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Abstract
We show the importance of using a thermodynamically consistent flux discretization 
when describing drift–diffusion processes within light emitting diode simulations. Using 
the classical Scharfetter–Gummel scheme with Fermi–Dirac statistics is an example of 
such an inconsistent scheme. In this case, for an (In,Ga)N multi quantum well device, 
the Fermi levels show an unphysical hump within the quantum well regions. This result 
originates from neglecting diffusion enhancement associated with Fermi–Dirac statistics 
in the numerical flux approximation. For a thermodynamically consistent scheme, 
such as the SEDAN scheme, the humps in the Fermi levels disappear. We show that 
thermodynamic inconsistency has far reaching implications on the current–voltage curves 
and recombination rates.
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1 Introduction

In recent years drift–diffusion simulations have offered a numerically attainable method 
for studying carrier dynamics in a wide variety of devices including light-emitting 
diodes (LEDs) (Roemer et al. 2018; Li et al. 2017; O’Donovan et al. 2022), transistors 
(Szymaǹski et al. 2017) (Darwish and Gagliardi 2020) and solar cells (Ren et al. 2017; 
Tress et  al. 2012). The physical interpretation of the model is quite straightforward: 
carriers in a device tend to diffuse from regions of high carrier density to low, and have 
drift motion due to an applied force such as an electric field in the device. On the other 
hand, the numerical implementation of the model can carry pitfalls which lead to an 
incorrect description of the device behaviour as we will highlight below in detail.

The purpose of this publication is therefore to show the practical unphysical 
implications of disobeying thermodynamic consistency. In the stationary case, 
thermodynamic consistency for discretized drift–diffusion equations can be defined 
by the demand that the zero bias solution coincides with the thermodynamic 
equilibrium. In the transient case, it is closely related to the fact that, for boundary 
conditions compatible with the thermodynamic equilibrium, the solution converges to 
this equilibrium when time tends to infinity. It is already known that disobeying this 
property causes non-physical dissipation in the steady state, see (Bessemoulin-Chatard 
2012). However, the inconsistent discrete approximation of the numerical fluxes has 
also more direct consequences for the quasi Fermi potentials and is thus important for 
accurately describing the physics of a device in the frame of drift–diffusion simulations. 
If one inconsistently approximates the fluxes the quasi Fermi level will show a 
completely wrong behavior in for instance quantum well regions, which are at the heart 
of modern LEDs. This has a knock-on effect for the description of the carrier densities 
and thus also recombination and current–voltage (IV) curves, which we will illustrate 
with an (In,Ga)N quantum well structure, a material system of strong interest for energy 
efficient solid state lighting (Humphreys 2008) and for which considerable effort has 
been undertaken to develop advanced carrier transport models (O’Donovan et al. 2021).

For the Boltzmann distribution, the classical Scharfetter–Gummel scheme 
(Scharfetter and Gummel 1969) presents such a thermodynamically consistent scheme. 
Strictly monotonically increasing non-Boltzmann distribution functions lead to diffusion 
enhancement. Various extensions of the Scharfetter–Gummel scheme have been 
suggested to account for this effect, see (Purbo et al. 1989; Jüngel 1995; Stodtmann et al. 
2012). Unfortunately, these schemes are not thermodynamically consistent. In Koprucki 
and Gärtner (2013a), Koprucki and Gärtner (2013b) a thermodynamically consistent 
generalization for Blakemore statistics (which is itself a special case of Eymard et  al. 
2006) is presented in the spirit of (Scharfetter and Gummel 1969) by solving local 
Dirichlet problems. But this generalization requires solving local nonlinear equations 
during assembly and the iterative solution of the coupled system. It is therefore 
computationally prohibitively expensive. A computationally more affordable approach is 
presented in Chainais-Hillairet et al. (2022). On the other hand, in Bessemoulin-Chatard 
(2012) the author presents another extension of the Scharfetter–Gummel scheme using 
a proper average of the nonlinear diffusion guaranteeing thermodynamic consistency 
for a specific choice of the distribution function. An alternative interpretation of 
this approach based on averaging the diffusion enhancement for a very general class 
of statistical distribution functions was given in Koprucki et  al. (2015a). Finally, the 
SEDAN scheme (Yu and Dutton 1988; Cancès et  al. 2020; Abdel 2021) includes the 
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nonlinearity in the drift instead of the diffusion part of the flux and thus also yields a 
thermodynamically consistent scheme.

