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Abstract
A new adaptive finite element (FE) technique is proposed to enhance the accuracy of the 
solution of wave propagation in integrated photonic devices. The suggested recovery tech-
nique improves significantly the finite element convergence rate compared to refinement 
techniques. The method refines the elements based on the field distribution. This recov-
ery technique estimates the error at each element by comparing the linear FE solution and 
the recovery solution using least-squares method. The numerical aspects and accuracy of 
the method are investigated using the light propagation in both one-dimensional and two-
dimensional photonic devices.
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1 Introduction

Modern photonic devices have complex structures that require efficient numerical tech-
niques capable of modelling such designs. In this regard, the finite element method (FEM) 
attracts the interest of many researchers (Hoole et  al. 1988). The conventional FEM 
(Obayya et al. 2000a, b, 2002) is a robust technique for analyzing various optical devices. 
However, getting accurate results requires fine meshing. This in turn demands high com-
putational resources due to the produced large number of degrees of freedom (DOF) (Fer-
nandez et  al. 1993). A possible way to reduce the DOF is to use higher order elements. 
Although higher order solution reduces the DOF, it produces less sparse matrices, reduces 
the flexibility of placing nodes, and complicates the problem (Koshiba et  al. 2000). 
Another way to reduce the DOF is to use first order elements with improved accuracy as in 
smoothed FEM method (Atia et al. 2015). This method relies on smoothing the derivatives 
across the boundaries between elements to fix numerical discontinuities inherited in the 
conventional FEM shape functions derivatives. Alternatively, one can reduce the DOF by 
selectively meshing areas where most of the field exists with small element sizes. However, 
large element sizes are used for areas where the field vanishes. This technique requires a 
proper knowledge of the solution where the field is confined. Therefore, adaptive mesh-
ing techniques have been proposed (Hoole et  al. 1988; Fernandez et  al. 1993; Tsuji and 
Koshiba 2000). The main challenge of any adaptive algorithm is the selection criteria of 
regions that need more meshing. The node points are distributed based on the errors in 
these regions. Hence, various error estimators have been developed in order to distribute 
the node points. An adaptive technique for solving Poisson equation that uses the node 
perturbation technique as an error estimator was developed (Hoole et  al. 1988). Later, a 
predefined user function to calculate the error over the elements was proposed (Fernandez 
et al. 1993). Another error estimator was introduced based on power distribution inside the 
waveguide (Tsuji and Koshiba 2000). However, the field variation in the computational 
domain reported in Hoole et al. (1988), Fernandez et al. (1993), Morimoto et al. (2021) 
was not considered. Therefore, the previous adaptive algorithms fail to follow rapid field 
variations. This is very important for instance to photonic cavities because accurate repre-
sentation of field decay significantly affects the cavity quality factor. In Schmidt (1993), a 
beam propagation technique based on new error estimator that compares the linear FEM 
solution with the local improved quadratic solution was developed. This technique needs 
an extra effort at each propagation step due to the required iterative calculations to obtain 
the local improved quadratic solution.

Here, in order to select the refinement elements, the local errors are estimated for 
each element. The local error is the difference between the linear FEM solution and 
the recovered solution calculated using the least-squares technique. Such technique is 
called “recovery-type” estimator (Kikuchi and Saito 2007). Further, the recovery tech-
nique is considered as a post processing method to reconstruct and improve the FEM 
solution (Yan and Zhou 2001). The new adaptive FEM technique is proposed to enhance 
the numerical accuracy of the solution of the light propagation in integrated photonic 
devices. The adaptive technique can refine the elements based on the initial field distri-
bution. Our approach can be used in time and frequency domain simulations. However, 
here we only apply it on frequency domain method (Tsuji and Koshiba 2002). Three dif-
ferent photonic structures are tested and analyzed using the suggested approach. First, 
the transmission through reflectionless slab waveguide is calculated. Then, 2D-photonic 
crystal (PhC) cavity is studied which ensures the high accuracy of the quality factor 
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and resonance frequency calculated by the reported algorithm. Further, 2D-PhC mul-
tiplexer-demultiplexer is analyzed for wavelengths of 1.3 µm and 1.55 µm where each 
wavelength is propagated through different PhC channels. It is shown that the reported 
technique has a node distribution allocated at the field location with fast convergence 
rate compared to conventional random refinement techniques.

