(1 − �)U(�) + �G(�)U(�) + i(� − c(1 − �))U�(�) − G(�)U�(�) − G

�(�)U(�) = 0,

G
�(�) +

2cn2

m
U(�)U�(�) = 0.

(29)G(�) = −
c�n2

m
U2(�).

(30)cU��(�) + �(1 − �)U(�) −
�c�n2

m
U3(�) = 0,

(31)(� − c(1 − �))U�(�) +
3c�n2

m
U��(�)U�(�) = 0.

(32)U(�) = a0 + a1�(�).
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3.1 � Exact solutions of S‑IIAE by IMSSEM

In this section, Eqs.  (8 and 32) are substituted into Eq.  (30) and we get the following 
equation with the aid of Maple.

By comparing the coefficients of various powers of Ui(�) , we get the system of alge-
braic equations of the following form, we have

Solving the above system of equations with the aid of Maple and get the coefficients:

Using Eqs. (39–41) in combination with Eqs. (9–25) and Eq. (32), we obtained the 
following solutions.

The rational solution of Eq. (1) for �0 = �1 = 0 and 𝛿2 > 0 can be found as:

The exponential solutions of Eq. (1) have the following form:
For �0 = 0 and 𝛿1 > 0 , we have

(33)

1

m
(�ma0 + �ma1U(�) − �n�a0 − �m�a1U(�) − �cn2a3

0

− 3�cn2a2
0
a2
1
U(�) − 3�cn2a0a

2
1
U2(�) − �cn2a3

1
U3(�)

+ 2ca1U
3(�)m�2 + ca1U(�)m�1 = 0.

(34)U0 ∶
−a0(−�m + �m� + ��cn2b2

0
)

m
= 0,

(35)U1 ∶
�ma1 − �m�a1 − 3��cn2a2

0
a1 + ca1m�1

m
= 0,

(36)U2 ∶
−3��cn2a0a

2
1

m
= 0,

(37)U3 ∶
−��cn2a3

1
+ 2ca1m�2

m
= 0.

(38)a0 = 0,

(39)a1 = a1,

(40)�1 =
�(−1 + �)

c
,

(41)�2 =
��n2a2

1

2m
.

(42)U±

1
(η) = ±

1
√
δ2(η + C)

.
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The trigonometric and hyperbolic solutions of Eq. (1) are given as:
For �0 = 0 , 𝛿1 > 0 and �2 ≠ 0 , we have

•	 While for 𝛿0 =
𝛿2
1

4𝛿2
, 𝛿1 < 0 and 𝛿2 > 0 , we get the solutions as:

•	 The trigonometric solutions of Eq. (1) are stated as:

 (i) For δ0 = 0 , δ1 < 0, δ2 ≠ 0 and δ < 1 , we have

(43)U±

2
(η) =

4
�(−1+�)

c
e
±
√

�(−1+�)

c
(η+C)

e
±2
√

�(−1+�)

c
(η+C)

− 2
�(−1+�)��n2a2

1

cm

,

(44)U±

3
(η) =

±4
�(−1+�)

c
e
±
√

�(−1+�)

c
(η+C)

1 − 2
�(−1+�)��n2a2

1

cm
e
±2
√

�(−1+�)

c
(η+C)

.

(45)U±

4
(η) = ±

√
−
2m�(−1 + �)

c��n2a2
1

sech

(√
�(−1 + �)

c
(η + C)

)
,

(46)U±

5
(η) = ±

√
2m�(−1 + �)

c��n2a2
1

csch

(√
�(−1 + �)

c
(η + C)

)
.

(47)U±

6
(η) = ±

√
−
m�(−1 + �)

c��n2a2
1

tanh

(√
−
�(−1 + �)

2c
(η + C)

)
,

(48)U±

7
(η) = ±

√
−
m�(−1 + �)

c��n2a2
1

coth

(√
−
�(−1 + �)

2c
(η + C)

)
,

(49)U±
8 (η) = ±

√

−
m�(−1 + �)
c��n2a21

(tanh

(
√

−2�(−1 + �)
c

(η + C)

)

± isech

(
√

−2�(−1 + �)
c

(η + C)

)

,

(50)U±
9 (η) = ±

√

−
m�(−1 + �)
c��n2a21

(coth

(
√

−2�(−1 + �)
c

(η + C)

)

± csch

(
√

−2�(−1 + �)
c

(η + C)

)

,

(51)U10(η) = ±

√

−
m�(−1 + �)
4c��n2a21

(tanh

(
√

−
�(−1 + �)

8c
(η + C)

)

+ coth

(
√

−
�(−1 + �)

8c
(η + C)

)

.

