
Vol.:(0123456789)

Optical and Quantum Electronics (2023) 55:1027
https://doi.org/10.1007/s11082-023-05279-6

1 3

Numerically efficient full‑vectorial rational Chebyshev 
pseudo‑spectral modal analysis for optical Waveguides

Afaf Said1 · Salah Obayya1

Received: 10 May 2023 / Accepted: 5 August 2023 / Published online: 20 September 2023 
© The Author(s) 2023

Abstract
In this paper, an efficient full-vectorial modal analysis based on the rational Chebyshev 
pseudo-spectral method (V-RCPSM) is introduced to analyze 3 dimensional (3D) struc-
tures that are invariant along one spatial variable. Such structures are essential in silicon 
photonics and plasmonics applications where permittivity profiles with high-index contrast 
need precise treatment of the interface boundary conditions. Besides, such structures are 
open in general. Hence, good domain truncation is important. Our method handles these 
challenges via hybrid usage of the domain decomposition technique where the electromag-
netic field is expanded in terms of Chebyshev functions in homogeneous regions, while the 
rational Chebyshev functions are used for semi-infinite homogeneous domains. The bound-
ary conditions are rigorously imposed along the interfaces, a step that maintains the known 
exponential convergence rate of Chebyshev functions. Chebyshev functions have the abil-
ity to capture the correct rapid variation of the electromagnetic fields at the interfaces of 
the high-index-contrast waveguides using only a few basis functions; a critical feature for 
accurate mode computation. To show the accuracy and efficiency of our new approach, we 
studied rib and plasmonic waveguides and compared the results with those obtained using 
other full-vectorial approaches such as the finite elements method (FEM). Our developed 
approach has achieved a huge reduction in computational resources over the FEM.

Keywords Plasmonics · High-index-contrast waveguide · Full-vectorial modal analysis · 
Rational Chebyshev pseudo-spectral method

1 Introduction

Silicon photonics is well known for becoming a leading technology in photonics enabling 
many devices in sub-wavelength dimensions. Plasmonics, as another promising branch of 
photonics, is playing a vital role in the realization of many devices and systems beyond 
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the diffraction limit penetrating a wide range of applications such as integrated optics 
(Maier 2006), communications (Carvalho et  al. 2020), high-sensitive sensing (Lee et  al. 
2021; Azzam et al. 2016), biomedical applications (Gamal et al. 2022), and others (Said 
et  al. 2020). Also, plasmonics shows promise to merge photonics in its big sub-wave-
length dimensions to electronics at the nanoscale for optoelectronic chips (Ozbay 2006; 
Atia et al. 2019). Optical waveguides are the key component of such photonic devices and 
optoelectronic chips. Both silicon photonics and plasmonics produce high-index contrast 
structures showing rapid variation in the fields at the interfaces between the silicon or the 
metal and the surrounding dielectric material. Thus, solving such high field values requires 
huge computational resources. Therefore, the efficient modeling techniques of such basic 
components, waveguides, are still a challenge and need much more considerable effort to 
correctly represent the light-matter interaction at such high-index contrast interfaces (Said 
et al. 2020).

The accuracy of the finite elements method (FEM) (Koshiba et al. 1982; Obayya et al. 
2003; Said et al. 2020) and the finite difference method (FDM) (Lusse et al. 1994; Said 
et al. 2020) depends on the mesh. Moreover, nonphysical domain truncation techniques to 
represent infinite or semi-infinite computational domains are required. Perfectly matched 
layers (PMLs), or variants of transparent boundary conditions, are commonly conventional 
approaches that cause some numerical problems (Said et al. 2020). However, FEM based 
on “Master” and “Slave” nodes requires a considerable amount of logic for coupling the 
related degrees of freedom and does not easily lend itself to developing programs as exten-
sions to existing general-purpose finite-element packages. Moreover, FEM based on “edge 
elements” of leaving the normal component of the expanded function free to jump across 
common faces of adjacent elements was shown to be a possible source of spurious surface 
charges on those faces and led to nonsymmetric systems of linear, algebraic equations and 
may lead to singularity (Lager and Mur 1998). In addition, these edge elements-based tech-
nique is computationally more expensive in terms of both storage requirements and effi-
ciency of iterative solvers. Otherwise, the superposition of an auxiliary continuous func-
tion on linear nodal elements results in lower accuracy (Koshiba and Tsuji 2000). All these 
problems suggest the need for a new type of vectorial expansion function that combines the 
regularity properties of the nodal elements with the capability of modeling the behavior of 
the field strength across interfaces.