2  Basic Equations

2.1  Finite Element Formulation

For a 2D computational domain ( Ω ) where the variation is in xy/ plane, the weak form 
of the Helmholtz wave equation in the frequency domain can be expressed as

with, 

ϕ px py Q

TE Ez sx∕sy sy∕sx sysxn
2

TM Hz sx∕
(

syn
2
)

sy∕
(

sxn
2
)

sysx

 where ko is the wave number, n is the refractive index, and ψ is the weight function which 
is expanded using the same basis as ϕ according to Galerkin formulation. The  Ez and  Hz 
are respectively the electric and magnetic field components in z-direction. The sx and sy are 
the PML parameters in x- and y-directions as shown in Fig. 1 that can be found in Tsuji 
and Koshiba (2002).

After dividing into first order triangular elements, Eq. 1 is rewritten as

where
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Fig. 1  Schematic diagram of 
FEM discretization of 2D optical 
waveguide problem
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Here, {N} is the FEM shape function vector, and 
∑

e extends over all elements. To 
excite the structure, we define the source plane Γ which divides the analysis region 
into Ω1 and Ω2 subregions. Thus, due to the continuity condition across Γ , Eq. 2 can be 
rewritten as Tsuji and Koshiba (2002)

where 
∑

Γ extends over the elements attached toΓ , {N}Γ is the 1D shape functions vector, 
∫

l
 refers to a line integral over Γ, and ϕ1 and ϕ2  are the incident fields in the sub-regions 

,Ω1 andΩ2 , respectively. The fields ϕ1 and ϕ2 are expressed using the eigenmodes. The lin-
ear system of equation presented in Eq. 3 is then solved for the field distribution over the 
computational domain.

2.2  Field‑Based Recovery Technique

The proposed adaptive technique is considered as a posteriori error estimate method 
where the exact solution is replaced, in the expression of the true error, with an approxi-
mation recovered from the numerical solution. Figure 2 shows a flow chart of the pre-
sented technique. At each iteration, the problem is solved and an error calculation for 
each element is obtained. Then, the mesh is refined in zones where high errors exist. 
The error estimation (εi) at each element is calculated by the formula

where k is the number of elements in the computational domain, ‖⋯ ‖ is the L2 norm, ũ is 
the linear FEM approximation to the exact solution u and R

{

ũ
}

 is the recovered solution 
of ũ . Once the estimation of the local is calculated at each element, the refinements take 
place in the elements that satisfy εi > αεmax , where εmax is the maximum local error in 
the domain and α(0 < α < 1) is a parameter that controls the number of refined elements. 
When α is close to 1, the refinement takes place only in the elements with an error close 
to the maximum. On the other hand, when α is close to 0, a large number of elements is 
refined, even those with a small error. The global error 

(

εg
)

 is given by

where the adaptation process iterates until εg is less than a certain tolerance (ϵ) (Kikuchi 
and Saito 2007). In order to obtain the recovered solution R

{

ũ
}

 at a certain mesh node z , a 
patch Ωz of mesh elements directly attached to z is selected as shown in Fig. 3a. Then, the 
linear FEM solution is extended to the mid-edges by interpolation (Zhang and Naga 2005; 
Naga and Zhang 2004).

Next, a quadratic polynomial Pz that best fits the FEM solution ũ is constructed, 
using the least-squares method, at the nodes shown in Fig. 3b. The recovered solution 
R
{

ũ
}

 at a certain interior node z is defined as the fitting polynomial, i.e.
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At any boundary node ẑ  , the recovered solution is equal to the FEM solution.

(6)R
{

ũ(z)
}

= Pz(z)

Fig. 2  Flowchart of the sug-
gested adaptive FEM

Fig. 3  a Node patch �
�
 and b 

Nodes in �
�
 for least squares 

polynomial (LSP)
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3  Numerical Results