The remainder of this paper is organized as follows: In Sect.  2, we describe the 
bipolar drift–diffusion model for charge transport in semiconductors. Its finite volume 
discretization including the flux discretizations is described in Sect.  3. The formal 
definition of discrete thermodynamic consistency is also presented in this section. We 
compare thermodynamically consistent and inconsistent schemes in Sect.  4 by studying 
the distribution of densities and quasi Fermi levels within an (In,Ga)N quantum well (QW) 
system, which is embedded in a p–i–n junction. Finally, we conclude in Sect. 5.

2  Drift–diffusion equations and diffusion enhancement

We briefly introduce a model based on nonlinear partial differential equations which 
describes bipolar charge transport in a semiconductor. More details can be found in Farrell 
et al. (2017a). The dependence of the carrier densities n and p on the chemical potentials for 
electrons and holes �n and �p are described by a statistical distribution function F  as well as 
conduction and valence band densities of states Nc and Nv via the state equations n = NcF(�n) 
and p = NvF(�p) . Typical choices for the distribution function are F(�) = exp(�) , the so-
called Boltzmann approximation, or F(�) = F1∕2(�) =

2√
�
∫ ∞

0

E1∕2

eE−�+1
dE , namely the 

Fermi–Dirac integral of order 1/2 describing degenerate semiconductors.
The chemical potentials are related to the quasi-Fermi potentials of electrons and holes 

�n and �p via

Here q denotes the elementary charge, � the electrostatic potential, kB the Boltzmann 
constant, T the temperature and Ec and Ev the conduction and valence band-edge energies. 
This model assumes that charge carriers behave as if they are in a bulk material, described 
by a 3-D density of states. In a slowly varying potential this is a valid description, however 
in a quantum well system the abrupt interface requires a more advanced treatment. To 
account for the quantum mechanical nature of electrons and holes one option is to solve 
the Schrödinger equation for the confining potential energy formed by Vc,v = Ec,v − q� . 
This is a numerically demanding approach, as the Schrödinger equation is an eigenvalue 
problem which would need to be solved self-consistently coupled to Poisson and 
drift–diffusion equations. While such a calculation is feasible in 1D, extending this to 2D 
or 3D structures is numerically prohibitive. Therefore, in recent years significant efforts 
have been undertaken to establish methods that account for quantum corrections but are 
computationally cheaper (Ferry et  al. 2002; Li et  al. 2017). One of these approaches is 
based on the so-called localization landscape theory (LLT), which allows to extract a (non-
local) effective potential. It has been shown that LLT provides a good approximation of 
the single particle ground states, not only in square wells but also triangular wells which 
are relevant for systems with a polarization field – such as (In,Ga)N QWs (Chaudhuri 
et  al. 2020). The resulting (effective) confining potentials, Eeff

c,v
 , exhibit band edges that 

�n =
(
q(� − �n) − Ec

)
∕(kBT) and �p = (q(�p − �) + Ev)∕(kBT).
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are softened and approximate the finite extent of carrier wavefunctions.1 In the framework 
of LLT a linear system of equations is solved to determine the effective potential without 
introducing extra free parameters (Filoche et al. 2017). Our implementation of this method 
in conjunction with a drift–diffusion based carrier transport solver is discussed in more 
detail in O’Donovan et al. (2022) and O’Donovan et al. (2021). In O’Donovan et al. (2022) 
we have compared results of our quantum corrected drift–diffusion model employing 
LLT with the results of a commercially available software package utilizing a ‘standard’ 
Schrödinger-Poisson solver. Our findings indicate that LLT can produce results in good 
agreement with the fully coupled Schrödinger-Poisson-drift–diffusion solver, highlighting 
that LLT captures quantum mechanical corrections sufficiently. In recent years this 
method has been used to study transport behaviour of numerous semiconductor structures 
including LEDs (Lynskey et al. 2020; Lheureux et al. 2020; Lynskey et al. 2022; Romer 
and Witzigmann 2017), blocking layers (Qwah et  al. 2020) and superlattices (Tsai et  al. 
2020); moreover, these methods have been used successfully alongside experimental 
studies to gain insight into device behaviour (Lynskey et al. 2022; Romer and Witzigmann 
2017).