(52)U±

11
(η) = ±

√
−
2m�(−1 + �)

c��n2a2
1

sec

(√
−
�(−1 + �)

c
(η + C)

)
,
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(ii) For δ0 =
δ1

2

4δ2
 , δ1 > 0, δ2 > 0 and 𝛿 > 1 , we have

Therefore, the corresponding solution to Eq. (26) can be obtained by using the trans-
formations q(x, t) = U(�)ei�(x,t), v(x, t) = G(�), r = �q (� = ±1) , with G(�) = −

c�n2

m
U2(�).

4 � The results and discussions

This section provides the result discussions on the derived solutions for the sys-
tem of S-IIAE using IMSSEM. The derived solutions are rational, exponen-
tial, trigonometric and hyperbolic function solutions. for example, the solution 
Eq.  (42) is a rational function solution, Eqs.  (43) and (44) correspond to the expo-
nential function solutions, Eqs.  (45) to (51) represent the hyperbolic function solu-
tions, and Eqs.  (52) to (58) are trigonometric functions solutions. Moreover, 
Fig.  1 gives the graphical representations for some of the derived solitary wave 
solutions to Fig.  6. All the shapes in Figs.  1, 2, 3,  4, 5 and 6 are recovered using 
ϵ = 1, δ = −0.5,ω = 1, a = 0, η = 1, a1 = 2, c = 1, k = 1,C = 1, y = 0, and m = 1 . Moreo-
ver, all the 2D plots are recovered at t = 0.2 . It is important to note that for the sake 
of demonstration of some of the solitary wave structures in Figs. 1, 2, 3,  4, 5 and 6, 
we plotted the solutions U(η) and G(η) from the derived solutions Eqs.  (42) to (58). 
Among the important recovered structure are the dark, bright, kink and multiple wave 

(53)U±

12
(η) = ±

√
−
2m�(−1 + �)

c��n2a2
1

csc

(√
−
�(−1 + �)

c
(η + C)

)
,

(54)U±

13
(η) = ±

√
m�(−1 + �)

c��n2a2
1

tan

(√
�(−1 + �)

2c
(η + C)

)
,

(55)U±

14
(η) = ±

√
m�(−1 + �)

c��n2a2
1

cot

(√
�(−1 + �)

2c
(η + C)

)
,

(56)

U
±

15
(η) = ±

√
m�(−1 + �)

c��n2a2
1

(tan

(√
2
�(−1 + �)

c
(η + C)

)
± sec

(√
2
�(−1 + �)

c
(η + C)

)
,

(57)

U
±

16
(η) = ±

√
m�(−1 + �)

c��n2a2
1

(cot

(√
2
�(−1 + �)

c
(η + C)

)
± csc

(√
2
�(−1 + �)

c
(η + C)

)
,

(58)

U
±

17
(η) = ±

√
m�(−1 + �)

4c��n2a2
1

(
tan

(√
�(−1 + �)

8c
(η + C)

)
− cot

(√
�(−1 + �)

8c
(η + C)

))
.
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Fig. 1   The multiple soliton waves in 3D and 2D plots for the absolute, real and imaginary parts of U±

2
(η).
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Fig. 2   The multiple soliton waves in 3D and 2D plots for the absolute, real and imaginary parts of G±

2
(η).
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solitons. For example, Figs. 1, 2, 5b and 6b give the multiple wave solitons, Figs. 3a 
and 5a represent the kink soliton waves. Figures 3b and 5b represent the bright soliton 
whereas Figs. 4a and 6a represent the dark solitons.

Fig. 3   a The kink soliton and b bright soliton in 3D and 2D plots for the absolute, real and imaginary parts 
of U±

10
(η).



Exact solutions of Shynaray‑IIA equation (S‑IIAE) using the…

1 3

Page 13 of 17  459

5 � Conclusion

In this research paper, we presented a novel approach especially for obtaining the exact 
solutions to the S-IIAE, by employing the IMSSEM. The study successfully derived a 
family of exact solutions for these equations. These solutions provide valuable insights 
into the dynamics and behavior of S-IIAE and can be utilized in various fields of physics, 
and applied mathematics. The behavior of the solutions for the direct study is presented 
in two and three-dimensional graphs. The proposed technique offers a promising avenue 
for tackling other complex nonlinear equations and warrants further exploration in future 
research. Future studies of S-IIAE can be considered on the analytical, semi-analytical and 

Fig. 4   a The dark soliton, and b multiple wave soliton in 3D and 2D plots for the absolute, real and imagi-
nary parts of G±

10
(η).
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numerical solutions to investigate a variety of interesting results related to the indicated 
model, including the modulation instability and consistency of the solutions, their physical 
feasibility, and lie symmetry analysis.

Fig. 5   a The anti-kink soliton and b bright soliton 3D and 2D plots for the absolute, real and imaginary 
parts of U±

15
(η).
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