Skip to main content
Log in

Generalized performance analysis of uplink and downlink dual-hop AF mixed RF/FSO relaying systems with pointing errors

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We present the performance analysis of dual-hop mixed radio frequency (RF)/free space optical (FSO) systems with fixed-gain amplify-and-forward (AF) relaying in the presence of pointing errors. The RF link undergoes the \(\kappa\)-\(\mu\) shadowed fading and the FSO link experiences Fisher-Snedecor \(\mathcal{F}\) turbulence with pointing errors. For uplink and downlink scenarios, we derive closed-form approximate expressions of the end-to-end signal-to-noise ratio (SNR) statistics, such as the cumulative distribution function (CDF) and the probability density function (PDF). By using both two statistics, the average bit error rate (BER), the ergodic capacity (EC), and the effective capacity are derived in terms of the bivariate Fox’s H function. These results illustrate the effects of system and channel parameters on the considered system, including atmospheric turbulence, pointing errors, multipath cluster numbers, shadowing parameter, quality parameter and different modulation schemes. Note that our results provide more general expressions. Finally, the derived approximate expressions are confirmed through Monte Carlo (MC) simulations. This work would contribute to the design and development of dual-hop mixed RF/FSO relaying systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The manuscript has no relevant data.

References

Download references

Funding

This work was supported by National Natural Science Foundation of China (61,705,053), China Postdoctoral Science Foundation (2016M600249), Heilongjiang Provincial Postdoctoral Science Fundation, Fundamental Research Funds for the Central Universities, the Major Key Project of PCL (PCL2021A03-1).

Author information

Authors and Affiliations

Authors

Contributions

JD: Conceptualization, Methodology, Software. DK: Funding acquisition, Writing- Original draft preparation, Supervision, Validation. XX: Formal analysis, Writing- Reviewing and Editing. LW: Formal analysis, Mathematical formula derivation. HW: Formal analysis, Writing- Reviewing and Editing. LT: Writing- Reviewing and Editing. JM: Supervision.

Corresponding author

Correspondence to Dongpeng Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This declaration is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Proof of Eq. (8)

The CDF of \(\gamma\) can be written as

$$\begin{aligned} \begin{aligned} {{F}_{\gamma }}\left( \gamma \right)&=\int _{0}^{\infty }{\Pr \left( \frac{{{\gamma }_{1}}{{\gamma }_{2}}}{{{\gamma }_{2}}+C}<\gamma \left| {{\gamma }_{2}} \right. \right) {{f}_{{{\gamma }_{2}}}}\left( {{\gamma }_{2}} \right) d{{\gamma }_{2}}} \\&=\int _{x=0}^{\infty }{\int _{t=0}^{\gamma }{{{f}_{{{\gamma }_{1}}}}\left( t \right) {{f}_{{{\gamma }_{2}}}}\left( x \right) dtdx}} \\&\quad +\int _{x=0}^{\infty }{\int _{t=\gamma }^{\gamma +\frac{C\gamma }{x}}{{{f}_{{{\gamma }_{1}}}}\left( t \right) {{f}_{{{\gamma }_{2}}}}\left( x \right) dtdx}}. \end{aligned} \end{aligned}$$
(A.1)

Integrating over the same region and interchanging the integration order, we obtain

$$\begin{aligned} \begin{aligned} F_{\gamma } \left( \gamma \right) =F_{\gamma _{1} } \left( \gamma \right) +\int _{t=\gamma }^{\infty }F_{\gamma _{2} } \left( \frac{C\gamma }{t-\gamma } \right) f_{\gamma _{1} } \left( t\right) dt. \end{aligned} \end{aligned}$$
(A.2)

Inserting (3), (4), and (7) into (A.2) yields

$$\begin{aligned} \begin{aligned} {{F}_{\gamma }}\left( \gamma \right)&=1-\frac{\alpha {{\xi }_{\bmod }}^{2}}{r\Gamma \left( \delta \right) \Gamma \left( a \right) \Gamma \left( b \right) }\int _{t=\gamma }^{\infty }{{{t}^{-1}}\textrm{G}_{0,1}^{1,0}\left[ \delta {{\left( \frac{t}{{{\Omega }_{\alpha }}} \right) }^{\alpha }}\left| \begin{matrix} - \\ \delta \\ \end{matrix} \right. \right] } \\&\times {\textrm{H}}_{3,3}^{3,1}\left[ \frac{a\varphi {{\left( \frac{C\gamma }{t-\gamma } \right) }^{\frac{1}{r}}}}{\left( b-1 \right) {{\mu }_{r}}^{\frac{1}{r}}}\left| \begin{matrix} \left( 1-b,1 \right) ,\left( {{\xi }_{\bmod }}^{2}+1,1 \right) ,\left( 1,\frac{1}{r} \right) \\ \left( 0,\frac{1}{r} \right) ,\left( a,1 \right) ,\left( {{\xi }_{\bmod }}^{2},1 \right) \\ \end{matrix} \right. \right]\;dt. \end{aligned} \end{aligned}$$
(A.3)