We model a bipolar semiconductor device as a domain Ω ⊂ ℝ
d where the carrier 

transport in a self-consistent electrical field is described by a system of partial differential 
equations. In the steady-state case this drift–diffusion system consists of Poisson’s equation 
for � and continuity equations for electrons and holes:

Here, �r is the relative permittivity, C is the net doping profile, and R = R(n, p) describes 
carrier recombination. Electron and hole current densities can be expressed in terms of 
quasi-Fermi potentials by

or for any strictly monotonic Fermi-like distribution function F(�) in drift–diffusion form

where �n and �p denote the electron and hole mobilities, respectively, and UT = kBT∕q is 
the thermal voltage. The factor g can be defined in terms of densities, g(x) = x(F−1)�(x) , 
for x ∈ ℝ . This factor is the so-called diffusion enhancement appearing as a density-
dependent modification factor in the generalized Einstein relation, see (van Mensfoort and 
Coehoorn 2008), leading in general to a non-linear diffusion coefficient. For the Boltzmann 
distribution, F(�) = exp(�) , we have g ≡ 1 and the current expressions (4) reduce to the 
usual ones with linear diffusion.

(1)−∇ ⋅ (𝜀0𝜀r∇𝜓) =q (C + p − n), x⃗ ∈ Ω,

(2)−∇ ⋅ jn = −qR, ∇ ⋅ jp = −qR, x⃗ ∈ Ω.

(3)jn = −q�nn∇�n, jp = −q�pp∇�p,

(4)
jn =q�n

[
UTg

(
n

Nc

)
∇n − n∇

(
� −

Ec

q

)]

and jp = −q�p

[
UTg

( p

Nv

)
∇p + p∇

(
� +

Ev

q

)]
,

1 From here on within this work E
c,v shall refer to the band edge values which are modified to account for 

the effective potential, E
c,v ≡ E

eff
c,v

.
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3  Finite volume space discretization

We discretize the domain Ω using the Voronoï box based finite volume method 
introduced in Macneal (1953), also known as “box method” due to Bank and Rose 
(1987). It uses a simplical boundary conforming Delaunay grid (Si et al. 2010) which 
allows to obtain control volumes surrounding each given collocation point xK by joining 
the circumcenters of the simplices containing it, see (Farrell et al. 2017a) for details.

Let �K denote the boundary of the control volume K, and |�| the measure of a 
geometrical object � . For each control volume K, we integrate the continuity Eq.  2) 
and apply Gauss’s theorem to the integral of the flux divergence. Restricting our 
considerations to the electron transport equation, we obtain

where n is the internal unit normal to �K and nKL is the internal unit normal to the interface 
�K ∩ �L for each neighbor L of K. The values nK , pK are the numerical approximations 
of the densities n and p at the collocation points xK , and jn,KL are approximations of the 
normal currents through �K ∩ �L . In the same manner the discretization of the Poisson 
equation can be obtained. A more detailed discussion of this method can be found in 
Farrell et al. (2017a).

3.1  Discrete thermodynamic consistency

One property which holds on a continuous level to avoid unphysical state dissipation is 
the preservation of thermodynamic equilibrium (Farrell et al. 2017a). Mathematically, 
this means that vanishing fluxes shall imply constant quasi Fermi potentials. The 
classical discrete counterpart of this property is formulated as below (see for example 
Koprucki et  al. 2015a; Farrell et  al. 2017a): a numerical flux j = jKL is said to be 
thermodynamically consistent if it satisfies an analogous discrete relation, i.e.

where ��KL = (�L − �K)∕UT . Similarly, we define ��KL = �L − �K and 
��KL = (�L − �K)∕UT and �EKL = (Ec,L − Ec,K)∕(qUT ) . We point out that the condition (6) 
holds in equilibrium. Here, we introduce a stronger notion of thermodynamic consistency, 
which holds outside of equilibrium, namely

An important property of defining thermodynamical consistency like above is that the 
sign of the numerical current is consistent with that of its continuous counterpart (3). 
Thermodynamic consistency is also important, when coupling the van Roosbroeck system 
to heat transport models (Farrell et al. 2017a). We discuss now different numerical fluxes 
that may be used within a Voronoï finite volume framework.

(5)

0 =∫
�K

jn ⋅ n ds − ∫
K

qR dx =
∑

L neighbor of K
∫

�K∩�L

jn ⋅ nKLds − ∫
K

qR dx

≈
∑

L neighbor of K

|�K ∩ �L|jn,KL − q|K|R(nK , pK),

(6)j = 0 implies ��KL = 0,

(7)j ≤ 0 implies ��KL ≥ 0 and j ≥ 0 implies ��KL ≤ 0.
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3.2  The Scharfetter–Gummel scheme

First, we introduce the well known, classical Scharfetter–Gummel flux approximation 
(Scharfetter and Gummel 1969) given by

where the constant j0 is given by j0 = q�nNc

UT

hKL
 for hKL = |x⃗K − x⃗L| , and B is the Bernoulli 

function, B(x) = x

exp(x)−1
 . It is important to point out that Scharfetter and Gummel 

introduced this numerical flux only in the Boltzmann regime, i.e. F = exp . In this case, the 
flux is thermodynamically consistent in the sense of (6). However, once we leave the 
Boltzmann regime, i.e. F ≠ exp , and continue using (8) this numerical flux will no longer 
be thermodynamically consistent.