Alternatively, spectral methods and conformal maps are introduced as semi-analytical 
methods based on global basis functions to represent semi-infinite or infinite domains, 
eliminating the need for PMLs, by Laguerre or Hermite basis functions and others 
(Abdrabou et  al. 2016). These techniques achieve faster convergence than conventional 
mesh-based methods (Said et  al. 2020). The pseudo-spectral methods have the ability 
to properly apply the physical boundary conditions at the interfaces of the discontinuity 
between metal and dielectric materials, However, only 1D solver based on the pseudo-
spectral method (Abdrabou et al. 2016) has been introduced for the accurate modal analysis 
of dielectric and plasmonic waveguides. Although pseudo-spectral methods have been suc-
cessfully adopted for the accurate and fast modal analysis of dielectric waveguides (Huang 
2010; Huang et al. 2005), they have never been used for 2D full-vectorial modal analysis of 
plasmonic waveguides or other high-index contrast devices like in silicon photonics.

In this paper, we introduce a 2D full-Vectorial modal analysis based on the rational Che-
byshev Pseudo-spectral Method (V-RCPSM) to achieve high accuracy for high-index con-
trast waveguides with a reduction in computational resources. The efficiency and accuracy 
of V-RCPSM have been proven through the analysis of a rib waveguide and a plasmonic 
waveguide, the results have been compared with another full-vectorial modal solver, full 
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vector finite-element method (Obayya et al. 2002). This is the first time, to the best of our 
knowledge, to develop such a technique, V-RCPSM, for the 2D full-vectorial modal analy-
sis of the challenging high-index contrast waveguides like in silicon photonics and plas-
monics. The paper is organized as follows: Sect. 2 presents V-RCPSM, the pseudospectral 
approach for the full-vectorial modal analysis based on the rational Chebyshev functions 
with Algebraic maps; Sect.  3 presents two examples to demonstrate the computational 
performances in convergence and accuracy of the proposed method; Sect.  4 draws the 
conclusions.

2  Full‑vectorial modal analysis based on the rational Chebyshev 
pseudo‑spectral method (V‑RCPSM)

In the pseudo-spectral approach (Huang et al. 2005; Huang 2010) for the modal analysis 
of the transverse cross-section of the 3D waveguide shown in Fig. 1a, the computational 
domain, in the x-y plane, is divided into several finite and semi-infinite subdomains with 
uniform or continuous refractive index profiles as shown in Fig. 1b. To calculate the modes 
of the waveguide in Fig. 1b, we start from Maxwell’s equations in the frequency domain to 
obtain the vector wave equation for the magnetic field vector, H, as follows,

where n is the refractive index profile of the waveguide, and k is the wavenumber. For 
the full-vectorial 2D modal analysis, all electromagnetic fields are assumed to have a z 

(1)∇2H + k2
0
n2H +

∇n2

n2
(∇ × H) = 0,

Fig. 1  (a) Schematic for a 3D structure targeted to be analyzed by the 2D modal solver based on the Che-
byshev pseudo-spectral method. (b) The 2D cross-section of the waveguide using the spectral method to 
divide the structure into subdomains: finite and semi-infinite subdomains
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dependence of e−j�z , then the continuity of the longitudinal components Hz and Ez can 
incorporate the coupled relations of Hx and Hy (Huang et al. 2005; Huang 2010). The two 
coupled components of the magnetic fields, Hx,Hy , are derived as,

where neff = �∕k0 is the effective index of the waveguide mode, and � is the propagation 
constant.

2.1  Rational Chebyshev functions with algebraic maps

We now determine the appropriate basis functions by expanding the Hx and Hy components 
using the Chebyshev polynomials which are regarded as a better technique for expanding 
the optical fields in interior subdomains because of their mathematical robustness to non-
periodic structures. The proposed method is based on the cardinal Chebyshev function first 
introduced for 1D modal analysis in Abdrabou et al. (2016), and here we extend the method 
for the 2D full-vectorial modal analysis (V-RCPSM) to solve the system of Eqs. 2 and 3. 
The magnetic field components, Hx and Hy , are obtained by expanding the field in terms of 
mapped basis functions obtained by composing Chebyshev functions Si,j(l) by the suitable 
conformal map for each subdomain (Abdrabou et al. 2016), the field expansion and its grid 
values in a subdomain at the collocation points take the form

The system of differential Eqs.  2 and  3 is thus converted to an algebraic eigenvalue 
problem.

where vec(.) is a vectorization operator and the matrices Axx,Axy,Ayx and Ayy are the differ-
entiation matrices of the operators in Eqs. 2 and 3.