Figure 4a shows a silica slab with refractive index n = 1.44 surrounded by air. The length 
of the silica slab d =

mλ

2n
 (where m = 1, 2, 3,… and λ is the operating wavelength in air) 

is chosen to obtain complete transmission with no reflection. During this study, the slab 
thickness is taken as 1615 nm which corresponds to m = 3. The purpose of this example 
is to show the convergence of the proposed technique to the exact solution with transmis-
sion of unity. An initial mesh is first used then the proposed adaptive technique is applied. 
Figure 4b, d show the distributed field Ey of the travelling wave through the slab wave-
guide at wavelengths of λ = 1.55 μm and λ = 0.775 μm . Figure 4c, e illustrate the mesh 
distribution after applying the proposed technique at the studied wavelengths after applying 
the mesh refinement technique. It may be noticed that the mesh density follows the elec-
tric field pattern produced in the computational domain. This coincides with the idea of 
the technique where the mesh follows the field unlike the previous work done in this area 
where the refinement is based on the gradient of the field (Babuvška and Rheinboldt 1978). 
Figure  4f shows the mesh distribution after applying the proposed refinement technique 
with DOF = 82,300 at λ = 1.55 µm. The solid green triangles represent the largest ele-
ment with size 1.25 × 10

−7μm , while the dark red triangles represent the smallest elements 
with size 3.88 × 10

−9 μm . It is clear from the figure that the mesh density increases at the 
peak regions of the electric field shown in Fig. 4b regardless it is a maximum or minimum 
value. This is due to at the peak regions the gradient of the field component increases that 
required the mesh to be denser at these regions in order to mimic the rapid changes in the 
field values.

Figure 5 shows the variation of the absolute error versus the number of degrees of free-
dom (DOF). The absolute error is computed using |

|

Texact − Tr
|

|

 . The problem is designed 
to have  Texact = 1.0 while Tr is the transmission obtained by the suggested technique after 
mesh refinement process i.e. Tr =

|

|

S21
|

|

 . It may be noticed that the absolute error drops 
down rapidly when the DOF is between 8 ×  104 and 1 ×  105. Then the error stabilizes 
afterward.

In order to test the advantages of the proposed method in modeling complex photonic 
structures, a 5 × 5 PhC cavity shown in Fig.  6 is analyzed. The PhC devices demand 
numerous numbers of elements for accurate analysis. The selected square lattice PhC cav-
ity (Esquerre et al. 2005) consists of dielectric wires with radius r = 0.2 × a with a lattice 
constant of a = 0.58652 μm . The dielectric wires are embedded in air and have a refractive 
index nwire = 3.4 . The central wire is removed in order to form the required cavity. Further, 
perfectly matched layer boundary condition is applied around the studied PhC to truncate 
the computational domain. Here, not only the field inside the cavity that dictates the cavity 
quality factor and normalized frequency but also the field decay and since our approach 
cares about the error in field no matter how weak it is, the computations of the quality fac-
tor is more precise.

In the proposed adaptive FEM, an initial conventional FEM solution is obtained where 
the computational domain is discretized into 35744 elements. After applying the recov-
ery technique, the recovered solution is obtained at each iteration. Based on the initial and 
the recovered solutions, the local error given by Eq. (1) can be estimated. It is required to 

(7)R
{

ũ
(

ẑ
)}

= ũ
(

ẑ
)

.
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Fig. 4  a Silica slab embedded in 
Air b, d the distributed field Ey 
of the travelling wave through 
the studied photonic structure 
at wavelengths of 1.55 µm and 
0.755 µm c, e mesh distribution 
after applying the proposed tech-
nique at the studied wavelengths. 
f shows the mesh distribution 
after applying the proposed 
refinement technique with 
DOF = 82,300 at λ = 1.55 µm
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refine the elements based on a certain ratio α . In this example, the tolerance ϵ is equal to 
10

−6 . Figure 7a, b show the initial discretized computational domain and after five itera-
tions, respectively. The field distribution inside the cavity is shown in Fig. 6b. It may be 
seen that the mesh is refined in the subdomains where the field exists without sacrific-
ing the mesh where the field decays. Therefore, this method is called the field-based mesh 
refinement technique.