3.3  SEDAN scheme

Next, we present the SEDAN scheme, which yields a thermodynamically consistent approach 
also for state equations which do not necessarily rely on the Boltzmann approximation. The 
earliest reference we could find for such a excess chemical potential scheme is the source code 
of the SEDAN III simulator (Yu and Dutton 1988), which explains the reason we use this 
name. A numerical analysis focused comparison of this flux approximation is given in Cancès 
et al. (2020) and simulation results are presented in Abdel (2021). The scheme is motivated by 
rearranging the drift part to include the excess chemical potential, �ex = lnF(�) − � , yielding

with

Note that, using the definition of QKL and the fact that exB(x) = B(−x) , one can reformulate 
the SEDAN flux as

Therefore, it is easy to see that the SEDAN flux satisfies (7), since both B(QKL) and F(�L) 
are positive: it is a thermodynamicaly consistent numerical flux.

Note that when applying Boltzmann statistics �ex = 0 and the SEDAN flux becomes 
equivalent to the Scharfetter–Gummel expression. Therefore, in the next section, when 
displaying results using Boltzmann statistics, we only show results from one numerical 
scheme.

4  Simulations

To illustrate the importance of using thermodynamically consistent flux approximations, 
we study a simple (In,Ga)N multi QW (MQW) system. In particular, we consider three 
QWs and the same set of parameters as in O’Donovan et al. (2022). For large negative 

(8)jsg = j0
{
B
(
��KL − �EKL

)
F(�L) − B

(
−��KL + �EKL

)
F(�K)

}
,

(9)jsedan = j0
{
B
(
QKL

)
F(�L) − B

(
−QKL

)
F(�K)

}

(10)QKL = ��KL − �EKL + �ex
L
− �ex

K
= ��KL − �EKL − ��KL + ln

F(�L)

F(�K)
.

jsedan = j0B
(
QKL

)
F(�L)

(
1 − e��KL

)
.
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values of � ( � ≤ −2 , which correspond roughly to densities below 14% of the effective 
density of states Nc , thus a low carrier density regime in the conduction band of the 
wells) the Boltzmann approximation provides a good estimate of the Fermi–Dirac sta-
tistics. Therefore in certain cases Scharfetter–Gummel scheme can offer a good descrip-
tion of the drift–diffusion model (e.g. Ref. O’Donovan 2022).

On the other hand there are situations where Boltzmann statistics will not suffice 
and the importance of using a thermodynamically consistent scheme becomes apparent. 
Figure  1a displays the conduction band edge and quasi Fermi energies of the MQW 
system when treated using Boltzmann statistics at a bias of 3.3 V. Applying the 
Scharfetter–Gummel scheme (8) to Fermi–Dirac statistics for a bias of 3.3 V leads to 
humps in the quasi Fermi energy within each QW, see Fig. 1b.

Recalling the condition (7), for thermodynamically consistent schemes, the discrete 
gradient of the discrete quasi Fermi level should indicates the direction of the discrete 
electron flow (as it is in the continuous case, according to (3)). However in Fig. 1b, one 
can see that, when the Scharfetter–Gummel scheme is applied to Fermi–Dirac statistics, 
resulting in a thermodynamically inconsistent scheme, the direction of electron flow is 
to the right outside the QW regions (e.g. between −5 nm and 3 nm) but to the left inside 
the QW regions (e.g. between 10 nm and 15 nm), which is not in accordance with (7). 
Moreover, as there is no generation of carriers in the system this change in direction of 
the electron flux is highly unphysical.

These humps in the quasi Fermi level are not present if one uses the 
Scharfetter–Gummel scheme with the Boltzmann approximation, which is a 
thermodynamically consistent scheme (Fig. 1a). Similarly, using Fermi–Dirac statistics 
with the SEDAN scheme does not exhibit the unphysical humps in the Fermi level 
(Fig. 1c).