We adopt the linear maps (Abdrabou et al. 2016) for the 2D bounded subdomains. We 
apply the Dirichlet zero boundary condition (BC) at the infinity, x or y = ±∞ , and extend 
the algebraic maps (Abdrabou et al. 2016) for the 2D semi-infinite subdomains.

We expand the basis functions for each dimension individually. So, the conformal map-
pings are still 1D not 2D. For instance, if we suppose that the x direction extends to infin-
ity, we map it with 1D conformal mapping like what is exactly used in Abdrabou et  al. 
(2016). Other finite dimensions can be mapped by linear maps. So, mapping the 2D struc-
tures here is not 2D, it is by independent 1D maps, just like the cross product or set product 
of two 1D maps: conformal and/or linear maps, exactly as the same 1D maps in the previ-
ous paper (Abdrabou et al. 2016), but applied in each dimension separately.
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0
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Moreover, since we use an H formula, the magnetic field is zero outside. We are apply-
ing an infinite domain at the boundary of our physical domain, and then we truncate with 
Dirichlet BC at infinity. This means no matter what material we are using the field will 
smoothly decay in the infinite domain mimicking the field leaving our physical domain. 
The Dirichlet BC here will not cause any reflections since it is placed at infinity. Moreo-
ver, for other physical cases at the boundaries, other BC can be easily integrated with our 
V-RCPSM approach.

Extra details about the mathematical derivation for the full-vectorial H formulation, the 
conformal mapping, the treatment of boundary conditions, and the meshing strategy could 
be found in Huang et al. (2005); Huang (2010), and Abdrabou et al. (2016).

3  Numerical and simulation results

3.1  RIB waveguide

In order to show the numerical precision of the proposed method, V-RCPSM, we studied 
a standard rib waveguide of silicon surrounded by air. The cross-section of the structure is 
shown in Fig. 2. The rib width, w is 3.0 μm , the rib height, H, and the outer slab depth, D, 
is such that H + D = 1�m , and the operating wavelength is 1.15�m . The refractive indices 
of the guiding, ng , and substrate, ns , regions are 3.44 and 3.4, respectively. Table 1 shows 
the values of the effective index of the fundamental mode H11

y as the outer slab depth, 

Fig. 2  RIB waveguide 2D cross-
section

Table 1  Effective index ( neff  ) 
for the rib waveguide, shown in 
the previous figure, for different 
values of D computed by our new 
full vectorial spectral method, 
V-RCPSM, (Present) and full 
vectorial finite element method 
(VFEM) reported in Obayya 
et al. (2002)

D ( �m) V-RCPSM (Present) VFEM, Ref 
(Obayya et al. 
2002)

0.1 3.412133 3.41213
0.2 3.412288 3.41229
0.3 3.412502 3.41250
0.4 3.412786 3.41279
0.5 3.413145 3.41314
0.6 3.413584 3.41358
0.7 3.414114 3.41410
0.8 3.414761 3.41373
0.9 3.415598 3.41558
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D, varies from 0.1 to 0.9 �m , these being obtained by using our proposed full vectorial 
spectral method, V-RCPSM, and other vectorial formulations such as the full vector finite-
element method (VFEM) with the results from Obayya et al. (2002). The results using this 
type of VFEM were calculated with a mesh of 5609 nodes, and the PML boundary con-
dition is employed around the computational window. However, the results produced by 
our new spectral method, V-RCPSM, were calculated with a few basis functions in each 
region, 15 in the core and 10 in the cladding layers representing the degree of basis func-
tions n Abdrabou et al. (2016) in each dimension and each domain, which produced a mesh 
of 3744 nodes (total number of unknowns) without any PML. As seen from Table 1, there 
is a very close agreement between the results from our new method V-RCPSM and other 
formulations.

Figure 3a shows the dominant field component Hx of the fundamental mode using our 
method. As clearly shown in Fig. 3b, the peaks of the non-dominant field component, Hy , 
around the dielectric corners reflect the accurate incorporation of the boundary condition at 
the interface between the different dielectric media.

Based on these promising results, we studied a 2D plasmonic waveguide and compared 
the results using FEM in the next example.

3.2  Plasmonic waveguide

To show the accuracy and the efficiency of our developed approach, V-RCPSM, we stud-
ied the conventional rectangular structure of the plasmonic waveguide introduced in Hei-
kal et al. (2013) and shown in Fig. 4 with w = 120nm and d = 1200nm . In this study, the 
refractive index of Gold is calculated using Johnson and Christy.

The following Table  2 shows the convergence study of the effective refractive index 
( neff  ) of the first TM Mode of the plasmonic waveguide shown in Fig.   2 at 1.5�m 
wavelength.