Using the change of variable \(x=t-\gamma\), resorting to Eq. (2.9.1) in Kilbas (2004) and expanding the Fox’s H function using Eq. (1.1.1) in Kilbas (2004), \({{F}_{\gamma }}\left( \gamma \right)\) can be derived as

$$\begin{aligned} \begin{aligned} {{F}_{\gamma }}\left( \gamma \right)&=1-\frac{\alpha {{\xi }_{\bmod }}^{2}}{r\Gamma \left( \delta \right) \Gamma \left( a \right) \Gamma \left( b \right) }\frac{1}{{{\left( 2\pi i \right) }^{2}}}\int _{{{\mathcal {C}}_{1}}}{\int _{{{\mathcal {C}}_{2}}}{\Gamma \left( \frac{t}{r}+\alpha s \right) }} \\&\times \frac{\Gamma \left( \delta +s \right) }{\Gamma \left( 1+\alpha s \right) }\frac{\Gamma \left( -\frac{t}{r} \right) \Gamma \left( a-t \right) \Gamma \left( {{\xi }_{\bmod }}^{2}-t \right) \Gamma \left( b+t \right) }{\Gamma \left( {{\xi }_{\bmod }}^{2}+1-t \right) } \\&\times {{\left( \frac{{{\Omega }_{\alpha }}^{\alpha }}{\delta {{\gamma }^{\alpha }}} \right) }^{s}}{{\left( \frac{a\varphi {{C}^{\frac{1}{r}}}}{\left( b-1 \right) {{\mu }_{r}}^{\frac{1}{r}}} \right) }^{t}}dsdt, \end{aligned}\ \end{aligned}$$
(A.4)

where \({{\mathcal {C}}_{1}}\) and \({{\mathcal {C}}_{2}}\) represent the t-plane and the s-plane contours, respectively.

Employing Eq. (1.1) in Mittal and Gupta (1972), \({{F}_{\gamma }}\left( \gamma \right)\) can be derived in closed form as (8).

Appendix B Proof of Eq. (9)

Differentiating (A.4) with respect to \(\gamma\), the PDF of \(\gamma\) can be expressed as

$$\begin{aligned} \begin{aligned} {{f}_{\gamma }}\left( \gamma \right)&=\frac{\alpha {{\xi }_{\bmod }}^{2}}{r\Gamma \left( \delta \right) \Gamma \left( a \right) \Gamma \left( b \right) \gamma }\frac{1}{{{\left( 2\pi i \right) }^{2}}}\int _{{{\mathcal {C}}_{1}}}{\int _{{{\mathcal {C}}_{2}}}{\Gamma \left( \frac{t}{r}+\alpha s \right) }} \\&\times \frac{\Gamma \left( \delta +s \right) }{\Gamma \left( \alpha s \right) }\frac{\Gamma \left( -\frac{t}{r} \right) \Gamma \left( a-t \right) \Gamma \left( {{\xi }_{\bmod }}^{2}-t \right) \Gamma \left( b+t \right) }{\Gamma \left( {{\xi }_{\bmod }}^{2}+1-t \right) } \\&\times {{\left( \frac{{{\Omega }_{\alpha }}^{\alpha }}{\delta {{\gamma }^{\alpha }}} \right) }^{s}}{{\left( \frac{a\varphi {{C}^{\frac{1}{r}}}}{\left( b-1 \right) {{\mu }_{r}}^{\frac{1}{r}}} \right) }^{t}}dsdt. \end{aligned} \end{aligned}$$
(B.1)

With the help of Eq. (1.1) in Mittal and Gupta (1972), \({{f}_{\gamma }}\left( \gamma \right)\) can be obtained in closed form as (9).

Appendix C Proof of Eq. (14)

Inserting (8) into (13) and then employing Eq.(3.381/4) in Gradshteyn and Ryzhik (2014), \(\bar{P}_{e}\) can be obtained as