Another perspective to interpret thermodynamic inconsistency is to note the 
incorrect interplay between quasi Fermi energies and local current fluxes. We see in 
Fig. 2 that the local numerical electron fluxes are positive and decrease monotonically 
across the QW regions. This is true for all three settings, that is, Boltzmann statistics 
in combination with the classical Scharfetter–Gummel scheme, as well as Fermi–Dirac 
statistics using both consistent and inconsistent numerical schemes. By our definition 
of a thermodynamically consistent scheme (7), a positive local numerical flux should 
imply a negative quasi Fermi potential discrete gradient. In fact, this is true for both 
consistent settings as one can see in Fig. 1a, c. However, for the inconsistent case the 

Fig. 1  Conduction band edge (black) and quasi Fermi energy (red) at a bias of 3.3 V a when using Boltz-
mann statistics, b when incorrectly using the Scharfetter–Gummel (SG) scheme with Fermi–Dirac (FD) 
statistics, and c when correctly using the SEDAN scheme with Fermi–Dirac statistics
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derivative of the quasi Fermi energies can become positive inside the wells, Fig.  1b, 
also in disagreement of how the flux should behave at the continuous level (see the 
relation between the flux and the quasi Fermi potential (3)).

Previous studies of the numerical flux approximations have shown that a thermodynam-
ically inconsistent scheme can result in the incorrect sign of the particle flux (Koprucki 
et al. 2015a). This is also reflected by the fact that (6) holds only for consistent schemes, 
which guarantee the physically correct sign of the current also far from equilibrium.

The physical reason of why an inconsistent scheme produces humps within the 
QWs becomes apparent when looking at the corresponding densities at a bias of 3.3 
V. The Fermi–Dirac function grows like a polynomial while the Boltzmann approxi-
mation grows for large densities exponentially, see for example Figure 50.9 in Farrell 
et  al. (2017a). This different behaviour leads to nonlinear diffusion, the so-called dif-
fusion enhancement, for non-Boltzmann statistics, see (4), or Koprucki et  al. (2015a). 
The Scharfetter–Gummel scheme neglects the diffusion enhancement assuming only 
linear diffusion, which has a knock-on impact on the carrier density: the densities cal-
culated using Boltzmann statistics (Fig.  3a) and using Fermi–Dirac statistics with the 
Scharfetter–Gummel scheme (Fig. 3b) are visibly indistinguishable. However, in order 
to produce the same density between a Boltzmann and Fermi–Dirac calculation, the 
quasi Fermi levels must differ. This results in the unusual behaviour of the quasi Fermi 
level exhibited in Fig. 1b. Comparing these densities with the correctly calculated den-
sity using Fermi–Dirac statistics in combination with the thermodynamically consistent 

Fig. 2  Numerical electron flux 
averaged over each atomic plane 
at a bias of 3.3 V shown for 
Boltzmann statisitcs (black), 
Fermi–Dirac statistics incorrectly 
using the Scharfetter–Gummel 
(SG) flux discretization (red) and 
Fermi–Dirac statistics correctly 
using the SEDAN flux discretiza-
tion (blue).(Color figure online)

Fig. 3  Electron density at a bias of 3.3 V a when using Boltzmann statistics, b when incorrectly using the 
Scharfetter–Gummel (SG) scheme with Fermi–Dirac statistics, and c when correctly using the SEDAN 
scheme with Fermi–Dirac statistics
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SEDAN scheme (Fig. 3c) we see that the choice of statistics function will impact carrier 
density in the well, and more strongly in the barrier regions at the here chosen example 
bias of 3.3 V.

Because it influences the carrier density, thermodynamic inconsistency has direct 
implications for the computed recombination rates as well as the current–voltage 
(IV) curves. Next, we compare the recombination rates calculated using Boltzmann 
statistics with those calculated using Fermi-Dirac statistics with the SEDAN scheme 
(as the thermodynamically inconsistent SG scheme with Fermi-Dirac statistics results 
in the same densities as the Boltzmann case this is equivalent to comparing the SG and 
SEDAN schemes with Fermi-Dirac statistics). 

This is highlighted in Fig.  4a, where the differences between Fermi–Dirac and 
Boltzmann-like behaviour are shown for the three recombination rates, calculated via

where Rs
i
 is the recombination rate associated with the process i 

(i ∈ {Shockley-Read-Hall, Radiative, Auger}) calculated with the scheme s 
(s ∈ {Boltzmann, SEDAN}) . From this figure it becomes clear that the Boltzmann 
behaviour overall underestimates the recombination across the multi QW region of the 
device. In particular, the Auger recombination is underestimated by up to two orders 
of magnitude at a bias of 3.3 V. These differences increase as the bias is increased (not 
shown). This can have consequences for overall device behaviour such as the internal 
quantum efficiency and the IV curves. The latter are shown in Fig. 4b, where the decreased 
recombination current displayed in the Boltzmann and thermodynamically inconsistent 
Fermi–Dirac scheme leads to an underestimate of the current density by close to an order 
of magnitude at 3.6 V.