We found V-RCPSM converges at [38,38] basis functions for both the finite and semi-
finite subdomains in the structure which produced 13689 unknowns leading to a charac-
teristic matrix of size 27378. However, to get the same accuracy by the finite elements 
method (FEM) using the COMSOL software (Multiphysics 1998), we had to use two thin 

Fig. 3  (a) The dominant Hy field distribution and (b) the nondominant Hx field distribution for D = 0.8�m
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layers of extra meshing around the interfaces between the metal and the dielectric mate-
rial to be able to capture the correct rapid field variation there, the width of each layer was 
1nm with a maximum element size of 0.2nm and a minimum element size of 0.1nm. This 
extra meshing produces huge matrices with 740,528 elements and requires computational 
resources of 34.81 GB RAM during running FEM, COMSOL, for the 2D modal analysis at 
a single wavelength. Table 3 shows a comparison of the number of elements produced by 
our code of V-RCPSM vs. FEM, the COMSOL software.

In general, pseudo-spectral methods have a fast exponential convergence rate as noticed 
clearly from Table 2. And with a reasonable and small number of basis functions n, we can 
get very accurate results as shown in Sect. 3. As n increases very much, the convergence 
curve starts to diverge. That could happen because Chebyshev nodes are concentrated 
around the boundaries. So, when we use a small number of basis functions, the nodes con-
centrated at the boundaries will catch and represent the concentrated field there very well 
which is perfect for plasmonics. However, when we increase the number of basis func-
tions too much, the Chebyshev nodes will be very very close to each other, and hence the 
linear system will become very ill-conditioned with very large condition number because 
of the singularity which may lead matrices with dependent/ or zeros rows or columns. For-
tunately, the beauty of the pseudo-spectral Chebyshev method can produce very accurate 
results with just a few basis functions n thanks to its fast convergence rate, no need to 
increase n leading to ill-conditioned matrices.

Fig. 4  The 2D cross-section of a 
plasmonic waveguide

Table 2  V-RCPSM Convergence of the Effective Refractive Index ( neff  ) of the First TM Mode at at 1.5�m 
wavelength

No. of basis function (N) No. of the field unknowns neff

8 1458 1.057744476181819 + 0.011240457965115i
18 6498 1.125042139124131 + 0.009228057555147i
28 15138 1.131424295443487 + 0.008707870111658i
30 17298 1.131135043098768 + 0.008731365801020i
34 22050 1.132943134270351 + 0.008606970780766i
36 24642 1.133311770323560 + 0.008583578930814i
38 27378 1.133633745656570 + 0.008563436379935i

Table 3  The number of 
elements produced by our code 
of V-RCPSM vs. FEM, the 
COMSOL software

No of elements

FEM 740,528
V-RCPSM (Present) 27,377
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In Figs. 5 and 6, we compare neff  and the propagation length, 1∕im(�) , obtained by 
the spectral method, V-RCPSM, with those obtained by the finite elements method 
(FEM) using the COMSOL software, respectively. Figure 7a and b show the dominant 
and minor components of the magnetic field, Hx and Hy , respectively, calculated by the 
spectral method, V-RCPSM, at 1.5�m wavelength. The insets of Fig. 7a show the great 
ability of the Rational Chebyshev functions to correctly capture the rapid variation 
and the sharp fields of the plasmonic mode at the interface between the metal and the 
dielectric material.

These results show great agreement between the FEM and the newly developed 
V-RCPSM. However, our V-RCPSM has achieved a great advantage over the FEM 
which is reducing the number of elements by 96% while getting the same accuracy as 
shown in Table 3.

Fig. 5  Real part of neff  using the 
spectral method (V-RCPSM) 
and FEM while changing the 
wavelength ( �)

Fig. 6  Propagation length shown 
in log scale and calculated 
by 1∕im(�) using the spectral 
method (V-RCPSM) and FEM 
while changing the wavelength
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4  Conclusion

The presented approach, V-RCPSM, was applied to the full-vectorial modal analysis of 
optical waveguides. The efficiency of our approach was demonstrated through the accurate 
calculation of the plasmonic and guided modes of two waveguides: the rib waveguide and 
the plasmonic waveguide. The adopted rational Chebyshev pseudo-spectral method cap-
tured the correct behavior of the sharp field at the high-index contrast interfaces of such 
waveguides and moreover yielded very good results with a number of basis functions less 
than that used by the conventional FEMs.

Fig. 7  The absolute value of (a) the dominant component of the magnetic field, Hx , and (b) the minor com-
ponent of the magnetic field, Hy , calculated by the presented method, V-RCPSM, at 1.5�m wavelength. The 
insets in (a) represent the norm magnetic field plotted at the cut-line of x = 0.2�m
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