$$\begin{aligned} \begin{aligned} {{{\bar{P}}}_{e}}&=\frac{1}{2}-\frac{\alpha {{\xi }_{\bmod }}^{2}}{2r\Gamma \left( p \right) \Gamma \left( \delta \right) \Gamma \left( a \right) \Gamma \left( b \right) }\frac{1}{{{\left( 2\pi i \right) }^{2}}}\int _{{{\mathcal {C}}_{1}}}{\int _{{{\mathcal {C}}_{2}}}{\Gamma \left( \frac{t}{r}+\alpha s \right) }} \\&\times \frac{\Gamma \left( \delta +s \right) \Gamma \left( p-\alpha s \right) }{\Gamma \left( 1+\alpha s \right) }\frac{\Gamma \left( -\frac{t}{r} \right) \Gamma \left( a-t \right) \Gamma \left( {{\xi }_{\bmod }}^{2}-t \right) \Gamma \left( b+t \right) }{\Gamma \left( {{\xi }_{\bmod }}^{2}+1-t \right) } \\&\times {{\left( \frac{{{\Omega }_{\alpha }}^{\alpha }{{q}^{\alpha }}}{\delta } \right) }^{s}}{{\left( \frac{a\varphi {{C}^{\frac{1}{r}}}}{\left( b-1 \right) {{\mu }_{r}}^{\frac{1}{r}}} \right) }^{t}}dsdt. \end{aligned} \end{aligned}$$
(C.1)

Applying Eq. (1.1) in Mittal and Gupta (1972), \(\bar{P}_{e}\) can be derived in closed form as (14).

Appendix D Proof of Eq. (21)

Substituting (B.1) into (20), \(\overline{C}\) can be expressed as

$$\begin{aligned} \begin{aligned} \overline{C}&=\frac{\alpha {{\xi }_{\bmod }}^{2}}{2r\Gamma \left( a \right) \Gamma \left( b \right) \Gamma \left( \delta \right) }\frac{1}{{{\left( 2\pi i \right) }^{2}}}\int _{{{\mathcal {C}}_{1}}}{\int _{{{\mathcal {C}}_{2}}}{\Gamma \left( \frac{t}{r}+\alpha s \right) }} \\&\times \frac{\Gamma \left( \delta +s \right) }{\Gamma \left( \alpha s \right) }\frac{\Gamma \left( -\frac{t}{r} \right) \Gamma \left( a-t \right) \Gamma \left( {{\xi }_{\bmod }}^{2}-t \right) \Gamma \left( b+t \right) }{\Gamma \left( {{\xi }_{\bmod }}^{2}+1-t \right) } \\&\times {{\left( \frac{{{\Omega }_{\alpha }}^{\alpha }}{\delta } \right) }^{s}}{{\left( \frac{a\varphi {{C}^{\frac{1}{r}}}}{\left( b-1 \right) {{\mu }_{r}}^{\frac{1}{r}}} \right) }^{t}}\int _{0}^{\infty }{{{\gamma }^{-1-\alpha s}}\ln \left( 1+c\gamma \right) }d\gamma dsdt. \end{aligned} \end{aligned}$$
(D.1)

To evaluate (D.1), we can express the logarithmic function as Meijer’s G-function by

$$\begin{aligned} \begin{aligned} \ln (1+c \gamma )=\textrm{G}_{2,2}^{1,2}\left[ c \gamma \left| \begin{matrix} 1,1 \\ 1,0 \end{matrix}\right. \right] . \end{aligned} \end{aligned}$$
(D.2)

Then employing Eq. (07.34.21.0009.01) in Wolfram Research Inc. (2020), \(\overline{C}\) can be obtained as

$$\begin{aligned} \begin{aligned} \overline{C}&=\frac{\alpha {{\xi }_{\bmod }}^{2}}{2r\Gamma \left( a \right) \Gamma \left( b \right) \Gamma \left( \delta \right) }\frac{1}{{{\left( 2\pi i \right) }^{2}}}\int _{{{\mathcal {C}}_{1}}}{\int _{{{\mathcal {C}}_{2}}}{{}}} \\&\times \Gamma \left( \frac{t}{r}+\alpha s \right) \frac{\Gamma \left( -\alpha s+1 \right) \Gamma \left( \alpha s \right) \Gamma \left( \delta +s \right) }{\Gamma \left( 1+\alpha s \right) } \\&\times \frac{\Gamma \left( -\frac{t}{r} \right) \Gamma \left( a-t \right) \Gamma \left( {{\xi }_{\bmod }}^{2}-t \right) \Gamma \left( b+t \right) }{\Gamma \left( {{\xi }_{\bmod }}^{2}+1-t \right) } \\&\times {{\left( \frac{{{c}^{\alpha }}{{\Omega }_{\alpha }}^{\alpha }}{\delta } \right) }^{s}}{{\left( \frac{a\varphi {{C}^{\frac{1}{r}}}}{\left( b-1 \right) {{\mu }_{r}}^{\frac{1}{r}}} \right) }^{t}}dsdt. \end{aligned} \end{aligned}$$
(D.3)

Applying Eq. (1.1) in Mittal and Gupta (1972), \(\overline{C}\) can be expressed in closed form as (21).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Kang, D., Xie, X. et al. Generalized performance analysis of uplink and downlink dual-hop AF mixed RF/FSO relaying systems with pointing errors. Opt Quant Electron 55, 766 (2023). https://doi.org/10.1007/s11082-023-05054-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05054-7

Keywords

Navigation