The results highlighted above indicate that Fermi statistics implemented using a 
thermodynamically inconsistent scheme will result in Boltzmann-like behaviour in LED 

Δ log(recomb.) = log(RSEDAN
i

) − log(RBoltzmann
i

) ,

Fig. 4  a Difference in magnitude of the Shockley-Read-Hall (SRH, black), radiative (red) and Auger 
(blue) recombination rates between Fermi–Dirac and Boltzmann statistics at a bias of 3.3 V, calculated 
as described in the main text. b Current density–voltage (IV) curves using Boltzmann statistics (black, 
dashed), Fermi–Dirac statistics using the Scharfetter–Gummel scheme (SG, red) and Fermi–Dirac statistics 
using the SEDAN scheme (black, solid), shown on a log scale.(Color figure online)
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simulations – at least in terms of carrier and current densities. If this is extended to 
laser simulations the consequences can be even more dramatic, as the gain calculation 
depends on the difference between the electron and hole quasi Fermi energies (Bandelow 
et al. 2005), expressed by the so-called Fermi voltage. In this case the unphysical humps 
seen in Fig. 1b will lead to an incorrect prediction of the transparency density.

5  Conclusion

In this paper, we have shown the importance of using a thermodynamically consistent flux 
discretization when describing drift–diffusion processes within quantum well devices.

Using the classical Scharfetter–Gummel scheme with Fermi–Dirac statistics is an 
example of such an inconsistent scheme. Here we studied an (In,Ga)N multi quantum well 
structure as an example since it is a very important material system for optoelectronic 
devices. In this case, the Fermi levels show humps within the quantum wells resulting in an 
unphysical description of the direction of the current, e.g. assuming the usual continuous 
expression. This is explained by the omission of diffusion enhancement from the numerical 
current expression, that leads to a similar density distribution as using Boltzmann statistics. 
This has a knock-on effect for recombination and current–voltage behaviour, where using 
Fermi–Dirac statistics with a thermodynamically inconsistent scheme may incorrectly 
predict a Boltzmann-like behaviour.

Contrarily, for a thermodynamically consistent scheme, such as the SEDAN scheme, 
these unphysical humps in the Fermi levels disappear and accurate current curves and 
recombination processes are predicted. Thus, thermodynamically consistent schemes are 
essential to address open questions, such as the efficiency drop in modern light emitting 
devices and to reliably guide their design.

Author contributions The first version was written by PF. Subsequently, it was improved and edited by all 
authors. PF and JM implemented the SEDAN numerical flux, and MO provided figures 2 to 5. The idea for 
this publication arose in a joint conversation and was initiated by TK and SS.

Funding Open Access funding enabled and organized by Projekt DEAL. This paper was supported by the 
Leibniz competition 2022 (UVSimTec, K415/2021), Science Foundation Ireland (Nos.17/CDA/4789 and 
12/RC/2276 P2) and Labex CEMPI (ANR-11-LABX-0007-01).

Availability of data and materials The data and materials will be made available upon reasonable request.

Declarations 

Conflict of interest The authors declare that they have no competing interests.

Ethical approval Not applicable.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
licence, and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

http://creativecommons.org/licenses/by/4.0/


Importance of satisfying thermodynamic consistency in…

1 3

Page 11 of 12 978

References

Abdel, D., Farrell, P., Fuhrmann, J.: Assessing the quality of the excess chemical potential flux scheme for 
degenerate semiconductor device simulation. Opt. Quant. Electron. 53, 1–10 (2021)

Bandelow, U., Gajewski, H., Hünlich, R.: Fabry-perot lasers: thermodynamics-based modeling. In: Opto-
electronic Devices: Advanced Simulation and Analysis, pp. 63–85. Springer, New York (2005)

Bank, R.E., Rose, D.J.: Some error estimates for the box method. SIAM J. Numer. Anal. 24(4), 777–787 
(1987)

Bessemoulin-Chatard, M.: A finite volume scheme for convection-diffusion equations with nonlinear diffu-
sion derived from the Scharfetter–Gummel scheme. Numer. Math. 121, 637–670 (2012)

Cancès, C., Chainais-Hillairet, C., Fuhrmann, J., Gaudeul, B.: A numerical-analysis-focused comparison of 
several finite volume schemes for a unipolar degenerate drift–diffusion model. IMA J. Numer. Anal. 
(2020). https:// doi. org/ 10. 1093/ imanum/ draa0 02