Figure 8 shows the normalized frequency and the quality factor variations with the DOF 
using the adaptive proposed refinement. It is revealed from these figures that the normal-
ized frequency and the quality factor converge to 0.3788 and 177.88 , respectively at DOF 
of 696,29 . On the other side, Fig. 9 illustrates the studied parameters with the DOF using 
random refinement. It is evident from these figures that neither the normalized frequency 
nor the quality factor could converge even for DOF higher than 7 × 10

4 . Table 1 shows the 

Fig. 5  The change of the absolute 
error as a function of the number 
of degrees of freedom

Fig. 6  a Schematic diagram of 5 × 5 PhC cavity and b the electric field distribution of the resonant mode 
inside the cavity at normalized frequency of 0.3788
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Fig. 7  The initial mesh and b final mesh of the studied 2D-PhC cavity

Fig. 8  Variation of a the normalized frequency and b the quality factor with the DOF for the studied 
2D-PhC cavity using the adaptive proposed refinement

Fig. 9  Variation of a the normalized frequency and b the quality factor with the DOF for the studied 
2D-PhC cavity using the random refinement
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calculated values of the quality factor Q , and resonance frequency f0 and DOF by the sug-
gested algorithm and that obtained in Esquerre et al. (2005). It may be seen from this table 
that an excellent agreement is achieved. Further, the DOF is reduced by 35% using the 
proposed adaptive technique.

Next, photonic crystal multiplexer-demultiplexer (MUX/DEMUX) is studied for wave-
lengths of 1310/1550 nm (Bhatia and Gupta 2014). Figure  10 shows the schematic dia-
gram of the studied PhC demultiplexer that consists of rectangular lattice of silicon pillars 
embedded in air. The lattice constant is a = 570nm and the rod diameter is d = 0.36a while 
the refractive index of the rods is n = 3.4 (Yan and Zhou 2001). Two filters are formed 
through the T-junction by adjusting the pillars diameter. Filter 1 has diameter defect of 
 d1 = 0.5a which allows wavelength 1310 nm goes upward towards port 3 and filter 2 has 

Table 1  The calculated values of 
the quality factor � , resonance 
frequency �

0
 and DOF by the 

suggested algorithm and that 
obtained in Esquerre et al. (2005)

Quality factor Normalized 
frequency

DOF

Ref. (Esquerre 
et al. 2005)

178 0.37803 107,476

Proposed 177.88 0.3788 69,629 
(Reduced 
by 35%)

Fig. 10  Schematic diagram of 
the optical MUX /DEMUX 
based on a PhC waveguide
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diameter defect of  d2 = 0.72a which allows wavelength 1550 nm goes downward towards 
port 2. Figure  11 shows mesh refinement generated from the proposed technique at (a) 
λ = 1.31 μm and (b) λ = 1.55 μm while DOF is fixed to 8.5 × 10

4 . It can be easily noticed 
that mesh refinement occurs in accordance with propagation of the field inside the device.

The computed electromagnetic field distribution Ez for the studied demultiplexer is 
shown in Fig. 12 for two transmitted signals with wavelength 1.31 μm (Fig. 12a) and 1.55 
μm (Fig. 12b). It can be seen that wavelength of 1.31 μm is guided in the upper channel 
while the lower channel guides the wavelength of 1.55 μm as received by monitor 2 which 
ensures the high accuracy of the proposed model.

It should be noted that the polynomial-preserving recovery (PPR) technique has been 
extended to recover solution or continuous gradient from a finite element solution of an 
arbitrary order in 2D and 3D problems (Naga and Zhang 2005). Therefore, it is believed 

Fig. 11  The corresponding mesh refinement generated from the proposed algorithm at a λ = 1.31 μm and b 
λ = 1.55 μm

Fig. 12  Ez field distribution through the proposed multiplexer-demultiplexer at a λ = 1.31 μm and b 
λ = 1.55 μm
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that the proposed field based recovery technique is applicable to three-dimensional (3D) 
problems and will be considered for our future work. Typically, the 3D FEM is based on 
tetrahedron element with four faces which is analogous to the triangle shape in the 2D 
implementation. Therefore, each FEM node will have three translational degrees of free-
dom. Consequently, the 3D models are more complex with more variables than 2D models 
where more computational resources will be needed with long execution time.

4  Conclusion

A novel adaptive mesh generation is proposed and tested. The technique consists of pos-
terior error estimation calculated based on a previous approximate solution, to guide the 
generation of a new mesh. This new mesh is built starting from a minimal number of trian-
gular elements, which are then, in several sweeps, repeatedly refined according to the field 
locations. This method allows optimum use of the available degree of freedom in order 
to obtain accurate solution. The high accuracy of the reported technique is tested using 
the transmission through photonic structure, a 2D photonic crystal cavity and 2D photonic 
crystal multiplexer-demultiplexer.
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