Chainais-Hillairet, C., Eymard, R., Fuhrmann, J.: A monotone numerical flux for quasilinear convection dif-
fusion equation. (2022) https:// hal. archi ves- ouver tes. fr/ hal- 03791 166/ file/ art_ cef. pdf

Chaudhuri, D., Kelleher, J.C., O’Brien, M.R., O’Reilly, E.P., Schulz, S.: Electronic structure of semiconduc-
tor nanostructures: a modified localization landscape theory. Phys. Rev. B 101(3), 035430 (2020)

Darwish, M., Gagliardi, A.: A drift–diffusion simulation model for organic field effect transistors: on the 
importance of the Gaussian density of states and traps. J. Phys. D Appl. Phys. 53, 105102 (2020)

Eymard, R., Fuhrmann, J., Gärtner, K.: A finite volume scheme for nonlinear parabolic equations derived 
from one-dimensional local Dirichlet problems. Numer. Math. 102, 463–495 (2006)

Farrell, P., Doan, D.H., Kantner, M., Fuhrmann, J., Koprucki, T., Rotundo, N.: drift–diffusion models. In: 
Optoelectronic Device Modeling and Simulation: Fundamentals, Materials, Nanostructures, LEDs, 
and Amplifiers, pp. 733–771. CRC Press Taylor & Francis Group (2017a)

Ferry, D., Ramey, S., Shifren, L., Akis, R.: The effective potential in device modeling: the good, the bad and 
the ugly. J. Comput. Electron. 1, 59–65 (2002). https:// doi. org/ 10. 1023/A: 10207 63710 906

Filoche, M., Piccardo, M., Wu, Y.-R., Li, C.-K., Weisbuch, C., Mayboroda, S.: Localization landscape 
theory of disorder in semiconductors. I. Theory and modeling. Phys. Rev. B 95(14), 144204 (2017). 
https:// doi. org/ 10. 1103/ PhysR evB. 95. 144204

Humphreys, C.J.: Solid-state lighting. MRS Bull. 33(4), 459–470 (2008)
Jüngel, A.: Numerical approximation of a Drift–Diffusion model for semiconductors with nonlinear diffu-

sion. ZAMM 75(10), 783–799 (1995)
Koprucki, T., Gärtner, K.: Generalization of the Scharfetter–Gummel scheme. In: 2013 13th International 

Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), pp. 85–86. (2013b)
Koprucki, T., Gärtner, K.: Discretization scheme for drift–diffusion equations with strong diffusion enhance-

ment. Opt. Quant. Electron. 45(7), 791–796 (2013)
Koprucki, T., Rotundo, N., Farrell, P., Doan, D.H., Fuhrmann, J.: On thermodynamic consistency of a 

Scharfetter–Gummel scheme based on a modified thermal voltage for Drift–Diffusion equations with 
diffusion enhancement. Opt. Quant. Electron. 47(6), 1327–1332 (2015)

Lheureux, G., Lynsky, C., Wu, Y.-R., Speck, J.S., Weisbuch, C.: A 3D simulation comparison of carrier 
transport in green and blue c-plane multi-quantum well nitride light emitting diodes. J. Appl. Phys. 
128(23), 235703 (2020)

Li, C.K., Piccardo, M., Lu, L.S., Mayboroda, S., Marinelli, L., Peretti, J., Speck, J., Weisbuch, C., Filoche, 
M., Wu, Y.R.: Localization landscape theory of disorder in semiconductors. III. Application to carrier 
transport and recombination in light emitting diodes. Phys. Rev. B 95(04), 144206 (2017)

Lynsky, C., Alhassan, A.I., Lheureux, G., Bonef, B., DenBaars, S.P., Nakamura, S., Wu, Y.-R., Weisbuch, 
C., Speck, J.S.: Barriers to carrier transport in multiple quantum well nitride-based c-plane green light 
emitting diodes. Phys. Rev. Mater. 4, 054604 (2020)

Lynsky, C., Lheureux, C., Bonef, B., Qwah, K.S., White, R.C., DenBaars, S.P., Nakamura, S., Wu, Y.-R., 
Weisbuch, C., Speck, J.S.: Improved vertical carrier transport for green III-Nitride LEDs using (In, Ga)
N alloy quantum barriers. Phys. Rev. Appl. 17, 054048 (2022)

Macneal, R.H.: An asymmetrical finite difference network. Quart. Math. Appl. 11, 295–310 (1953)
O’Donovan, M., Farrell, P., Moatti, J., Streckenbach, T., Koprucki, T., Schulz, S.: Impact of random alloy 

fluctuations on the carrier distribution in multi-color (In,Ga)N/GaN quantum well systems (2022). 
arXiv: 2209. 11657

O’Donovan, M., Chaudhuri, D., Streckenbach, T., Farrell, P., Schulz, S., Koprucki, T.: From atomistic tight-
binding theory to macroscale drift–diffusion: multiscale modeling and numerical simulation of uni-
polar charge transport in (In, Ga)N devices with random fluctuations. J. Appl. Phys. 130(6), 065702 
(2021)

https://doi.org/10.1093/imanum/draa002
https://hal.archives-ouvertes.fr/hal-03791166/file/art_cef.pdf
https://doi.org/10.1023/A:1020763710906
https://doi.org/10.1103/PhysRevB.95.144204
http://arxiv.org/abs/2209.11657


 P. Farrell et al.

1 3

978 Page 12 of 12

O’Donovan, M., Farrell, P., Streckenbach, T., Koprucki, T., Schulz, S.: Multiscale simulations of uni-polar 
hole transport in (In, Ga)N quantum well systems. Opt. Quant. Electron. 54, 405 (2022)

Purbo, O.W., Cassidy, D.T., Chisholm, S.H.: Numerical model for degenerate and heterostructure semicon-
ductor devices. J. Appl. Phys. 66(10), 5078–5082 (1989)

Qwah, K.S., Monavarian, M., Lheureux, G., Wang, J., Wu, Y.-R., Speck, J.S.: Theoretical and experimental 
investigations of vertical hole transport through unipolar AlGaN structures: impacts of random alloy 
disorder. Appl. Phys. Lett. 117(2), 022107 (2020)

Ren, X., Wang, Z., Sha, W.E.I., Choy, W.C.H.: Exploring the way to approach the efficiency limit of perovs-
kite solar cells by drift–diffusion model. ACS Photon. 4(4), 934–942 (2017)

Römer, F., Witzigmann, B.: Luminescence distribution in the multi-quantum well region of III-nitride light 
emitting diodes. Proc. SPIE 10124, 101240Y-1 (2017)

Römer, F., Witzigmann, B.: Signature of the ideality factor in III-nitride multi quantum well light emitting 
diodes. Opt. Quant. Electron 50(11), 1–10 (2018)

Scharfetter, D.L., Gummel, H.K.: Large signal analysis of a silicon Read diode. IEEE Trans. Electron. Dev. 
16, 64–77 (1969)

Si, H., Gärtner, K., Fuhrmann, J.: Boundary conforming Delaunay mesh generation. Comput. Math. Math. 
Phys. 50, 38–53 (2010)

Stodtmann, S., Lee, R.M., Weiler, C.K.F., Badinski, A.: Numerical simulation of organic semiconductor 
devices with high carrier densities. J. Appl. Phys. 112(11), 114909 (2012)

Szymaǹski, M.Z., Tu, D., Forchheimer, R.: 2-D Drift–diffusion simulation of organic electrochemical tran-
sistors. IEEE Trans. Electron Devices 64(12), 5114–5120

Tress, W., Leo, K., Riede, M.: Optimum mobility, contact properties, and open-circuit voltage of organic 
solar cells: a drift–diffusion simulation study. Phys. Rev. B 85, 155201 (2012)

Tsai, T.-Y., Michalczewski, K., Martyniuk, P., Wu, C.-H., Wu, Y.-R.: Application of localization landscape 
theory and the k ⋅ p model for direct modeling of carrier transport in a type II superlattice InAs/InAsSb 
photoconductor system. J. Appl. Phys. 127(3), 033104 (2020)

van Mensfoort, S.L.M., Coehoorn, R.: Effect of Gaussian disorder on the voltage dependence of the current 
density in sandwich-type devices based on organic semiconductors. Phys. Rev. B 78(8), 085207 (2008)

Yu, Z., Dutton, R.: SEDAN III – A one-dimensional device simulator (1988). www- tcad. stanf ord. edu/ tcad/ 
progr ams/ sedan3. html

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://www-tcad.stanford.edu/tcad/programs/sedan3.html
http://www-tcad.stanford.edu/tcad/programs/sedan3.html

	Importance of satisfying thermodynamic consistency in optoelectronic device simulations for high carrier densities
	Abstract
	1 Introduction
	2 Drift–diffusion equations and diffusion enhancement
	3 Finite volume space discretization
	3.1 Discrete thermodynamic consistency
	3.2 The Scharfetter–Gummel scheme
	3.3 SEDAN scheme

	4 Simulations
	5 Conclusion
	References




